1
|
Muenstermann C, Clemens KJ. Epigenetic mechanisms of nicotine dependence. Neurosci Biobehav Rev 2024; 156:105505. [PMID: 38070842 DOI: 10.1016/j.neubiorev.2023.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Smoking continues to be a leading cause of preventable disease and death worldwide. Nicotine dependence generates a lifelong propensity towards cravings and relapse, presenting an ongoing challenge for the development of treatments. Accumulating evidence supports a role for epigenetics in the development and maintenance of addiction to many drugs of abuse, however, the involvement of epigenetics in nicotine dependence is less clear. Here we review evidence that nicotine interacts with epigenetic mechanisms to enable the maintenance of nicotine-seeking across time. Research across species suggests that nicotine increases permissive histone acetylation, decreases repressive histone methylation, and modulates levels of DNA methylation and noncoding RNA expression throughout the brain. These changes are linked to the promoter regions of genes critical for learning and memory, reward processing and addiction. Pharmacological manipulation of enzymes that catalyze core epigenetic modifications regulate nicotine reward and associative learning, demonstrating a functional role of epigenetic modifications in nicotine dependence. These findings are consistent with nicotine promoting an overall permissive chromatin state at genes important for learning, memory and reward. By exploring these links through next-generation sequencing technologies, epigenetics provides a promising avenue for future interventions to treat nicotine dependence.
Collapse
Affiliation(s)
| | - Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
2
|
Wu R, Cui S, Wang JH. miRNA-324/-133a essential for recruiting new synapse innervations and associative memory cells in coactivated sensory cortices. Neurobiol Learn Mem 2020; 172:107246. [PMID: 32387677 DOI: 10.1016/j.nlm.2020.107246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
After the integrative storage of associated signals, a signal induces the recollection of its associated signal, or the other way around. This associative memory is essential to associative thinking, logical reasoning, imagination and computation. In terms of cellular mechanisms underlying associative memory, new mutual synapse innervations are formed among those coactivated neurons, so that they are recruited to be associative memory cells or associative memory neurons. These associative memory cells receive new synapse innervations alongside innate synapse inputs and encode signals carried by these inputs. We proposed to examine microRNAs as initiative factors for recruiting new synapse innervations and associative memory cells. In a mouse model of associative memory characterized as the reciprocal retrieval of associated whisker and odor signals, barrel and piriform cortical neurons gain their ability to encode whisker and odorant signals based on the newly formed synapse innervations between these coactivated cortices besides innate synapse inputs. miRNA-324 and miRNA-133a are required for recruiting these new synapse innervations and associative memory cells as well as sufficient for facilitating their recruitments, but not for innate synapse inputs. Therefore, the coactivation of sensory cortices through microRNA as initiative factor to recruit new mutual synapse innervations and associative memory cells for associative memory.
Collapse
Affiliation(s)
- Ruixiang Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Li X, Wang L, Zhang S, Hu X, Yang H, Xi L. Timing-Dependent Protection of Swimming Exercise against d-Galactose-Induced Aging-Like Impairments in Spatial Learning/Memory in Rats. Brain Sci 2019; 9:E236. [PMID: 31540073 PMCID: PMC6770394 DOI: 10.3390/brainsci9090236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 01/26/2023] Open
Abstract
This study was designed to investigate beneficial effects of swimming exercise training on learning/memory, synaptic plasticity and CREB (cAMP response element binding protein) expression in hippocampus in a rat model of d-galactose-induced aging (DGA). Eighty adult male rats were randomly divided into four groups: Saline Control (group C), DGA (group A), Swimming exercise before DGA (group S1), and Swimming during DGA (group S2). These four groups of animals were further divided into Morris water maze training group (M subgroup) and sedentary control group (N subgroup). Spatial learning/memory was tested using Morris water maze training. The number and density of synaptophysin (Syp) and metabotropic glutamate receptor 1 (mGluR1) in hippocampal dentate gyrus area, CREB mRNA and protein expression and DNA methylation levels were determined respectively with immunohistochemistry, western blot, real-time PCR, and MassArray methylation detection platform. We found that compared with group C, DGA rats showed aging-like poor health and weight loss as well as hippocampal neurodegenerative characteristics. Exercise training led to a time-dependent decrease in average escape latency and improved spatial memory. Exercise training group (S2M) had significantly increased swim distance as compared with controls. These functional improvements in S2M group were associated with higher Syp and mGluR1 values in hippocampus (p < 0.01) as well as higher levels of hippocampal CREB protein/mRNA expression and gene methylation. In conclusion, swimming exercise training selectively during drug-induced aging process protected hippocampal neurons against DGA-elicited degenerative changes and in turn maintained neuronal synaptic plasticity and learning/memory function, possibly through upregulation of hippocampal CREB protein/mRNA and reduction of DGA-induced methylation of CREB.
