1
|
Gowda SGS, Chakka AK, Kempegowda KB, Gopal S, Narayan B. Biofunctional components and bacterial dynamics of enzymatic and fermentatively prepared rohu ( Labeo rohita) egg sauce. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1884-1893. [PMID: 39285992 PMCID: PMC11401801 DOI: 10.1007/s13197-024-05965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 09/19/2024]
Abstract
The present study focused on preparing rohu egg sauce using optimized conditions through enzymatic and fermentative methods. The enzymatic preparation of rohu egg sauce (ERS) involved homogenizing the eggs in water at a ratio of 1:0.9 (w/v), followed by the addition of salt (20% w/w) and papain (3% w/w). A mixture containing salt (25% w/w), sugar (7.5% w/w), and inoculum (10% (w/v)) of Pediococcus pentosaceus FSBP4-40 was utilized to prepare fermentatively produced rohu egg sauce (FRS). ERS and FRS were then stored at room temperature (25 ± 2 °C) and 37 °C for 180 days. After storage, both sauces were evaluated for their scavenging activity against DPPH, ABTS, and superoxide anion (SOA). The ERS demonstrated significantly higher DPPH, ABTS, and SOA scavenging activity compared to the FRS, with values of 61.61 ± 7.33%, 71.21 ± 2.14%, and 85.11 ± 4.92%, respectively, as opposed to 37.49 ± 5.34, 52.31 ± 1.76%, and 63.09 ± 2.31%. Significant changes were observed in the fatty acid profile of the sauces during 180 day storage. Furthermore, after 180 days, the bacterial counts in the FRS were much lower than in the ERS. Overall, this study highlights the importance of using enzymes and LAB in accelerating the hydrolytic process to produce biofunctional rohu egg sauce.
Collapse
Affiliation(s)
| | - Ashok Kumar Chakka
- Department of Postgraduate Studies and Research in Food Science, St. Aloysius (Deemed to be University), Mangaluru, Karnataka 575 003 India
| | | | | | - Bhaskar Narayan
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001 India
| |
Collapse
|
2
|
Gao P, Zhang Z, Jiang Q, Hu X, Zhang X, Yu P, Yang F, Liu S, Xia W. Metabolomics ravels flavor compound formation and metabolite transformation in rapid fermentation of salt-free fish sauce from catfish frames induced by mixed microbial cultures. Food Chem 2024; 463:141246. [PMID: 39278082 DOI: 10.1016/j.foodchem.2024.141246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
This study demonstrates that the co-inoculation with Lactiplantibacillus plantarum, Pichia fermentans and Staphylococcus saprophyticus accelerates catfish frame fish sauce fermentation. Over a 3-day period, significant changes occurred in physicochemical properties, microbial profiles, flavor compounds, and metabolomic spectra. Notable increases in acidity coupled with decreases in glucose underscored the robust environmental adaptability of the employed microorganisms. A reduction in total amino acids, alongside a rise in umami amino acids, suggested flavor enhancement. GC-MS analysis identified 40 key volatile compounds, with esters and aldehydes crucial for aroma development. UPLC-QTOF-MS-based untargeted analysis identified 934 metabolites, with 377 differential metabolites being vital (VIP > 1.5, P < 0.05), including amino acids, peptides, organic acids, nucleic acids, and fatty acids. Metabolites linked to amino acid metabolism, particularly phenylalanine and arginine, were associated with fermentation duration. These findings offer a theoretical basis for optimizing flavor and quality in fish sauces from fish by-products through accelerated fermentation.
Collapse
Affiliation(s)
- Pei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| | - Zhiqing Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China.
| | - Xiaohui Hu
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China.
