1
|
Nguyen TKC, Le DD, Le TH, Nguyen TCH, Ngo TD. The use of eye tracking in supporting individuals with dyslexia: a review. Disabil Rehabil Assist Technol 2024:1-16. [PMID: 39645663 DOI: 10.1080/17483107.2024.2437697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Dyslexia is defined as a specific learning disorder that impairs a person's ability to read fluently and accurately. A growing number of assistive technologies have been used to support individuals with dyslexia. Eye-tracking technology is one such technology, and it is gaining increasing attention from the research community due to its potential to be a valuable support tool for identifying underlying neural differences in language processing among this population. While the technology has seen significant advancements in recent years, researchers, particularly in psychology and special education, might face difficulties utilizing eye-tracking technology in their dyslexia research. The present study aims to provide a comprehensive overview of how eye tracking is employed in this field. By analysing 71 papers, we investigated the range of dyslexia-related aspects that were addressed by eye-tracking technology, how the technology was used, and the connections between eye-tracking measurements and reading in studies including individuals with dyslexia. This review article reveals that researchers have long recognized the potential of eye tracking in dyslexia research, as evidenced by the consistent focus on this technology in relevant studies throughout the years. Our paper also indicates the value of eye-tracking technology in exploring a wide range of dyslexia-related aspects. These include reading behaviours and information searching, the impact of materials on reading performance, detection, intervention, and the evaluation of intervention outcomes. Furthermore, by exploring both the achievements and shortcomings, the paper offers a valuable roadmap for future research specifically focused on supporting individuals with dyslexia.
Collapse
Affiliation(s)
- Thi Kieu Chinh Nguyen
- Faculty of Information Technology, VNU University of Engineering and Technology, Ha Noi, Viet Nam
| | - Duc Duy Le
- Faculty of Information Technology, VNU University of Engineering and Technology, Ha Noi, Viet Nam
| | - Thanh Ha Le
- Faculty of Information Technology, VNU University of Engineering and Technology, Ha Noi, Viet Nam
| | - Thi Cam Huong Nguyen
- Faculty of Special Education, Hanoi National University of Education, Ha Noi, Viet Nam
| | - Thi Duyen Ngo
- Faculty of Information Technology, VNU University of Engineering and Technology, Ha Noi, Viet Nam
| |
Collapse
|
2
|
Gertsovski A, Guri O, Ahissar M. Reduced categorical learning of faces in dyslexia. Cortex 2024; 173:80-95. [PMID: 38387376 PMCID: PMC10988772 DOI: 10.1016/j.cortex.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
The perception of phonological categories in dyslexia is less refined than in typically developing (TD) individuals. Traditionally, this characteristic was considered unique to phonology, yet many studies showed non-phonological perceptual difficulties. Importantly, measuring the dynamics of cortical adaptation, associated with category acquisition, revealed a broadly distributed faster decay of cortical adaptation. Taken together, these observations suggest that the acquisition of perceptual categories in dyslexia may be slower across modalities. To test this, we tested adult individuals with developmental dyslexia (IDDs) and TDs on learning of two unknown faces, yielding face-specific categorization. Initial accuracy was similar in the two groups, yet practice-induced increase in accuracy was significantly larger in TDs. Modeling the learning process (using Drift Diffusion Model) revealed that TDs' steeper learning results from a larger increase in their effective face-specific signal. We propose that IDDs' slower item-specific categorical learning of unknown faces indicates that slower categorical learning in dyslexia is a core, domain-general difficulty.
Collapse
Affiliation(s)
- Ayelet Gertsovski
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Odeya Guri
- Department of Cognitive and Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Ahissar
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Peskin N, Behrmann M, Gabay S, Gabay Y. Atypical reliance on monocular visual pathway for face and word recognition in developmental dyslexia. Brain Cogn 2024; 174:106106. [PMID: 38016399 PMCID: PMC11669367 DOI: 10.1016/j.bandc.2023.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Studies with individuals with developmental dyslexia (DD) have documented impaired perception of words and faces, both of which are domains of visual expertise for human adults. In this study, we examined a possible mechanism that might be associated with the impaired acquisition of visual expertise for words and faces in DD, namely, the atypical engagement of the monocular visual pathway. Participants with DD and typical readers (TR) judged whether a pair of sequentially presented unfamiliar faces or nonwords were the same or different, and the pair of stimuli were displayed in an eye-specific fashion using a stereoscope. Based on evidence of greater reliance on subcortical structures early in development, we predicted differences between the groups in the engagement of lower (monocular) versus higher (binocular) regions of the visual pathways. Whereas the TR group showed a monocular advantage for both stimulus types, the DD participants evinced a monocular advantage for faces and words that was much greater than that measured in the TRs. These findings indicate that the DD individuals have enhanced subcortical engagement and that this might arise from the failure to fine-tune cortical correlates mediating the discrimination of homogeneous exemplars in domains of expertise.
