1
|
Vitale L, Vitale E, Francesca S, Lorenz C, Arena C. Plant-Growth Promoting Microbes Change the Photosynthetic Response to Light Quality in Spinach. PLANTS (BASEL, SWITZERLAND) 2023; 12:1149. [PMID: 36904009 PMCID: PMC10005764 DOI: 10.3390/plants12051149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, the combined effect of plant growth under different light quality and the application of plant-growth-promoting microbes (PGPM) was considered on spinach (Spinacia oleracea L.) to assess the influence of these factors on the photosynthetic performance. To pursue this goal, spinach plants were grown in a growth chamber at two different light quality regimes, full-spectrum white light (W) and red-blue light (RB), with (I) or without (NI) PGPM-based inoculants. Photosynthesis-light response curves (LRC) and photosynthesis-CO2 response curves (CRC) were performed for the four growth conditions (W-NI, RB-NI, W-I, and RB-I). At each step of LRC and CRC, net photosynthesis (PN), stomatal conductance (gs), Ci/Ca ratio, water use efficiency (WUEi), and fluorescence indexes were calculated. Moreover, parameters derived from the fitting of LRC, such as light-saturated net photosynthesis (PNmax), apparent light efficiency (Qpp), and dark respiration (Rd), as well as the Rubisco large subunit amount, were also determined. In not-inoculated plants, the growth under RB- regime improved PN compared to W-light because it increased stomatal conductance and favored the Rubisco synthesis. Furthermore, the RB regime also stimulates the processes of light conversion into chemical energy through chloroplasts, as indicated by the higher values of Qpp and PNmax in RB compared to W plants. On the contrary, in inoculated plants, the PN enhancement was significantly higher in W (30%) than in RB plants (17%), which showed the highest Rubisco content among all treatments. Our results indicate that the plant-growth-promoting microbes alter the photosynthetic response to light quality. This issue must be considered when PGPMs are used to improve plant growth performance in a controlled environment using artificial lighting.
Collapse
Affiliation(s)
- Luca Vitale
- National Research Council, Department of Biology, Agriculture and Food Sciences, Institute for Agricultural and Forestry Systems in the Mediterranean, P. le E. Fermi 1, 80055 Portici, Italy
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Christian Lorenz
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
2
|
Teng X, Zhang M, Mujumdar AS. Phototreatment (below 1100 nm) improving quality attributes of fresh-cut fruits and vegetables: A review. Food Res Int 2023; 163:112252. [PMID: 36596164 DOI: 10.1016/j.foodres.2022.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The emerging area of phototreatment technology has shown a significant potential to enhance the quality of fresh-cut fruit and vegetable products (FFVP). This review critically evaluates relevant literatures to address the potential for phototreatment technology (Red, blue, green, ultraviolet and pulsed light) applied to FFVP, outline the key to the success of phototreatment processing, and discuss the corresponding problems for phototreatment processing along with research and development needs. Base on photothermal, photophysical and photochemical process, phototreatment displays a great potential to maintain quality attributes of FFVP. The operating parameters of light, the surface properties and matrix components of the targeted material and the equipment design affect the quality of the fresh-cut products. To adapt current phototreatment technology to industrial FFVP processing, it is necessary to offset some limitations, especially control of harmful substances (For example, nitrite and furan) produced by phototreatment, comparison between different phototreatment technologies, and establishment of mathematical models/databases.
Collapse
Affiliation(s)
- Xiuxiu Teng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Modulation of Light and Nitrogen for Quality-Traits Improvement: A Case Study of Altino Sweet Pepper. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Local varieties are known to cope more efficiently with stressful and/or low-input conditions than cultivated ones by activating secondary metabolisms and, hence, are supposed to have higher nutraceutical potential. In this work, we investigate the effects of N and light, supplied at optimal and sub-optimal levels, on the fruit yield and quality of a local ecotype of sweet pepper, Altino, grown in the Abruzzo Region (Southern Italy). In 2017, two open-field experiments were carried out, comparing increasing N rates (0, 100 and 200 kg N ha−1, 0_N, 100_N and 200_N, respectively) and different percentages of shading and/or manipulations of the transmitted solar radiation, obtained through photoselective nets (red net, RN; black net, BN; unshaded Control). Both N and light were preconditions to obtain stable yields in terms of both fruit number and fruit weights. However, BN significantly reduced the number of sunscalded fruits (0.39 vs. 3.38 and 2.59 fruit plant−1 for BN, Control and RN, respectively), leading to lower waste. N deficiency favoured higher total polyphenol (TPC) and flavonoid (TFC) contents in ripened fruits; on the other hand, shading significantly reduced TPC (−12.4%) in immature and TFC (−18.2%) in red fruits. The variations in nutraceuticals were also evaluated in terms of the variations of the single phenolic acids in fruits during ripening; the most interesting results were associated with light treatments. Further research should be directed to the in-depth study of nutrition regimes, in combination with other photoselective nets applications (i.e., pearl nets), that could be suitable for the Altino genotype to enhance the yield and nutraceutical potentials of its fruits.