Collapse
Affiliation(s)
- Xue Li
- Department of Human Anatomy, West China School of Preclinical and Forensic Medical Institute, Sichuan University, Chengdu 610041, China.
- Department of Human Kinesiology, School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China.
| | - Lu Wang
- Department of Human Kinesiology, School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China.
| | - Shuling Zhang
- Department of Human Kinesiology, School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China.
| | - Xiang Hu
- Department of Human Kinesiology, School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China.
| | - Huijun Yang
- Department of Morphology Laboratory, Chengdu Medical College, Chengdu 610083, China.
| | - Lei Xi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| |
Collapse
|
4
|
Feng J, Lu W, Wang D, Ma K, Song Z, Chen N, Sun Y, Du K, Shen M, Cui S, Wang JH. Barrel Cortical Neuron Integrates Triple Associated Signals for Their Memory Through Receiving Epigenetic-Mediated New Synapse Innervations. Cereb Cortex 2018; 27:5858-5871. [PMID: 29121184 DOI: 10.1093/cercor/bhx292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Associative learning is common way for information acquisition. Associative memory is essential to logical reasoning and associative thinking. The storages of multiple associated signals in individual neurons facilitate their integration, expand memory volume, and strengthen cognition ability. Associative memory cells that encode multiple signals have been reported, however, the mechanisms underlying their recruitment and working principle remain to be addressed. We have examined the recruitment of associative memory cells that integrate and store triple sensory signals as well as the potential mechanism of their recruitment. Paired mouse whisker, olfaction, and tail stimulations lead to odorant-induced motion and tail-induced whisker motion. In mice of expressing this cross-modal response, their barrel cortical neurons become to encode odor and tail signals alongside whisker signal. These barrel cortical neurons receive new synapse innervations from piriform and S1-tail cortical neurons. The emergence of cross-modal responses as well as the recruitments of new synapse innervations and associative memory cells in the barrel cortex need miRNA-324 and miRNA-133a, which downregulate Ttbk1 and Tet3. The co-activations of sensory cortices recruit their mutual synapse innervations and associative memory cells that integrate and store multiple associated signals through epigenetic-mediated process.