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117546, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Wang Y, Chen Q, Li L, Chen S, Zhao Y, Li C, Xiang H, Wu Y, Sun-Waterhouse D. Transforming the fermented fish landscape: Microbiota enable novel, safe, flavorful, and healthy products for modern consumers. Compr Rev Food Sci Food Saf 2023; 22:3560-3601. [PMID: 37458317 DOI: 10.1111/1541-4337.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/13/2023]
Abstract
Regular consumption of fish promotes sustainable health while reducing negative environmental impacts. Fermentation has long been used for preserving perishable foods, including fish. Fermented fish products are popular consumer foods of historical and cultural significance owing to their abundant essential nutrients and distinct flavor. This review discusses the recent scientific progress on fermented fish, especially the involved flavor formation processes, microbial metabolic activities, and interconnected biochemical pathways (e.g., enzymatic/non-enzymatic reactions associated with lipids, proteins, and their interactions). The multiple roles of fermentation in preservation of fish, development of desirable flavors, and production of health-promoting nutrients and bioactive substances are also discussed. Finally, prospects for further studies on fermented fish are proposed, including the need of monitoring microorganisms, along with the precise control of a fermentation process to transform the traditional fermented fish to novel, flavorful, healthy, and affordable products for modern consumers. Microbial-enabled innovative fermented fish products that consider both flavor and health benefits are expected to become a significant segment in global food markets. The integration of multi-omics technologies, biotechnology-based approaches (including synthetic biology and metabolic engineering) and sensory and consumer sciences, is crucial for technological innovations related to fermented fish. The findings of this review will provide guidance on future development of new or improved fermented fish products through regulating microbial metabolic processes and enzymatic activities.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
A Comprehensive Review with Future Insights on the Processing and Safety of Fermented Fish and the Associated Changes. Foods 2023; 12:foods12030558. [PMID: 36766088 PMCID: PMC9914387 DOI: 10.3390/foods12030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 02/03/2023] Open
Abstract
As an easily spoiled source of valuable proteins and lipids, fish is preserved by fermentation in many cultures. Over time, diverse types of products have been produced from fish fermentation aside from whole fish, such as fermented fish paste and sauces. The consumption of fermented fish products has been shown to improve both physical and mental health due to the composition of the products. Fermented fish products can be dried prior to the fermentation process and include various additives to enhance the flavours and aid in fermentation. At the same time, the fermentation process and its conditions play a major role in determining the quality and safety of the product as the compositions change biochemically throughout fermentation. Additionally, the necessity of certain microorganisms and challenges in avoiding harmful microbes are reviewed to further optimise fermentation conditions in the future. Although several advanced technologies have emerged to produce better quality products and easier processes, the diversity of processes, ingredients, and products of fermented fish warrants further study, especially for the sake of the consumers' health and safety. In this review, the nutritional, microbial, and sensory characteristics of fermented fish are explored to better understand the health benefits along with the safety challenges introduced by fermented fish products. An exploratory approach of the published literature was conducted to achieve the purpose of this review using numerous books and online databases, including Google Scholar, Web of Science, Scopus, ScienceDirect, and PubMed Central, with the goal of obtaining, compiling, and reconstructing information on a variety of fundamental aspects of fish fermentation. This review explores significant information from all available library databases from 1950 to 2022. This review can assist food industries involved in fermented fish commercialization to efficiently ferment and produce better quality products by easing the fermentation process without risking the health and safety of consumers.
Collapse
|
5
|
Udomsil N, Pongjanla S, Rodtong S, Tanasupawat S, Yongsawatdigul J. Extremely halophilic strains of
Halobacterium salinarum
as a potential starter culture for fish sauce fermentation. J Food Sci 2022; 87:5375-5389. [DOI: 10.1111/1750-3841.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Natteewan Udomsil
- Food Technology Program School of Interdisciplinary Studies Mahidol University Kanchanaburi Campus Kanchanaburi Thailand
| | - Sirinya Pongjanla
- School of Food Technology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Sureelak Rodtong
- School of Preclinical Sciences, Institute of ScienceSuranaree University of Technology Nakhon RatchasimaThailand
- Microbial Cultures Research Center for Food and Bioplastics Production Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Somboon Tanasupawat
- Department of Microbiology, Faculty of Pharmaceutical Sciences Chulalongkorn University Bangkok Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
- Microbial Cultures Research Center for Food and Bioplastics Production Suranaree University of Technology Nakhon Ratchasima Thailand
| |
Collapse
|
6
|
Abstract
Fermented foods and beverages have become a part of daily diets in several societies around the world. Emitted volatile organic compounds play an important role in the determination of the chemical composition and other information of fermented foods and beverages. Electronic nose (E-nose) technologies enable non-destructive measurement and fast analysis, have low operating costs and simplicity, and have been employed for this purpose over the past decades. In this work, a comprehensive review of the recent progress in E-noses is presented according to the end products of the main fermentation types, including alcohol fermentation, lactic acid fermentation, acetic acid fermentation and alkaline fermentation. The benefits, research directions, limitations and challenges of current E-nose systems are investigated and highlighted for fermented foods and beverage applications.
