1
|
Zhan X, Wang D, Wang H, Chen H, Wu X, Li T, Qi J, Chen T, Wu D, Gao Y. Revitalizing Skin Repair: Unveiling the Healing Power of Livisin, a Natural Peptide Calcium Mimetic. Toxins (Basel) 2023; 16:21. [PMID: 38251238 PMCID: PMC10819626 DOI: 10.3390/toxins16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
When the skin is damaged, accelerating the repair of skin trauma and promoting the recovery of tissue function are crucial considerations in clinical treatment. Previously, we isolated and identified an active peptide (livisin) from the skin secretion of the frog Odorrana livida. Livisin exhibited strong protease inhibitory activity, water solubility, and stability, yet its wound-healing properties have not yet been studied. In this study, we assessed the impact of livisin on wound healing and investigated the underlying mechanism contributing to its effect. Our findings revealed livisin effectively stimulated the migration of keratinocytes, with the underlying mechanisms involved the activation of CaSR as a peptide calcium mimetic. This activation resulted in the stimulation of the CaSR/E-cadherin/EGFR/ERK signaling pathways. Moreover, the therapeutic effects of livisin were partially reduced by blocking the CaSR/E-cadherin/EGFR/ERK signaling pathway. The interaction between livisin and CaSR was further investigated by molecular docking. Additionally, studies using a mouse full-thickness wound model demonstrated livisin could accelerate skin wound healing by promoting re-epithelialization and collagen deposition. In conclusion, our study provides experimental evidence supporting the use of livisin in skin wound healing, highlighting its potential as an effective therapeutic option.
Collapse
Affiliation(s)
- Xuehui Zhan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Danni Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Hanfei Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Xinyi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Tao Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Junmei Qi
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| |
Collapse
|
2
|
Villemin JP, Bassaganyas L, Pourquier D, Boissière F, Cabello-Aguilar S, Crapez E, Tanos R, Cornillot E, Turtoi A, Colinge J. Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR. Nucleic Acids Res 2023:7152875. [PMID: 37144485 DOI: 10.1093/nar/gkad352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/24/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023] Open
Abstract
The study of cellular networks mediated by ligand-receptor interactions has attracted much attention recently owing to single-cell omics. However, rich collections of bulk data accompanied with clinical information exists and continue to be generated with no equivalent in single-cell so far. In parallel, spatial transcriptomic (ST) analyses represent a revolutionary tool in biology. A large number of ST projects rely on multicellular resolution, for instance the Visium™ platform, where several cells are analyzed at each location, thus producing localized bulk data. Here, we describe BulkSignalR, a R package to infer ligand-receptor networks from bulk data. BulkSignalR integrates ligand-receptor interactions with downstream pathways to estimate statistical significance. A range of visualization methods complement the statistics, including functions dedicated to spatial data. We demonstrate BulkSignalR relevance using different datasets, including new Visium liver metastasis ST data, with experimental validation of protein colocalization. A comparison with other ST packages shows the significantly higher quality of BulkSignalR inferences. BulkSignalR can be applied to any species thanks to its built-in generic ortholog mapping functionality.
Collapse
Affiliation(s)
- Jean-Philippe Villemin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Laia Bassaganyas
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Didier Pourquier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | | | - Simon Cabello-Aguilar
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Evelyne Crapez
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Rita Tanos
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Emmanuel Cornillot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
- Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Andrei Turtoi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Jacques Colinge
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
- Faculté de Médecine, Université de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Elangovan A, Hooda J, Savariau L, Puthanmadhomnarayanan S, Yates ME, Chen J, Brown DD, McAuliffe PF, Oesterreich S, Atkinson JM, Lee AV. Loss of E-cadherin Induces IGF1R Activation and Reveals a Targetable Pathway in Invasive Lobular Breast Carcinoma. Mol Cancer Res 2022; 20:1405-1419. [PMID: 35665642 PMCID: PMC9444924 DOI: 10.1158/1541-7786.mcr-22-0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 01/30/2023]
Abstract
No special-type breast cancer [NST; commonly known as invasive ductal carcinoma (IDC)] and invasive lobular carcinoma (ILC) are the two major histological subtypes of breast cancer with significant differences in clinicopathological and molecular characteristics. The defining pathognomonic feature of ILC is loss of cellular adhesion protein, E-cadherin (CDH1). We have previously shown that E-cadherin functions as a negative regulator of the IGF1R and propose that E-cadherin loss in ILC sensitizes cells to growth factor signaling that thus alters their sensitivity to growth factor-signaling inhibitors and their downstream activators. To investigate this potential therapeutic vulnerability, we generated CRISPR-mediated CDH1 knockout (CDH1 KO) IDC cell lines (MCF7, T47D, and ZR75.1) to uncover the mechanism by which loss of E-cadherin results in IGF pathway activation. CDH1 KO cells demonstrated enhanced invasion and migration that was further elevated in response to IGF1, serum and collagen I. CDH1 KO cells exhibited increased sensitivity to IGF resulting in elevated downstream signaling. Despite minimal differences in membranous IGF1R levels between wild-type (WT) and CDH1 KO cells, significantly higher ligand-receptor interaction was observed in the CDH1 KO cells, potentially conferring enhanced downstream signaling activation. Critically, increased sensitivity to IGF1R, PI3K, Akt, and MEK inhibitors was observed in CDH1 KO cells and ILC patient-derived organoids. IMPLICATIONS Overall, this suggests that these targets require further exploration in ILC treatment and that CDH1 loss may be exploited as a biomarker of response for patient stratification.