Collapse
Affiliation(s)
- Jing Feng
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Science and Technology of China, Hefei Anhui 230026, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dangui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Ma
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Zhenhua Song
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Na Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Sun
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Kaixin Du
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Mengmeng Shen
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Science and Technology of China, Hefei Anhui 230026, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
von Ziegler LM, Selevsek N, Tweedie-Cullen RY, Kremer E, Mansuy IM. Subregion-Specific Proteomic Signature in the Hippocampus for Recognition Processes in Adult Mice. Cell Rep 2018; 22:3362-3374. [DOI: 10.1016/j.celrep.2018.02.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
|
6
|
Schmitz J, Metz GA, Güntürkün O, Ocklenburg S. Beyond the genome—Towards an epigenetic understanding of handedness ontogenesis. Prog Neurobiol 2017; 159:69-89. [DOI: 10.1016/j.pneurobio.2017.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022]
|
7
|
Lei Z, Wang D, Chen N, Ma K, Lu W, Song Z, Cui S, Wang JH. Synapse Innervation and Associative Memory Cell Are Recruited for Integrative Storage of Whisker and Odor Signals in the Barrel Cortex through miRNA-Mediated Processes. Front Cell Neurosci 2017; 11:316. [PMID: 29118695 PMCID: PMC5661269 DOI: 10.3389/fncel.2017.00316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Associative learning is a common way for information acquisition, and the integrative storage of multiple associated signals is essential for associative thinking and logical reasoning. In terms of the cellular mechanism for associative memory, our studies by behavioral task and cellular imaging demonstrate that paired whisker and odor stimulations lead to odorant-induced whisker motion and associative memory cell recruitment in the barrel cortex (BC), which is driven presumably by synapse innervation from co-activated sensory cortices. To confirm these associative memory cells and synapse innervations essential for associative memory and to examine their potential mechanisms, we studied a causal relationship between epigenetic process and memory cell/synapse recruitment by manipulating miRNAs and observing the changes from the recruitments of associative memory cells and synapse innervations to associative memory. Anti-miRNA-324 and anti-miRNA-133a in the BC significantly downregulate new synapse innervation, associative memory cell recruitment and odorant-induced whisker motion, where Tau-tubulin kinase-1 expression is increased. Therefore, the upregulated miRNA-324 in associative learning knocks down Ttbk1-mediated Tau phosphorylation and microtubule depolymerization, which drives the balance between polymerization and depolymerization toward the axon prolongation and spine stabilization to initiate new synapse innervations and to recruit associative memory cells.
Collapse
Affiliation(s)
- Zhuofan Lei
- School of Pharmacy, Qingdao University, Dengzhou, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Dangui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ke Ma
- School of Pharmacy, Qingdao University, Dengzhou, China
| | - Wei Lu
- School of Pharmacy, Qingdao University, Dengzhou, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Song
- School of Pharmacy, Qingdao University, Dengzhou, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- School of Pharmacy, Qingdao University, Dengzhou, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Biology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Liu Y, Ge R, Zhao X, Guo R, Huang L, Zhao S, Guan S, Lu W, Cui S, Wang S, Wang JH. Activity strengths of cortical glutamatergic and GABAergic neurons are correlated with transgenerational inheritance of learning ability. Oncotarget 2017; 8:112401-112416. [PMID: 29348834 PMCID: PMC5762519 DOI: 10.18632/oncotarget.19918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
The capabilities of learning and memory in parents are presumably transmitted to their offsprings, in which genetic codes and epigenetic regulations are thought as molecular bases. As neural plasticity occurs during memory formation as cellular mechanism, we aim to examine the correlation of activity strengths at cortical glutamatergic and GABAergic neurons to the transgenerational inheritance of learning ability. In a mouse model of associative learning, paired whisker and odor stimulations led to odorant-induced whisker motion, whose onset appeared fast (high learning efficiency, HLE) or slow (low learning efficiency, LLE). HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice were cross-mated to have their first generation of offsprings, filials (F1). The onset of odorant-induced whisker motion appeared a sequence of high-to-low efficiency in three groups of F1 mice that were from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Activities related to glutamatergic neurons in barrel cortices appeared a sequence of high-to-low strength in these F1 mice from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Activities related to GABAergic neurons in barrel cortices appeared a sequence of low-to-high strength in these F1 mice from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Neuronal activity strength was linearly correlated to learning efficiency among three groups. Thus, the coordinated activities at glutamatergic and GABAergic neurons may constitute the cellular basis for the transgenerational inheritance of learning ability.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Xin Zhao