Collapse
|
7
|
Gao Y, Li D, Tian Z, Hou L, Gao J, Fan B, Wang F, Li S. Metabolomics analysis of soymilk fermented by Bacillus subtilis BSNK-5 based on UHPLC-Triple-TOF-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Han J, Kong T, Wang Q, Jiang J, Zhou Q, Li P, Zhu B, Gu Q. Regulation of microbial metabolism on the formation of characteristic flavor and quality formation in the traditional fish sauce during fermentation: a review. Crit Rev Food Sci Nutr 2022; 63:7564-7583. [PMID: 35253552 DOI: 10.1080/10408398.2022.2047884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish sauce is a special flavored condiment formed by traditional fermentation of low-value fish in coastal areas, which are consumed and produced in many parts of the world, especially in Southeast Asia. In the process of fish sauce fermentation, the diversity of microbial flora and the complex metabolic reactions of microorganisms, especially lipid oxidation, carbohydrate fermentation and protein degradation, are accompanied by the formation of flavor substances. However, the precise reaction of microorganisms during the fersmentation process is difficult to accurately control in modern industrial production, which leads to the loss of traditional characteristic flavors in fermented fish sauces. This paper reviews the manufacturing processes, core microorganisms, metabolic characteristics and flavor formation mechanisms of fermented fish sauces at home and abroad. Various methods have been utilized to analyze and characterize the composition and function of microorganisms. Additionally, the potential safety issues of fermented fish sauces and their health benefits are also reviewed. Furthermore, some future directions and prospects of fermented fish sauces are also reviewed in this paper. By comprehensive understanding of this review, it is expected to address the challenges in the modern production of fish sauce thereby expanding its application in food or diet.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Tao Kong
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jialan Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Beiwei Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Narzary Y, Das S, Goyal AK, Lam SS, Sarma H, Sharma D. Fermented fish products in South and Southeast Asian cuisine: indigenous technology processes, nutrient composition, and cultural significance. JOURNAL OF ETHNIC FOODS 2021; 8:33. [DOI: https:/doi.org/10.1186/s42779-021-00109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/30/2021] [Indexed: 09/01/2023]
Abstract
AbstractThe cleaner production of biomass into value-added products via microbial processes adds uniqueness in terms of food quality. The microbe-mediated traditional process for transforming biomass into food is a sustainable practice in Asian food industries. The 18 fermented fish products derived through this process as well as the associated micro-flora and nutritional composition have been focused. This review aims to update the process of green conversion biomass into value-added food products for a more sustainable future. Fish products are classified based on the substrate and source of the enzymes used in fermentation, which includes the three types of technology processing discussed. According to the findings, these fermented fish contain a plethora of beneficial microbiota, making them a valuable source of probiotics that may confer nutritional and health benefits.Bacillus(12 products),Lactobacillus(12 products),Micrococcus(9 products), andStaphylococcus(9 products) were the most common bacterial genera found in 18 fermented fish products. Consuming fermented fish products is beneficial to human health due to their high levels of carbohydrate, protein, fat, and lactic acid. However, biogenic amines, which are produced by certain bacteria as a by-product of their catabolic activity, are a significant potential hazard in traditionally fermented fish.