Collapse
|
4
|
He X, Chavan SG, Hamoui Z, Maier C, Ghannoum O, Chen ZH, Tissue DT, Cazzonelli CI. Smart Glass Film Reduced Ascorbic Acid in Red and Orange Capsicum Fruit Cultivars without Impacting Shelf Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:985. [PMID: 35406965 PMCID: PMC9003265 DOI: 10.3390/plants11070985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
Smart Glass Film (SGF) is a glasshouse covering material designed to permit 80% transmission of photosynthetically active light and block heat-generating solar energy. SGF can reduce crop water and nutrient consumption and improve glasshouse energy use efficiency yet can reduce crop yield. The effect of SGF on the postharvest shelf life of fruits remains unknown. Two capsicum varieties, Red (Gina) and Orange (O06614), were cultivated within a glasshouse covered in SGF to assess fruit quality and shelf life during the winter season. SGF reduced cuticle thickness in the Red cultivar (5%) and decreased ascorbic acid in both cultivars (9-14%) without altering the overall morphology of the mature fruits. The ratio of total soluble solids (TSSs) to titratable acidity (TA) was significantly higher in Red (29%) and Orange (89%) cultivars grown under SGF. The Red fruits had a thicker cuticle that reduced water loss and extended shelf life when compared to the Orange fruits, yet neither water loss nor firmness were impacted by SGF. Reducing the storage temperature to 2 °C and increasing relative humidity to 90% extended the shelf life in both cultivars without evidence of chilling injury. In summary, SGF had minimal impact on fruit development and postharvest traits and did not compromise the shelf life of mature fruits. SGF provides a promising technology to block heat-generating solar radiation energy without affecting fruit ripening and marketable quality of capsicum fruits grown during the winter season.
Collapse
Affiliation(s)
- Xin He
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Sachin G. Chavan
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Ziad Hamoui
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chelsea Maier
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Oula Ghannoum
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Zhong-Hua Chen
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia;
| | - David T. Tissue
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
- Global Centre for Land Based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Christopher I. Cazzonelli
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| |
Collapse
|
5
|
Zhang Q, Bi G, Li T, Wang Q, Xing Z, LeCompte J, Harkess RL. Color Shade Nets Affect Plant Growth and Seasonal Leaf Quality of Camellia sinensis Grown in Mississippi, the United States. Front Nutr 2022; 9:786421. [PMID: 35187030 PMCID: PMC8847693 DOI: 10.3389/fnut.2022.786421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/03/2022] [Indexed: 01/06/2023] Open
Abstract
Shading modifies the microenvironment and can provide plants with some protection from frequent heat, drought, frost, and hail induced by climate change and has the potential to improve plant growth, yield, and quality. Tea (Camellia sinensis) is an ancient plant originating from tropical and subtropical regions and prefers to grow in partial shade under the forest canopy. The emerging tea industry in the United States (US) requires research support on establishing tea fields in novel environmental conditions as well as on producing high-quality tea products. This study investigated the effects of black, blue, and red shade nets on tea plant growth and seasonal leaf qualities in the southeastern US with a humid subtropical climate. When compared to no-shade control, black, blue, and red shade nets increased plant growth index (PGI), net photosynthetic rate (Pn), and stomatal conductance (gs), decreased air and leaf surface temperatures in summer, and reduced cold damage in winter. No significant difference was found among the black, blue, and red shade nets on tea plant growth. Varying contents of total polyphenols, carbohydrates, free amino acids, L-theanine, gallic acid, caffeine, and catechins in fresh tea leaves were observed among different shade treatments and harvesting seasons. 69.58% of the variations were depicted in a biplot by principal component analysis. Red shade was considered helpful for improving green tea quality by increasing the content of L-theanine and free amino acids in tea leaves collected in spring and fall when compared to no-shade control.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Guihong Bi
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
- *Correspondence: Guihong Bi
| | - Tongyin Li
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Qiushuang Wang
- Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhiheng Xing
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Judson LeCompte
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Richard L. Harkess
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
6
|
Gonçalves DDC, Ribeiro WR, Gonçalves DC, Menini L, Costa H. Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Res Int 2021; 150:110758. [PMID: 34865776 DOI: 10.1016/j.foodres.2021.110758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