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Rui Guo
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Sudong Guan
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Shandong 266021, China
| | - Shan Cui
- Institute of Biophysics and University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shirlene Wang
- Department of Psychiatry, Northwestern University, Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Jin-Hui Wang
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China.,Institute of Biophysics and University of Chinese Academy of Sciences, Beijing 100101, China.,Qingdao University, School of Pharmacy, Shandong 266021, China
| |
Collapse
|
9
|
Guo R, Ge R, Zhao S, Liu Y, Zhao X, Huang L, Guan S, Lu W, Cui S, Wang S, Wang JH. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons. Front Cell Neurosci 2017; 11:168. [PMID: 28659764 PMCID: PMC5469894 DOI: 10.3389/fncel.2017.00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023] Open
Abstract
Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II–III of the barrel cortex and layers IV–V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC) decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Yulong Liu
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Xin Zhao
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Sodong Guan
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Wei Lu
- School of Pharmacy, Qingdao UniversityQingdao, China
| | - Shan Cui
- Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Shirlene Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, United States
| | - Jin-Hui Wang
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China.,School of Pharmacy, Qingdao UniversityQingdao, China.,Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China.,Department of Biology, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
10
|
Rosales-Reynoso M, Ochoa-Hernández A, Juárez-Vázquez C, Barros-Núñez P. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases. NEUROLOGÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.nrleng.2014.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
11
|
Methylation of the oxytocin receptor gene mediates the effect of adversity on negative schemas and depression. Dev Psychopathol 2016; 29:725-736. [PMID: 27323309 DOI: 10.1017/s0954579416000420] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Building upon various lines of research, we posited that methylation of the oxytocin receptor gene (OXTR) would mediate the effect of adult adversity on increased commitment to negative schemas and in turn the development of depression. We tested our model using structural equation modeling and longitudinal data from a sample of 100 middle-aged, African American women. The results provided strong support for the model. Analysis of the 12 CpG sites available for the promoter region of the OXTR gene identified four factors. One of these factors was related to the study variables, whereas the others were not. This factor mediated the effect of adult adversity on schemas relating to pessimism and distrust, and these schemas, in turn, mediated the impact of OXTR methylation on depression. All indirect effects were statistically significant, and they remained significant after controlling for childhood trauma, age, romantic relationship status, individual differences in cell types, and average level of genome-wide methylation. These finding suggest that epigenetic regulation of the oxytocin system may be a mechanism whereby the negative cognitions central to depression become biologically embedded.
Collapse
|
12
|
|
13
|
Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine 2015; 72:86-96. [PMID: 25573802 DOI: 10.1016/j.cyto.2014.12.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 10/29/2014] [Accepted: 12/08/2014] [Indexed: 01/21/2023]
Abstract
One consequence of modern cancer therapy is chemotherapy related cognitive dysfunction or "chemobrain", the subjective experience of cognitive deficits at any point during or following chemotherapy. Chemobrain, a well-established clinical syndrome, has become an increasing concern because the number of long-term cancer survivors is growing dramatically. There is strong evidence that correlates changes in peripheral cytokines with the development of chemobrain in commonly used chemotherapeutic drugs for different types of cancer. However, the mechanisms by which these cytokines elicit change in the central nervous system are still unclear. In this review, we hypothesize that the administration of chemotherapy agents initiates a cascade of biological changes, with short-lived alterations in the cytokine milieu inducing persistent epigenetic alterations. These epigenetic changes lead to changes in gene expression, alterations in metabolic activity and neuronal transmission that are responsible for generating the subjective experience of cognition. This speculative but testable hypothesis should help to gain a comprehensive understanding of the mechanism underlying cognitive dysfunction in cancer patients. Such knowledge is critical to identify pharmaceutical targets with the potential to prevent and treat cancer-treatment related cognitive dysfunction and similar disorders.