Collapse
|
10
|
Li X, Liu SQ. Effect of co-inoculation and sequential inoculation of Lactobacillus fermentum and Pichia kluyveri on pork hydrolysates fermentation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Md Zoqratt MZH, Gan HM. The inconsistent microbiota of Budu, the Malaysian fermented anchovy sauce, revealed through 16S amplicon sequencing. PeerJ 2021; 9:e12345. [PMID: 34760368 PMCID: PMC8557686 DOI: 10.7717/peerj.12345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Budu is a Malaysian fermented anchovy sauce produced by immersing small fishes into a brine solution for 6 to 18 months. Microbial enzymes are known to contribute to fermentation; however, not much is known about the microbial community in Budu. Therefore, a better understanding of the Budu microbiome is necessary to improve the quality, consistency, and safety of the Budu products. In this study, we collected 60 samples from 20 bottles of Budu produced by seven manufacturers. We analyzed their microbiota using V3–V4 16S rRNA amplicon sequencing when we first opened the bottle (month 0), as well as 3 and 7 months post-opening (months 3 and 7). Tetragenococcus was the dominant genus in many samples, reaching a maximum proportion of 98.62%, but was found in low abundance, or absent, in other samples. When Budu samples were not dominated by a dominant taxa, we observed a wider genera diversity such as Staphylococcus, Acinetobacter, Halanaerobium and Bacillus. While the taxonomic composition was relatively stable across sampling periods, samples from two brands showed a sudden increase in relative abundance of the genus Chromobacterium at month 7. Based on prediction of metagenome functions, non-Tetragenococcus-dominated samples were predicted to have enriched functional pathways related to amino acid metabolism and purine metabolism compared to Tetragenococcus-dominated samples; these two pathways are fundamental to fermentation quality and health attributes of fish sauce. Among the non-Tetragenococcus-dominated samples, contributions towards amino acid metabolism and purine metabolism were biased towards the dominant taxa when species evenness is low, while in samples with higher species evenness, the contributions towards the two pathways were predicted to be evenly distributed between taxa. Our results demonstrated that the utility of 16S sequencing to assess batch variation in fermented food production. The distinct microbiota was shown to correlate with characteristic metagenome function including functions potentially related to fermented food nutrition and quality.
Collapse
Affiliation(s)
| | - Han Ming Gan
- GeneSEQ Sdn Bhd, Bukit Beruntung, Selangor, Malaysia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
12
|
Feng L, Tang N, Liu R, Gong M, Wang Z, Guo Y, Wang Y, Zhang Y, Chang M. The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products. Food Funct 2021; 12:5685-5702. [PMID: 34037049 DOI: 10.1039/d1fo00692d] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Traditional fermented fish products are favored due to their unique flavors. The fermentation process of fish is accompanied by the formation of flavor substances through a complex metabolic reaction of microorganisms, especially lipolysis and lipid oxidation. However, it is difficult to precisely control the reaction of microorganisms during the fermentation process in modern industrial production, and fermented fish products have lost their traditional characteristic flavors. The purpose of this review is to summarize the different kinds of fermented fish, core microorganisms in it, and flavor formation mechanisms, providing guidance for industrial cultural starters. Future research on the flavor formation mechanism is necessary to confirm the relationship between flavor formation, lipid metabolism, and microorganisms to ensure stable flavor and safety, and to elucidate the mechanism directly toward industrial application.
Collapse
Affiliation(s)
- Lin Feng
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Nianchu Tang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Mengyue Gong
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Zhangtie Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yiwen Guo
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yandan Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Li N, Liu Y, Wang C, Weng P, Wu Z, Zhu Y. Overexpression and characterization of a novel GH4 galactosidase with β-galactosidase activity from Bacillus velezensis SW5. J Dairy Sci 2021; 104:9465-9477. [PMID: 34127264 DOI: 10.3168/jds.2021-20258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
A novel galactosidase gene (gal3149) was identified from Bacillus velezensis SW5 and heterologously expressed in Escherichia coli BL21 (DE3). The novel galactosidase, Gal3149, encoded by gal3149 in an open reading frame of 1,299 bp, was 433 amino acids in length. Protein sequence analysis showed that Gal3149 belonged to family 4 of glycoside hydrolases (GH4). Gal3149 displayed higher enzyme activity for the substrate 2-nitrophenyl-β-d-galactopyranoside (oNPG) than for 4-nitrophenyl-α-d-galactopyranoside (pNPαG). This is the first time that an enzyme belonging to GH4 has been shown to exhibit β-galactosidase activity. Gal3149 showed optimal activity at pH 8.0 and 50°C, and exhibited excellent thermal stability, with retention of 50% relative activity after incubation at a temperature range of 0 to 50°C for 48 h. Gal3149 activity was significantly improved by K+ and Na+, and was strongly or completely inhibited by Ag+, Zn2+, Tween-80, Cu2+, carboxymethyl cellulose, and oleic acid. The rate of hydrolyzed lactose in 1 mL of milk by 1 U of Gal3149 reached about 50% after incubation for 4 h. These properties lay a solid foundation for Gal3149 in application of the lactose-reduced dairy industry.