Collapse
Affiliation(s)
- Ashuvinee Elangovan
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh PA.,Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA
| | - Jagmohan Hooda
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA
| | - Laura Savariau
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Susrutha Puthanmadhomnarayanan
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA
| | - Megan E. Yates
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA.,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jian Chen
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA
| | | | - Priscilla F. McAuliffe
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA.,Department of Surgery, Division of Surgical Oncology, Section of Breast Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Jennifer M. Atkinson
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA.,Corresponding Authors: Adrian V. Lee, PhD, , Phone: 4126417724, Fax: 4126416456, Women’s Cancer Research Center, UPMC Hillman Cancer Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA, Jennifer M. Atkinson, PhD, , Phone: 4126417724, Fax: 4126416456, Women’s Cancer Research Center, UPMC Hillman Cancer Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Adrian V. Lee
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA.,Corresponding Authors: Adrian V. Lee, PhD, , Phone: 4126417724, Fax: 4126416456, Women’s Cancer Research Center, UPMC Hillman Cancer Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA, Jennifer M. Atkinson, PhD, , Phone: 4126417724, Fax: 4126416456, Women’s Cancer Research Center, UPMC Hillman Cancer Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Basilico B, Palamà IE, D’Amone S, Lauro C, Rosito M, Grieco M, Ratano P, Cordella F, Sanchini C, Di Angelantonio S, Ragozzino D, Cascione M, Gigli G, Cortese B. Substrate stiffness effect on molecular crosstalk of epithelial-mesenchymal transition mediators of human glioblastoma cells. Front Oncol 2022; 12:983507. [PMID: 36091138 PMCID: PMC9454310 DOI: 10.3389/fonc.2022.983507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The complexity of the microenvironment effects on cell response, show accumulating evidence that glioblastoma (GBM) migration and invasiveness are influenced by the mechanical rigidity of their surroundings. The epithelial–mesenchymal transition (EMT) is a well-recognized driving force of the invasive behavior of cancer. However, the primary mechanisms of EMT initiation and progression remain unclear. We have previously showed that certain substrate stiffness can selectively stimulate human GBM U251-MG and GL15 glioblastoma cell lines motility. The present study unifies several known EMT mediators to uncover the reason of the regulation and response to these stiffnesses. Our results revealed that changing the rigidity of the mechanical environment tuned the response of both cell lines through change in morphological features, epithelial-mesenchymal markers (E-, N-Cadherin), EGFR and ROS expressions in an interrelated manner. Specifically, a stiffer microenvironment induced a mesenchymal cell shape, a more fragmented morphology, higher intracellular cytosolic ROS expression and lower mitochondrial ROS. Finally, we observed that cells more motile showed a more depolarized mitochondrial membrane potential. Unravelling the process that regulates GBM cells’ infiltrative behavior could provide new opportunities for identification of new targets and less invasive approaches for treatment.