Collapse
|
14
|
Simons RL, Klopack ET. Invited Address: “The Times They Are A-Changin’” Gene Expression, Neuroplasticity, and Developmental Research. J Youth Adolesc 2014; 44:573-80. [DOI: 10.1007/s10964-014-0245-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022]
|
15
|
Hou N, Ren L, Gong M, Bi Y, Gu Y, Dong Z, Liu Y, Chen J, Li T. Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 2014; 51:633-47. [PMID: 24859384 DOI: 10.1007/s12035-014-8741-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
Abstract
Vitamin A (VA) is an essential micronutrient. Numerous studies have confirmed that VA deficiency (VAD) leads to a decline in learning and memory function. Our previous studies have demonstrated that retinoic acid nuclear receptor α (RARα) in the hippocampus plays a crucial role in learning and memory, but the exact mechanism for this process is unclear. Epigenetic modifications, particularly histone acetylation, are involved in nervous system development, learning and memory function, and the pathogenesis of neurodegenerative diseases. Histone acetyltransferases (HATs), such as CREB-binding protein (CBP), E1A-binding protein p300 (p300), and p300/CBP-associated factor (PCAF), are critical for regulating memory function. The current study uses RARα and CBP as examples to study the connections between the RA signaling pathway and histone acetylation modification and to reveal the epigenetic mechanism in VAD-induced learning and memory impairment. This study examined the expression of RARα, HATs, acetylated histone H3/H4, and memory-related genes (Zif268, cFos, FosB), as well as the interaction of RARα and CBP in the hippocampus of 8-week-old rats. Additionally, the changes shown in vivo were further assessed in primary cultured neurons with the inhibition or overexpression of RARα. We found significantly lower levels of histone acetylation in the VAD rats. Furthermore, this downregulation, which impairs learning and memory, is induced by the dysregulation of CBP-dependent histone acetylation that is mediated by RARα. This work provides a solid theoretical foundation and experimental basis for the importance of ensuring sufficient nutritional VA during pregnancy and early life to prevent impairments of learning and memory in adulthood.
Collapse
Affiliation(s)
- Nali Hou
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Epigenetic alterations and an increased frequency of micronuclei in women with fibromyalgia. Nurs Res Pract 2013; 2013:795784. [PMID: 24058735 PMCID: PMC3766610 DOI: 10.1155/2013/795784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/14/2013] [Indexed: 01/01/2023] Open
Abstract
Fibromyalgia (FM), characterized by chronic widespread pain, fatigue, and cognitive/mood disturbances, leads to reduced workplace productivity and increased healthcare expenses. To determine if acquired epigenetic/genetic changes are associated with FM, we compared the frequency of spontaneously occurring micronuclei (MN) and genome-wide methylation patterns in women with FM (n = 10) to those seen in comparably aged healthy controls (n = 42 (MN); n = 8 (methylation)). The mean (sd) MN frequency of women with FM (51.4 (21.9)) was significantly higher than that of controls (15.8 (8.5)) (χ2 = 45.552; df = 1; P = 1.49 × 10−11). Significant differences (n = 69 sites) in methylation patterns were observed between cases and controls considering a 5% false discovery rate. The majority of differentially methylated (DM) sites (91%) were attributable to increased values in the women with FM. The DM sites included significant biological clusters involved in neuron differentiation/nervous system development, skeletal/organ system development, and chromatin compaction. Genes associated with DM sites whose function has particular relevance to FM included BDNF, NAT15, HDAC4, PRKCA, RTN1, and PRKG1. Results support the need for future research to further examine the potential role of epigenetic and acquired chromosomal alterations as a possible biological mechanism underlying FM.
Collapse
|
18
|
Adwan L, Zawia NH. Epigenetics: a novel therapeutic approach for the treatment of Alzheimer's disease. Pharmacol Ther 2013; 139:41-50. [PMID: 23562602 PMCID: PMC3693222 DOI: 10.1016/j.pharmthera.2013.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. It is characterized by the deposition of two forms of aggregates within the brain, the amyloid β plaques and tau neurofibrillary tangles. Currently, no disease-modifying agent is approved for the treatment of AD. Approved pharmacotherapies target the peripheral symptoms but they do not prevent or slow down the progression of the disease. Although several disease-modifying immunotherapeutic agents are in clinical development, many have failed due to the lack of efficacy or serious adverse events. Epigenetic changes including DNA methylation and histone modifications are involved in learning and memory and have been recently highlighted for holding promise as potential targets for AD therapeutics. Dynamic and latent epigenetic alterations are incorporated in AD pathological pathways and present valuable reversible targets for AD and other neurological disorders. The approval of epigenetic drugs for cancer treatment has opened the door for the development of epigenetic drugs for other disorders including neurodegenerative diseases. In particular, methyl donors and histone deacetylase inhibitors are being investigated for possible therapeutic effects to rescue memory and cognitive decline found in such disorders. This review explores the area of epigenetics for potential AD interventions and presents the most recent findings in this field.