Collapse
Affiliation(s)
- Na Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yang Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China; Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, People's Republic of China
| | - Changyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China.
| | - Yazhu Zhu
- Zhejiang International Maritime College, Zhoushan 316021, People's Republic of China
| |
Collapse
|
14
|
Bu Y, Liu Y, Luan H, Zhu W, Li X, Li J. Characterization and structure-activity relationship of novel umami peptides isolated from Thai fish sauce. Food Funct 2021; 12:5027-5037. [PMID: 33955998 DOI: 10.1039/d0fo03326j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fish sauce has a prominent umami flavor. In this study, umami peptides were isolated, purified and identified from Thai fish sauce, and their structure-activity relationships were analyzed. Six novel umami peptides were characterized and verified by using sensory evaluation and a electronic tongue. Molecular docking with T1R1/T1R3 receptors showed that the interaction forces were mainly hydrogen bonds, electrostatic interaction and van der Waals force. In the constructed three dimensional quantitative structure-activity relationship model (3D-QSAR) model, the regression coefficient (R2) for the degree of dispersion between the predicted molecular and the experimental values of the six peptides was 0.976. The association between the structure and activity of umami peptides was revealed through 3D-QSAR. Results showed that the spatial effect was significant for long chain peptides.
Collapse
Affiliation(s)
- Ying Bu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Yingnan Liu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Hongwei Luan
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
15
|
Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Dini I, Laneri S. Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants (Basel) 2021; 10:868. [PMID: 34071441 PMCID: PMC8230008 DOI: 10.3390/antiox10060868] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Spices, condiments and extra virgin olive oil (EVOO) are crucial components of human history and nutrition. They are substances added to foods to improve flavor and taste. Many of them are used not only to flavor foods, but also in traditional medicine and cosmetics. They have antioxidant, antiviral, antibiotic, anticoagulant and antiinflammatory properties and exciting potential for preventing chronic degenerative diseases such as cardiomyopathy and cancer when used in the daily diet. Research and development in this particular field are deeply rooted as the consumer inclination towards natural products is significant. It is essential to let consumers know the beneficial effects of the daily consumption of spices, condiments and extra virgin olive oil so that they can choose them based on effects proven by scientific works and not by the mere illusion that plant products are suitable only because they are natural and not chemicals. The study begins with the definition of spices, condiments and extra virgin olive oil. It continues by describing the pathologies that can be prevented with a spicy diet and it concludes by considering the molecules responsible for the beneficial effects on human health (phytochemical) and their eventual transformation when cooked.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | | |
Collapse
|
17
|
Zhu W, Luan H, Bu Y, Li J, Li X, Zhang Y. Changes in taste substances during fermentation of fish sauce and the correlation with protease activity. Food Res Int 2021; 144:110349. [PMID: 34053542 DOI: 10.1016/j.foodres.2021.110349] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/18/2022]
Abstract
Anchovy sauce shows different taste profiles under different fermentation time. The change rules of free amino acids was measured by amino acid analyzer, and other taste substances, such as nucleotides and organic acids in anchovy sauce under different fermentation time were also investigated. Moreover, the correlation between protease activity and taste substances in anchovy sauce fermentation was analyzed by orthogonal partial least squares. Throughout the fermentation process, the taste substances in anchovy sauce increased during early months and then decreased as time increased. The content of amino acid nitrogen, TCA-soluble peptides, 5'-nucleotides (AMP, GMP, IMP) and organic acids (lactic acid, succinic acid) in anchovy sauce increased by 26%, 33%, (45%, 35%, 68%) and (27%, 2%) respectively in comparison with 6 months fermentation. Total amino acid content reached its maximum after 18 months fermentation. Results of electronic tongue demonstrated that the umami of anchovy sauce after 12 months fermentation increased by 17% in comparison with 6 months fermentation. A model correlating changes in protease activity with taste formation suggested that protease activity impacted the content of Ala, Glu, Lys, Asp, Leu, TCA-soluble peptides and succinic acid. This study can provide empirical evidence to guide the efficient processing of anchovy sauce.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Hongwei Luan
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
18
|
Narzary Y, Das S, Goyal AK, Lam SS, Sarma H, Sharma D. Fermented fish products in South and Southeast Asian cuisine: indigenous technology processes, nutrient composition, and cultural significance. JOURNAL OF ETHNIC FOODS 2021; 8:33. [PMCID: PMC8579182 DOI: 10.1186/s42779-021-00109-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/30/2021] [Indexed: 06/02/2023]
Abstract
The cleaner production of biomass into value-added products via microbial processes adds uniqueness in terms of food quality. The microbe-mediated traditional process for transforming biomass into food is a sustainable practice in Asian food industries. The 18 fermented fish products derived through this process as well as the associated micro-flora and nutritional composition have been focused. This review aims to update the process of green conversion biomass into value-added food products for a more sustainable future. Fish products are classified based on the substrate and source of the enzymes used in fermentation, which includes the three types of technology processing discussed. According to the findings, these fermented fish contain a plethora of beneficial microbiota, making them a valuable source of probiotics that may confer nutritional and health benefits. Bacillus (12 products), Lactobacillus (12 products), Micrococcus (9 products), and Staphylococcus (9 products) were the most common bacterial genera found in 18 fermented fish products. Consuming fermented fish products is beneficial to human health due to their high levels of carbohydrate, protein, fat, and lactic acid. However, biogenic amines, which are produced by certain bacteria as a by-product of their catabolic activity, are a significant potential hazard in traditionally fermented fish.