Collapse
Affiliation(s)
| | - Ilaria Elena Palamà
- National Research Council-Nanotechnology Institute (CNR Nanotec), Lecce, Italy
| | - Stefania D’Amone
- National Research Council-Nanotechnology Institute (CNR Nanotec), Lecce, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience, Italian Institute of Technology (IIT), Rome, Italy
| | - Maddalena Grieco
- National Research Council-Nanotechnology Institute (CNR Nanotec), Lecce, Italy
| | - Patrizia Ratano
- National Research Council-Nanotechnology Institute (CNR Nanotec), Rome, Italy
| | - Federica Cordella
- Center for Life Nanoscience, Italian Institute of Technology (IIT), Rome, Italy
| | - Caterina Sanchini
- Center for Life Nanoscience, Italian Institute of Technology (IIT), Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience, Italian Institute of Technology (IIT), Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Giuseppe Gigli
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Department of Mathematics and Physics “Ennio De Giorgi” University of Salento, Lecce, Italy
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute (CNR Nanotec), Rome, Italy
- *Correspondence: Barbara Cortese,
| |
Collapse
|
5
|
Arnaud T, Rodrigues-Lima F, Viguier M, Deshayes F. Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis. Tissue Barriers 2022:2104085. [PMID: 35875939 PMCID: PMC10364651 DOI: 10.1080/21688370.2022.2104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.
Collapse
Affiliation(s)
- Tessa Arnaud
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | | | | | | |
Collapse
|
6
|
Lee MJ, Weng CM, Chao W, Fang YF, Chung FT, Lin CH, Kuo HP. Platelet Activation in High D-Dimer Plasma Plays a Role in Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Mutant Lung Adenocarcinoma. Front Oncol 2022; 12:876051. [PMID: 35756605 PMCID: PMC9214222 DOI: 10.3389/fonc.2022.876051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Platelet activation and adhesion to cancer cells increase the release of multiple factors that contribute to EMT and chemoresistance. Elevated levels of D-dimer have been associated with poor clinical outcomes in lung cancer. Platelets in high D-dimer plasma may be activated and implicated in acquired resistance to EGFR TKI in advanced lung adenocarcinoma with mutant EGFR. Materials and Methods Clinical responsive rate (RR), progression-free survival (PFS), and overall survival (OS) were prospectively measured in treatment-naïve lung adenocarcinoma patients with activation mutation. Plasma or platelets from patients with high or low D-dimer level were obtained to investigate the cytotoxic effects of TKIs on mutant cancer cells, and the mechanistic pathways were also explored. Results Patients with high D-dimer had worse RR, PFS, and OS. High D-dimer plasma induced resistance to gefitinib, erlotinib, afatinib, or osimertinib in EGFR mutant lung cancer cells. Depletion of platelets in high D-dimer plasma reversed the resistance to TKI. Platelets of high D-dimer plasma had higher adherence capacity to cancer cells, and induced EGFR and Akt activation as well as EMT through Src activation. Inhibition of platelet adherence or activation of Src or Akt conquered the resistance to TKI. The acquired resistance to TKI by high D-dimer plasma was less attributed to secondary gene mutation. Conclusion Increased platelet activation in the high D-dimer plasma may contribute to first-line acquired EGFR TKI resistance. Thus, therapeutic strategy against platelet activation in patients with high D-dimer levels may improve the efficacy of first-line treatment with EGFR TKI.
Collapse
Affiliation(s)
- Meng-Jung Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Thoracic Medicine Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Weng
- Thoracic Medicine Research Center, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei Chao
- Thoracic Medicine Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Fu Fang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Thoracic Medicine Research Center, Taipei Medical University, Taipei, Taiwan
| | - Han-Pin Kuo
- Thoracic Medicine Research Center, Taipei Medical University, Taipei, Taiwan.,Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Green KJ, Niessen CM, Rübsam M, Perez White BE, Broussard JA. The Desmosome-Keratin Scaffold Integrates ErbB Family and Mechanical Signaling to Polarize Epidermal Structure and Function. Front Cell Dev Biol 2022; 10:903696. [PMID: 35686051 PMCID: PMC9171019 DOI: 10.3389/fcell.2022.903696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
While classic cadherin-actin connections in adherens junctions (AJs) have ancient origins, intermediate filament (IF) linkages with desmosomal cadherins arose in vertebrate organisms. In this mini-review, we discuss how overlaying the IF-desmosome network onto the existing cadherin-actin network provided new opportunities to coordinate tissue mechanics with the positioning and function of chemical signaling mediators in the ErbB family of receptor tyrosine kinases. We focus in particular on the complex multi-layered outer covering of the skin, the epidermis, which serves essential barrier and stress sensing/responding functions in terrestrial vertebrates. We will review emerging data showing that desmosome-IF connections, AJ-actin interactions, ErbB family members, and membrane tension are all polarized across the multiple layers of the regenerating epidermis. Importantly, their integration generates differentiation-specific roles in each layer of the epidermis that dictate the form and function of the tissue. In the basal layer, the onset of the differentiation-specific desmosomal cadherin desmoglein 1 (Dsg1) dials down EGFR signaling while working with classic cadherins to remodel cortical actin cytoskeleton and decrease membrane tension to promote cell delamination. In the upper layers, Dsg1 and E-cadherin cooperate to maintain high tension and tune EGFR and ErbB2 activity to create the essential tight junction barrier. Our final outlook discusses the emerging appreciation that the desmosome-IF scaffold not only creates the architecture required for skin's physical barrier but also creates an immune barrier that keeps inflammation in check.