Collapse
Affiliation(s)
- Lina Adwan
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Nasser H. Zawia
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
19
|
Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles. Nat Neurosci 2013; 16:919-24. [PMID: 23727821 PMCID: PMC3703824 DOI: 10.1038/nn.3420] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/06/2013] [Indexed: 12/28/2022]
Abstract
In the socially monogamous prairie vole (Microtus ochrogaster), mating induces enduring pair-bonds initiated by partner preference formation and regulated by a variety of neurotransmitters including oxytocin, vasopressin, and dopamine. Here we examined potential epigenetic mechanisms mediating pair-bond regulation. We show that the histone deacetylase inhibitors sodium butyrate and TrichoStatin A (TSA) facilitate partner preference formation in female prairie voles in the absence of mating. This was associated with a specific up-regulation of oxytocin (OTR) and vasopressin V1a receptors (V1aR) in the nucleus accumbens, through an increase in histone acetylation at their respective promoter. Furthermore, TSA-facilitated partner preference was prevented by OTR or V1aR blockade in the nucleus accumbens. Importantly, mating-induced partner preference triggered the same epigenetic regulation of OTR and V1aR gene promoters as TSA. These observations thus indicate that TSA and mating facilitate partner preference through epigenetic events, providing the first direct evidence for an epigenetic regulation of pair-bonding.
Collapse
|
20
|
Smythies J, Edelstein L. Transsynaptic modality codes in the brain: possible involvement of synchronized spike timing, microRNAs, exosomes and epigenetic processes. Front Integr Neurosci 2013; 6:126. [PMID: 23316146 PMCID: PMC3539687 DOI: 10.3389/fnint.2012.00126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/13/2012] [Indexed: 11/13/2022] Open
Abstract
This paper surveys two different mechanisms by which a presynaptic cell can modulate the structure and function of the postsynaptic cell. We first present the evidence that this occurs, and then discuss two mechanisms that could bring this about. The first hypothesis relates to the long lasting effects that the spike patterns of presynaptic axons may exert by modulating activity-inducible programs in postsynaptic cells. The second hypothesis is based on recently obtained evidence that, the afferent neuron at the neuromuscular junction buds off exosomes at its synapse and carries a cargo of Wg and Evi, which are large molecular transsynaptic signaling agents (LMTSAs). Further evidence indicates that many types of neurons bud off exosomes containing payloads of various lipids, proteins, and types of RNA. The evidence suggests that they are transmitted across the synapse and are taken up by the postsynaptic structure either by perisynaptic or exosynaptic mechanisms, thus mediating the transfer of information between neurons. To date, the molecular hypothesis has been limited to local interactions within the synapse of concern. In this paper, we explore the possibility that this represents a mechanism for information transfer involving the postsynaptic neuron as a whole. This entails a review of the known functions of these molecules in neuronal physiology, together with an estimate of the possible types of information they could carry and how they might affect neurocomputations.
Collapse
Affiliation(s)
- John Smythies
- Center for Brain and Cognition, University of California San Diego La Jolla, CA, SA
| | | |
Collapse
|
21
|
Abstract
AbstractThe science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. According to three widely held dogmas, DNA is the unchanging template of heredity, is identical in all the cells and tissues of the body, and is the sole agent of inheritance. Rather than being an unchanging template, DNA appears subject to a good deal of environmentally induced change. Instead of identical DNA in all the cells of the body, somatic mosaicism appears to be the normal human condition. And DNA can no longer be considered the sole agent of inheritance. We now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, epigenetic regulation, DNA variability, and somatic mosaicism appear to be particularly prevalent in the human brain and probably are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period and, in particular, in enabling phenotypic plasticity in offspring. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of minimal shared maternal effects, in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology.