Collapse
Affiliation(s)
- Yutika Narzary
- Department of Botany, Bodoland University, Kokrajhar, BTR, Assam 783370 India
| | - Sandeep Das
- Department of Biotechnology, Bodoland University, Kokrajhar, BTR, Assam 783370 India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar, BTR, Assam 783370 India
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Hemen Sarma
- Institutional Biotech Hub (IBT Hub), Department of Botany, Nanda Nath Saikia College, Titabar, Assam 785630 India
| | | |
Collapse
|
19
|
Liu TT, Xia N, Wang QZ, Chen DW. Identification of the Non-Volatile Taste-Active Components in Crab Sauce. Foods 2019; 8:foods8080324. [PMID: 31394849 PMCID: PMC6722521 DOI: 10.3390/foods8080324] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022] Open
Abstract
Crab sauce is a traditional umami seasoning in the coastal cities in South East China. The putative non-volatile taste-active components in crab sauce were measured, and their impacts on the taste were evaluated on the basis of the taste activity value (TAV), omission test, addition test and equivalent umami concentration (EUC). The EUC used to evaluate the synergistic effect of the flavor nucleotides and umami amino acids was 19.3 g monosodium glutamate (MSG)/100 mL, which illuminated that crab sauce had a very intense umami taste. The key non-volatile taste-active components in crab sauce demonstrated by the omission test and addition test were glutamic acid (Glu), aspartic acid (Asp), glycine (Gly), alanine (Ala), lysine (Lys), histidine (His), 5'-inosine monophosphate (IMP), 5'-guanosine monophosphate (GMP), NaCl, KCl, serine (Ser) and valine (Val), and most of these components also had a higher TAV. So, the TAV could be a high-efficiency tool to predict the taste-active components, and the TAV combined with the omission test and addition test could be a very useful method to determine the taste-active components in crab sauce.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Department of Food Science, Guangxi University, Nanning 530004, China
| | - Ning Xia
- Department of Food Science, Guangxi University, Nanning 530004, China
| | - Qin-Zhi Wang
- Department of Food Science, Guangxi University, Nanning 530004, China
| | - De-Wei Chen
- Department of Food Science, Guangxi University, Nanning 530004, China.
| |
Collapse
|
20
|
Zang J, Xu Y, Xia W, Regenstein JM. Quality, functionality, and microbiology of fermented fish: a review. Crit Rev Food Sci Nutr 2019; 60:1228-1242. [PMID: 30676059 DOI: 10.1080/10408398.2019.1565491] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fermentation is a traditional food preservation method and is widely used for improving food safety, shelf life, and organoleptic and nutritional attributes. Fermented fish are produced and consumed in different parts of the world and are an integral part of many food cultures. Furthermore, fermented fish are a source of interesting microbes and are an important industry in many countries. This review tries to update the types and manufacturing processes for fermented fish around the world. The emphasis is on this work related to fermented fish and their health benefits, as well as the contribution of microorganisms to their fermentation. A variety of different approaches have been used to determine and understand microbial composition and functionality. Moreover, some challenges and future research directions regarding fermented fish are also discussed in this review. Further research into fermented fish products is of crucial importance not only for the food industry but also for human health. However, extensive in vivo and toxicological studies are essential before the application of bioactive-rich fermented fish products for human health benefits.