The world population growth has raised concerns about food security. Agricultural systems are asked to satisfy a growing demand for food with increasingly limited resources, and simultaneously still must reduce the impacts on the environment. This scenario encourages the search for safe and sustainable production strategies. Reducing losses in the production process can be one of the main ways to guarantee food safety. In fruticulture, it is estimated that more than 50% of the production can be lost between harvest and the final consumer due to postharvest diseases caused by phytopathogenic fungi. The fungi of the genus Colletotrichum are opportunistic and are associated with several diseases, being the anthracnose the most relevant in terms of the quality and yield losses in fruit species around worldwide. To control these diseases, the use of synthetic fungicides has been the main instrument utilized, however, because of their phytotoxicity to human health, the environment, and strong selection pressure imposed by continuous applications, the fungicides have caused resistance in the pathogen populations. So reducing the excessive application of these products is indispensable for human health and for sustainable Agriculture. Towards this purpose, research has been carried out to identify the phytopathological potentiality of essential oils (EOs) extracted from plants. Therefore, this review aims to contribute to the formation of knowledge bases, about the discoveries, recent advances, and the use of EOs as a strategy to alternatively control fungal disease caused by Colletotrichum spp. in postharvest fruits. Here, we provide valuable information exploring the application potential of essential oils as commercially useful biorational pesticides for food preservation, contributing to sustainable production and global food security.
Collapse
Affiliation(s)
- Dalila da Costa Gonçalves
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Wilian Rodrigues Ribeiro
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Débora Cristina Gonçalves
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Luciano Menini
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Hélcio Costa
- Fazenda do Estado - Incaper. BR 262, km 94 - Domingos, Martins - ES 29278-000, Brazil.
| |
Collapse
|
7
|
Photo-selective shading screens as a cover for production of purple lettuce. Sci Rep 2021; 11:14972. [PMID: 34294807 PMCID: PMC8298437 DOI: 10.1038/s41598-021-94437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
Photo-selective shading screens are emerging practices that aim to combine crop physical protection with different solar radiation filtration to achieve desired physiological responses. The objective of the present study was to evaluate the effect of photo-selective shading screens on the growth and physiology of purple lettuce for two transplanting seasons in tropical climate in Brazil. A 2 × 4 factorial arrangement was used, being considered the first factor, the transplanting season (spring and fall), and the second factor is the three 35% shading photo-selective shading screens (red, black and silver) and full sun control. The experimental design was a randomized complete block with four replications. The variables studied were: total fresh matter, total dry matter, leaf number, stem diameter, stem length, leaf area, SPAD chlorophyll index, nitrogen balance indexes, chlorophyll, flavonoids and anthocyanins. The photo-selective shading screens influenced the microclimate and the growth variables of purple lettuce, mainly when these plants were sown in the fall. Planting lettuce during spring may result in lower yields due to the higher investment of plants in secondary metabolites to defend against abiotic stress. According to the results, photo-selective shading screens are an appropriate agronomic technique to reduce phenolic compounds and improve lettuce cultivation conditions and can be implemented within protected cultivation practices to improve crop performance.
Collapse
|
8
|
Dias MG, Borge GIA, Kljak K, Mandić AI, Mapelli-Brahm P, Olmedilla-Alonso B, Pintea AM, Ravasco F, Tumbas Šaponjac V, Sereikaitė J, Vargas-Murga L, Vulić JJ, Meléndez-Martínez AJ. European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content. Foods 2021; 10:912. [PMID: 33919309 PMCID: PMC8143354 DOI: 10.3390/foods10050912] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies indicate that diets including carotenoid-rich foods have positive effects on human health. Some of these compounds are precursors of the essential nutrient vitamin A. The present work is aimed at implementing a database of carotenoid contents of foods available in the European market. Factors affecting carotenoid content were also discussed. Analytical data available in peer-reviewed scientific literature from 1990 to 2018 and obtained by HPLC/UHPLC were considered. The database includes foods classified according to the FoodEx2 system and will benefit compilers, nutritionists and other professionals in areas related to food and human health. The results show the importance of food characterization to ensure its intercomparability, as large variations in carotenoid levels are observed between species and among varieties/cultivars/landraces. This highlights the significance of integrating nutritional criteria into agricultural choices and of promoting biodiversity. The uncertainty quantification associated with the measurements of the carotenoid content was very rarely evaluated in the literature consulted. According to the EuroFIR data quality evaluation system for food composition tables, the total data quality index mean was 24 in 35, reflecting efforts by researchers in the analytical methods, and less resources in the sampling plan documentation.