Collapse
|
22
|
Jobe EM, McQuate AL, Zhao X. Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Front Neurosci 2012; 6:59. [PMID: 22586361 PMCID: PMC3347638 DOI: 10.3389/fnins.2012.00059] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/04/2012] [Indexed: 12/20/2022] Open
Abstract
The process of neurogenesis includes neural stem cell proliferation, fate specification, young neuron migration, neuronal maturation, and functional integration into existing circuits. Although neurogenesis occurs largely during embryonic development, low levels but functionally important neurogenesis persists in restricted regions of the postnatal brain, including the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone of the lateral ventricles. This review will cover both embryonic and adult neurogenesis with an emphasis on the latter. Of the many endogenous mediators of postnatal neurogenesis, epigenetic pathways, such as mediators of DNA methylation, chromatin remodeling systems, and non-coding RNA modulators, appear to play an integral role. Mounting evidence shows that such epigenetic factors form regulatory networks, which govern each step of postnatal neurogenesis. In this review, we explore the emerging roles of epigenetic mechanisms particularly microRNAs, element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF), polycomb proteins, and methyl-CpG bindings proteins, in regulating the entire process of postnatal and adult neurogenesis. We further summarize recent data regarding how the crosstalk among these different epigenetic proteins forms the critical regulatory network that regulates neuronal development. We finally discuss how crosstalk between these pathways may serve to translate environmental cues into control of the neurogenic process.
Collapse
Affiliation(s)
- Emily M Jobe
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|
23
|
Schober ME, Ke X, Xing B, Block BP, Requena DF, McKnight R, Lane RH. Traumatic brain injury increased IGF-1B mRNA and altered IGF-1 exon 5 and promoter region epigenetic characteristics in the rat pup hippocampus. J Neurotrauma 2012; 29:2075-85. [PMID: 22413999 DOI: 10.1089/neu.2011.2276] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of acquired cognitive disability in childhood. Such disability may be blunted by enhancing the brain's endogenous neuroprotective response. An important endogenous neuroprotective response is the insulin-like growth factor-1 (IGF-1) mRNA variant, IGF-1B. IGF-1B mRNA, characterized by exon 5 inclusion, encodes the IGF-1 and Eb peptides. IGF-1A mRNA excludes exon 5 and encodes the IGF-1 and Ea peptides. A region in the human IGF-1B homologue acts as an exon-splicing enhancer (ESE) to increase IGF-1B mRNA. It is not known if TBI is associated with increased brain IGF-1B mRNA. Epigenetic modifications may underlie altered gene expression in the brain after TBI. We hypothesized that TBI would increase hippocampal IGF-1B mRNA in 17-day-old rats, associated with DNA methylation and/or histone modifications at the promoter site 1 (P1) or exon 5/ESE region. Hippocampi from rat pups after controlled cortical impact (CCI) were used to measure IGF-1B mRNA, DNA methylation, and histone modifications at the P1, P2, and exon5/ESE regions. In CCI hippocampi, IGF-1B mRNA peaked at post-injury day (PID) 2 (1700±320% sham), but normalized by PID 14. IGF-1A peaked at PID 3 (280±52% sham), and remained elevated at PID 14. Increased IGF-1B mRNA was associated with increased methylation at P1, and increased histone modifications associated with gene activation at P2 and exon5/ESE, together with differential methylation in the exon 5/ESE regions. We report for the first time that hippocampal IGF-1B mRNA increased after developmental TBI. We speculate that epigenetic modifications at the P2 and exon 5/ESE regions are important in the regulation of IGF-1B mRNA expression. The exon 5/ESE region may present a means for future therapies to target IGF-1B transcription after TBI.
Collapse
Affiliation(s)
- Michelle E Schober
- Division of Critical Care, Department of Pediatrics, University of Utah School of Medicine Salt Lake City, Utah 84158, USA.
| | | | | | | | | | | | | |
Collapse
|