Collapse
Affiliation(s)
- Noa Peskin
- School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; The Institute of Information Processing and Decision Making, University of Haifa, Haifa 3498838, Israel; Department of Special Education, University of Haifa, 31905 Haifa, Israel.
| | - Marlene Behrmann
- Department of Ophthalmology, University of Pittsburgh, and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shai Gabay
- School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; The Institute of Information Processing and Decision Making, University of Haifa, Haifa 3498838, Israel.
| | - Yafit Gabay
- Department of Special Education, University of Haifa, 31905 Haifa, Israel; Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel.
| |
Collapse
|
4
|
Baulina M, Kosonogov V. "Calculating faces": can face perception paradigms enrich dyscalculia research? Front Psychol 2024; 14:1218124. [PMID: 38235284 PMCID: PMC10791763 DOI: 10.3389/fpsyg.2023.1218124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/03/2023] [Indexed: 01/19/2024] Open
Abstract
Developmental dyscalculia (DD) is a subtype of learning disabilities, which is characterized by lower mathematical skills despite average intelligence and average or satisfactory performance in other academic areas. It is not fully understood how such deficits emerge in the course of brain development. When considering the mechanisms of dyscalculia, two domain-specific systems are distinguished. The Approximate Number System (ANS) is related to the approximate estimation of large sets, and the Object Tracking System (OTS) is responsible for subitizing, that is, the exact quantification of small sets. In recent years, the multiple-deficit framework has become increasingly popular. On the one hand, it explains the impairment of certain general cognitive functions in children with DD, such as executive functions, attention, visual-perceptual discrimination, processing speed, and rapid scanning of visual information. On the other hand, it provides a theoretical basis for explaining the simultaneous occurrence of the different types of other comorbid conditions (such as dyslexia and ADHD) and the relationship between them. We suggest that the face recognition could be considered as another, probably impaired function in dyscalculic individuals. We highlight several brain areas involved both in numerical and facial processing: intraparietal sulcus (IPS), fusiform gyrus (FFG), and hippocampus (HC). We consider the possibility of expanding the scope of dyscalculia research by application of face perception paradigms.
Collapse
Affiliation(s)
- Maria Baulina
- Laboratory of Counseling Psychology and Psychotherapy, Federal Scientific Center of Psychological and Multidisciplinary Research, Moscow, Russia
- International Laboratory of Social Neurobiology, HSE University, Moscow, Russia
| | - Vladimir Kosonogov
- International Laboratory of Social Neurobiology, HSE University, Moscow, Russia
| |
Collapse
|
5
|
Kristjánsson Á, Sigurdardottir HM. The Role of Visual Factors in Dyslexia. J Cogn 2023; 6:31. [PMID: 37397349 PMCID: PMC10312247 DOI: 10.5334/joc.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
What are the causes of dyslexia? Decades of research reflect a determined search for a single cause where a common assumption is that dyslexia is a consequence of problems with converting phonological information into lexical codes. But reading is a highly complex activity requiring many well-functioning mechanisms, and several different visual problems have been documented in dyslexic readers. We critically review evidence from various sources for the role of visual factors in dyslexia, from magnocellular dysfunction through accounts based on abnormal eye movements and attentional processing, to recent proposals that problems with high-level vision contribute to dyslexia. We believe that the role of visual problems in dyslexia has been underestimated in the literature, to the detriment of the understanding and treatment of the disorder. We propose that rather than focusing on a single core cause, the role of visual factors in dyslexia fits well with risk and resilience models that assume that several variables interact throughout prenatal and postnatal development to either promote or hinder efficient reading.