Collapse
Affiliation(s)
- Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Bethany E. Perez White
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Van Doren SR. MMP-7 marks severe pancreatic cancer and alters tumor cell signaling by proteolytic release of ectodomains. Biochem Soc Trans 2022; 50:839-851. [PMID: 35343563 PMCID: PMC10443904 DOI: 10.1042/bst20210640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Pancreatic cancer incurs the worst survival rate of the major cancers. High levels of the protease matrix metalloproteinase-7 (MMP-7) in circulation correlate with poor prognosis and limited survival of patients. MMP-7 is required for a key path of pancreatic tumorigenesis in mice and is present throughout tumor progression. Enhancements to chemotherapies are needed for increasing the number of pancreatic tumors that can be removed and for preventing relapses after surgery. With these ends in mind, selective inhibition of MMP-7 may be worth investigation. An anti-MMP-7 monoclonal antibody was recently shown to increase the susceptibility of several pancreatic cancer cell lines to chemotherapeutics, increase their apoptosis, and decrease their migration. MMP-7 activities are most apparent at the surfaces of innate immune, epithelial, and tumor cells. Proteolytic shedding of multiple protein ectodomains by MMP-7 from such cell surfaces influence apoptosis, proliferation, migration, and invasion. These activities warrant targeting of MMP-7 selectively in pancreatic cancer and other tumors of mucosal epithelia. Competitive and non-competitive modes of MMP-7 inhibition are discussed.
Collapse
Affiliation(s)
- Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
9
|
Fu C, Arora A, Engl W, Sheetz M, Viasnoff V. Cooperative regulation of adherens junction expansion through Epidermal Growth Factor Receptor (EGFR) activation. J Cell Sci 2022; 135:274477. [DOI: 10.1242/jcs.258929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
The mechanisms controlling the dynamics of expansion of adherens junctions are significantly less understood than those controlling their static properties. Here, we report that for suspended cell aggregates, the time to form a new junction between two cells speeds up with the number of junctions that the cells are already engaged in. Upon junction formation, the activation of the Epidermal Growth Factor Receptor (EGFR) distally affects the actin turnover dynamics of the cell-free cortex. The “primed” actin cortex results in a faster expansion of the subsequent new junctions. In such aggregates, we show that this mechanism results in a cooperative acceleration of the junction expansion dynamics (kinetype) but leaves the cell contractility, and hence the final junction size (phenotype), unaltered.
Collapse
Affiliation(s)
- Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Aditya Arora
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Wilfried Engl
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, Texas, USA
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- CNRS Biomechanics of Cell Contacts, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Sullivan B, Light T, Vu V, Kapustka A, Hristova K, Leckband D. Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor-dependent signaling. Proc Natl Acad Sci U S A 2022; 119:e2100679119. [PMID: 35074920 PMCID: PMC8794882 DOI: 10.1073/pnas.2100679119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.