Collapse
Affiliation(s)
- M. Graça Dias
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal; (M.G.D.); (F.R.)
| | - Grethe Iren A. Borge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO 1433 Ås, Norway;
| | - Kristina Kljak
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10 000 Zagreb, Croatia;
| | - Anamarija I. Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Paula Mapelli-Brahm
- Food Colour & Quality Laboratory, Department of Nutrition & Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | | | - Adela M. Pintea
- Chemistry and Biochemistry Department, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Francisco Ravasco
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal; (M.G.D.); (F.R.)
| | - Vesna Tumbas Šaponjac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.T.Š.); (J.J.V.)
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | | | - Jelena J. Vulić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.T.Š.); (J.J.V.)
| | - Antonio J. Meléndez-Martínez
- Food Colour & Quality Laboratory, Department of Nutrition & Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
9
|
Serra S, Borghi S, Mupambi G, Camargo-Alvarez H, Layne D, Schmidt T, Kalcsits L, Musacchi S. Photoselective Protective Netting Improves "Honeycrisp" Fruit Quality. PLANTS 2020; 9:plants9121708. [PMID: 33291612 PMCID: PMC7761960 DOI: 10.3390/plants9121708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
High temperatures, wind, and excessive sunlight can negatively impact yield and fruit quality in semi-arid apple production regions. Netting was originally designed for hail protection, but it can modify the light spectrum and affect fruit quality. Here, pearl, blue, and red photoselective netting (≈20% shading factor) was installed in 2015 over a commercial “Cameron Select® Honeycrisp” orchard. Our research objectives were to (1) describe the light quantity and quality under the colored nets compared to an uncovered control and (2) investigate the effect of Photoselective nets on “Honeycrisp” apple quality for two growing seasons. Light transmittance and scattering for each treatment were measured with a spectroradiometer, and samples for fruit quality analyses were collected at harvest. PAR (photosynthetic active radiation), UV, blue, red, and far-red light were lower underneath all netting treatments compared to an uncovered control. The scattered light was higher under the pearl net compared to other colors, while red and far-red light were lower under the blue net. For two consecutive years, trees grown under the photoselective nets intercepted more incoming light than the uncovered trees with no differences among the three colors. In both years, trees under red and blue nets had more sunburn-free (clean) apples than pearl and control. Red color development for fruit was lower when nets were used. Interestingly, bitter pit incidence was lower underneath red nets for both years. Other than red color development, “Honeycrisp” fruit quality was not appreciably affected by the use of netting. These results highlight the beneficial effect of nets in improving light quality in orchards and mitigating physiological disorders such as bitter pit in “Honeycrisp” apple.
Collapse
Affiliation(s)
- Sara Serra
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; (S.B.); (G.M.); (H.C.-A.); (L.K.); (S.M.)
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA;
- Correspondence: ; Tel.: +1-509-293-8769
| | - Stefano Borghi
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; (S.B.); (G.M.); (H.C.-A.); (L.K.); (S.M.)
| | - Giverson Mupambi
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; (S.B.); (G.M.); (H.C.-A.); (L.K.); (S.M.)
| | - Hector Camargo-Alvarez
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; (S.B.); (G.M.); (H.C.-A.); (L.K.); (S.M.)
| | - Desmond Layne
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA;
- Currently, Department of Horticulture, Auburn University, Auburn, AL 36849, USA
| | - Tory Schmidt
- Washington Tree Fruit Research Commission (WTFRC), Washington State University, Wenatchee, WA 98801, USA;
| | - Lee Kalcsits
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; (S.B.); (G.M.); (H.C.-A.); (L.K.); (S.M.)
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA;
| | - Stefano Musacchi
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; (S.B.); (G.M.); (H.C.-A.); (L.K.); (S.M.)
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|