Collapse
Affiliation(s)
- Árni Kristjánsson
- Icelandic Vision Lab, Department of Psychology, University of Iceland, IS
| | | |
Collapse
|
6
|
Baron A, Harwood V, Kleinman D, Campanelli L, Molski J, Landi N, Irwin J. Where on the face do we look during phonemic restoration: An eye-tracking study. Front Psychol 2023; 14:1005186. [PMID: 37303890 PMCID: PMC10249372 DOI: 10.3389/fpsyg.2023.1005186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Face to face communication typically involves audio and visual components to the speech signal. To examine the effect of task demands on gaze patterns in response to a speaking face, adults participated in two eye-tracking experiments with an audiovisual (articulatory information from the mouth was visible) and a pixelated condition (articulatory information was not visible). Further, task demands were manipulated by having listeners respond in a passive (no response) or an active (button press response) context. The active experiment required participants to discriminate between speech stimuli and was designed to mimic environmental situations which require one to use visual information to disambiguate the speaker's message, simulating different listening conditions in real-world settings. Stimuli included a clear exemplar of the syllable /ba/ and a second exemplar in which the formant initial consonant was reduced creating an /a/-like consonant. Consistent with our hypothesis, results revealed that the greatest fixations to the mouth were present in the audiovisual active experiment and visual articulatory information led to a phonemic restoration effect for the /a/ speech token. In the pixelated condition, participants fixated on the eyes, and discrimination of the deviant token within the active experiment was significantly greater than the audiovisual condition. These results suggest that when required to disambiguate changes in speech, adults may look to the mouth for additional cues to support processing when it is available.
Collapse
Affiliation(s)
- Alisa Baron
- Department of Communicative Disorders, University of Rhode Island, Kingston, RI, United States
| | - Vanessa Harwood
- Department of Communicative Disorders, University of Rhode Island, Kingston, RI, United States
| | | | - Luca Campanelli
- Department of Communicative Disorders, The University of Alabama, Tuscaloosa, AL, United States
| | - Joseph Molski
- Department of Communicative Disorders, University of Rhode Island, Kingston, RI, United States
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, United States
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Julia Irwin
- Haskins Laboratories, New Haven, CT, United States
- Department of Psychology, Southern Connecticut State University, New Haven, CT, United States
| |
Collapse
|
7
|
Åsberg Johnels J, Galazka MA, Sundqvist M, Hadjikhani N. Left visual field bias during face perception aligns with individual differences in reading skills and is absent in dyslexia. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2022. [PMID: 36317253 DOI: 10.1111/bjep.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND When looking at faces, we tend to attend more to the left visual field (corresponding to the right side of the person's face). This phenomenon is called the left visual field bias (LVF) and is presumed to reflect the brain's right-sided dominance for face processing. Whether alterations in hemispheric dominance are present in dyslexia, and are linked with individual differences in word reading development more generally, is still unclear, and no prior research has utilized gaze-based LVF bias to explore these topics. AIMS The aim of the study was to examine whether the LVF bias differs in dyslexia and to examine the association with word-reading skills assessed dimensionally. SAMPLE Forty-six 9-13 year-old children with dyslexia and community control children, matched on age and listening comprehension. METHODS Participants were presented with a recorded face on a screen while their gaze patterns were collected with an eye tracker. Fixations to the left versus the right side of the face stimuli were compared. RESULTS Results showed a clear LVF bias in community controls, while no such bias was seen in the dyslexic group. Moreover, the strength of the LVF bias was correlated with better word reading in the controls. CONCLUSIONS Our results suggest a link between weakened hemispheric dominance for face processing in dyslexia and in poor word reading, at least to the extent that the LVF bias actually mirrors underlying physiology. We discuss the implications of these novel findings, highlighting the need for future research to determine the specificity and developmental sources of LVF bias alterations.
Collapse
Affiliation(s)
- Jakob Åsberg Johnels
- Section of Speech and Language Pathology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Gillberg Neuropsychiatry Center, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Martyna A Galazka
- Gillberg Neuropsychiatry Center, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Maria Sundqvist
- Department of Education and Special Education, University of Gothenburg, Gothenburg, Sweden
| | - Nouchine Hadjikhani
- Gillberg Neuropsychiatry Center, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Harvard Medical School/MGH/MIT, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, USA
| |
Collapse
|