Collapse
Affiliation(s)
- Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Taylor Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Vinh Vu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218;
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Quantitative Biology and Biophysics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
11
|
Ramírez Moreno M, Bulgakova NA. The Cross-Talk Between EGFR and E-Cadherin. Front Cell Dev Biol 2022; 9:828673. [PMID: 35127732 PMCID: PMC8811214 DOI: 10.3389/fcell.2021.828673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies. These defects in either are further exacerbated by the reciprocal interactions between the two transmembrane proteins. On the one hand, EGFR can destabilize E-cadherin adhesion by increasing E-cadherin endocytosis, modifying its interactions with cytoskeleton and decreasing its expression, thus promoting tumorigenesis. On the other hand, E-cadherin regulates EGFR localization and tunes its activity. As a result, loss and mutations of E-cadherin promote cancer cell invasion due to uncontrolled activation of EGFR, which displays enhanced surface motility and changes in endocytosis. In this minireview, we discuss the molecular and cellular mechanisms of the cross-talk between E-cadherin and EGFR, highlighting emerging evidence for the role of endocytosis in this feedback, as well as its relevance to tissue morphogenesis, homeostasis and cancer progression.
Collapse
Affiliation(s)
| | - Natalia A. Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
|
13
|
Proux-Gillardeaux V, Advedissian T, Perin C, Gelly JC, Viguier M, Deshayes F. Identification of a new regulation pathway of EGFR and E-cadherin dynamics. Sci Rep 2021; 11:22705. [PMID: 34811416 PMCID: PMC8609017 DOI: 10.1038/s41598-021-02042-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
E-cadherin and EGFR are known to be closely associated hence regulating differentiation and proliferation notably in epithelia. We have previously shown that galectin-7 binds to E-cadherin and favors its retention at the plasma membrane. In this study, we shed in light that galectin-7 establishes a physical link between E-cadherin and EGFR. Indeed, our results demonstrate that galectin-7 also binds to EGFR, but unlike the binding to E-cadherin this binding is sugar dependent. The establishment of E-cadherin/EGFR complex and the binding of galectin-7 to EGFR thus lead to a regulation of its signaling and intracellular trafficking allowing cell proliferation and migration control. In vivo observations further support these results since an epidermal thickening is observed in galectin-7 deficient mice. This study therefore reveals that galectin-7 controls epidermal homeostasis through the regulation of E-cadherin/EGFR balance.
Collapse
Affiliation(s)
| | - Tamara Advedissian
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, UMR3691, CNRS, 75015, Paris, France
| | - Charlotte Perin
- Université de Paris, UMR_S1134, BIGR, Inserm, 75006, Paris, France.,Institut National de Transfusion Sanguine, 75015, Paris, France
| | - Jean-Christophe Gelly
- Université de Paris, UMR_S1134, BIGR, Inserm, 75006, Paris, France.,Institut National de Transfusion Sanguine, 75015, Paris, France
| | - Mireille Viguier
- CNRS, Institut Jacques Monod, Université de Paris, F-75013, Paris, France
| | | |
Collapse
|
14
|
Shafraz O, Xie B, Yamada S, Sivasankar S. Mapping transmembrane binding partners for E-cadherin ectodomains. Proc Natl Acad Sci U S A 2020; 117:31157-31165. [PMID: 33229577 PMCID: PMC7733791 DOI: 10.1073/pnas.2010209117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We combine proximity labeling and single molecule binding assays to discover transmembrane protein interactions in cells. We first screen for candidate binding partners by tagging the extracellular and cytoplasmic regions of a "bait" protein with BioID biotin ligase and identify proximal proteins that are biotin tagged on both their extracellular and intracellular regions. We then test direct binding interactions between proximal proteins and the bait, using single molecule atomic force microscope binding assays. Using this approach, we identify binding partners for the extracellular region of E-cadherin, an essential cell-cell adhesion protein. We show that the desmosomal proteins desmoglein-2 and desmocollin-3, the focal adhesion protein integrin-α2β1, the receptor tyrosine kinase ligand ephrin-B1, and the classical cadherin P-cadherin, all directly interact with E-cadherin ectodomains. Our data shows that combining extracellular and cytoplasmic proximal tagging with a biophysical binding assay increases the precision with which transmembrane ectodomain interactors can be identified.