Collapse
Affiliation(s)
- Jinhong Zang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Zheng B, Liu Y, He X, Hu S, Li S, Chen M, Jiang W. Quality improvement on half-fin anchovy (Setipinna taty) fish sauce by Psychrobacter sp. SP-1 fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4484-4493. [PMID: 28294344 DOI: 10.1002/jsfa.8313] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND A method of improving fish sauce quality during fermentation was investigated. Psychrobacter sp. SP-1, a halophilic protease-producing bacterium, was isolated from fish sauce with flavor-enhancing properties and non-biogenic amine-producing activity. The performance of Psychrobacter sp. SP-1 in Setipinna taty fish sauce fermentation was investigated further. RESULTS The inoculation of Psychrobacter sp. SP-1 did not significantly affect pH or NaCl concentration changes (P > 0.05), although it significantly increased total moderately halophilic microbial count, protease activity, total soluble nitrogen content and amino acid nitrogen content, and also promoted the umami taste and meaty aroma (P < 0.05). Furthermore, the inoculation of Psychrobacter sp. SP-1 significantly decreased total volatile basic nitrogen content and biogenic amines content (P < 0.05), which were regarded as harmful compounds in foods. CONCLUSION The results of the present study demonstrate that Psychrobacter sp. SP-1 can be used as a potential starter culture for improving fish sauce quality by fermentation. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin Zheng
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, China
| | - Yu Liu
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaoxia He
- Qingdao Entry-Exit Inspection and Qunarantine Bureau, Qingdao, Shandong, China
| | - Shiwei Hu
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Shijie Li
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Meiling Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Wei Jiang
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
22
|
|
23
|
Zhao J, Jiang Q, Xu Y, Xia W. Effect of mixed kojis on physiochemical and sensory properties of rapid-fermented fish sauce made with freshwater fish by-products. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiuxiang Zhao
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu 1800 Wuxi Jiangsu 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu 1800 Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu 1800 Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu 1800 Wuxi Jiangsu 214122 China
| |
Collapse
|
24
|
Liu Y, Xu Y, He X, Wang D, Hu S, Li S, Jiang W. Reduction of salt content of fish sauce by ethanol treatment. Journal of Food Science and Technology 2017; 54:2956-2964. [PMID: 28928536 DOI: 10.1007/s13197-017-2734-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 11/28/2022]
Abstract
Fish sauce is a traditional condiment in Southeast Asia, normally containing high concentration of salt. The solubility of salt is lower in ethanol than in water. In the present study, fish sauce was desalted by ethanol treatment (including the processes of ethanol addition, mixing, standing and rotary evaporation). The salt concentration of fish sauce decreased significantly from 29.72 to 19.72 g/100 mL when the treated ethanol concentration was 21% (v/v). The addition of more than 12% (v/v) of ethanol significantly reduced dry weight, total soluble nitrogen content and amino acids nitrogen content. Besides, the quality of fish sauce remained first grade if no more than 21% (v/v) of ethanol was used. Furthermore, sensory analyses showed that ethanol treatment significantly reduced the taste of salty and the odor of ammonia. This study demonstrates that ethanol treatment is a potential way to decrease salt content in fish sauce, which meanwhile limits the losses of nutritional and sensorial values within an acceptable range.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Ying Xu
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xiaoxia He
- Qingdao Entry-Exit Inspection and Qunarantine Bureau, Qingdao, 266002 China
| | - Dongfeng Wang
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Shiwei Hu
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Shijie Li
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Wei Jiang
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, 316022 China.,Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
25
|
Zeng X, He L, Guo X, Deng L, Yang W, Zhu Q, Duan Z. Predominant processing adaptability of Staphylococcus xylosus strains isolated from Chinese traditional low-salt fermented whole fish. Int J Food Microbiol 2017; 242:141-151. [DOI: 10.1016/j.ijfoodmicro.2016.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023]
|
26
|
Gao P, Wang W, Jiang Q, Xu Y, Xia W. Effect of autochthonous starter cultures on the volatile flavour compounds of Chinese traditional fermented fish (Suan yu). Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13134] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pei Gao
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| | - Weixin Wang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| |
Collapse
|