Collapse
Affiliation(s)
- Omer Shafraz
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA 95616
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616;
- Biophysics Graduate Group, University of California, Davis, CA 95616
| |
Collapse
|
15
|
Venhuizen JH, Jacobs FJ, Span PN, Zegers MM. P120 and E-cadherin: Double-edged swords in tumor metastasis. Semin Cancer Biol 2020; 60:107-120. [DOI: 10.1016/j.semcancer.2019.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
|
16
|
Liu Y, Lei P, Row S, Andreadis ST. Cadherin-11 binds to PDGFRβ and enhances cell proliferation and tissue regeneration via the PDGFR-AKT signaling axis. FASEB J 2020; 34:3792-3804. [PMID: 31930567 DOI: 10.1096/fj.201902613r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/11/2022]
Abstract
Intercellular adhesion through homotypic interaction between cadherins regulates multiple cellular processes including cytoskeletal organization, proliferation, and survival. In this paper, we provide evidence that cadherin-11 (CDH11) binds to and promotes cell proliferation both in vitro and in vivo in synergy with the platelet-derived growth factor receptor beta (PDGFRβ). Engagement of CDH11 increased the sensitivity of cells to PDGF-BB by 10- to 100-fold, resulting in rapid and sustained phosphorylation of AKT, ultimately promoting and cell proliferation and tissue regeneration. Indeed, wound healing experiments showed that healing was severely compromised in Cdh11-/- mice, as evidenced by significantly decreased proliferation, AKT phosphorylation, and extracellular matrix (ECM) synthesis of dermal cells. Our results shed light into understanding how intercellular adhesion can promote cell proliferation and may have implications for tissue regeneration and cancer progression.
Collapse
Affiliation(s)
- Yayu Liu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Stelios T Andreadis
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| |
Collapse
|
17
|
Punovuori K, Migueles RP, Malaguti M, Blin G, Macleod KG, Carragher NO, Pieters T, van Roy F, Stemmler MP, Lowell S. N-cadherin stabilises neural identity by dampening anti-neural signals. Development 2019; 146:dev.183269. [PMID: 31601548 PMCID: PMC6857587 DOI: 10.1242/dev.183269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Abstract
A switch from E- to N-cadherin regulates the transition from pluripotency to neural identity, but the mechanism by which cadherins regulate differentiation was previously unknown. Here, we show that the acquisition of N-cadherin stabilises neural identity by dampening anti-neural signals. We use quantitative image analysis to show that N-cadherin promotes neural differentiation independently of its effects on cell cohesiveness. We reveal that cadherin switching diminishes the level of nuclear β-catenin, and that N-cadherin also dampens FGF activity and consequently stabilises neural fate. Finally, we compare the timing of cadherin switching and differentiation in vivo and in vitro, and find that this process becomes dysregulated during in vitro differentiation. We propose that N-cadherin helps to propagate a stable neural identity throughout the emerging neuroepithelium, and that dysregulation of this process contributes to asynchronous differentiation in culture. Summary: As pluripotent cells undergo neural differentiation they swap E-cadherin for N-cadherin. This switch in adhesion molecules modulates signalling in order to facilitate the differentiation process.
Collapse
Affiliation(s)
- Karolina Punovuori
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rosa P Migueles
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kenneth G Macleod
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Tim Pieters
- Department of Biomedical Molecular Biology, Ghent University; Inflammation Research Center, VIB; Center for Medical Genetics, Ghent University Hospital; Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University; Inflammation Research Center, VIB; Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium
| | - Marc P Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
18
|
Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun 2019; 10:1909. [PMID: 31015417 PMCID: PMC6478918 DOI: 10.1038/s41467-019-09780-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. β-catenin is widely thought to be a major oncogene in HCC based on the frequency of mutations associated with aberrant Wnt signaling in HCC patients. Challenging this model, our data reveal that β-catenin nuclear accumulation is restricted to the late stage of the disease. Until then, β-catenin is primarily located at the plasma membrane in complex with multiple cadherin family members where it drives tumor cell survival by enhancing the signaling of growth factor receptors such as EGFR. Therefore, our study reveals the evolving nature of β-catenin in HCC to establish it as a compound tumor promoter during the progression of the disease. Aberrant Wnt/b-catenin signaling is thought to be a major driver of hepatocellular carcinoma. Here, the authors show that β-Catenin is predominantly integrated within the AJ complex during the early stages of this cancer and enhance EGFR signaling to promote tumour survival.
Collapse
|
19
|
Tu CL, Celli A, Mauro T, Chang W. Calcium-Sensing Receptor Regulates Epidermal Intracellular Ca 2+ Signaling and Re-Epithelialization after Wounding. J Invest Dermatol 2019; 139:919-929. [PMID: 30404020 PMCID: PMC6431556 DOI: 10.1016/j.jid.2018.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 02/06/2023]
Abstract
Extracellular Ca2+ (Ca2+o) is a crucial regulator of epidermal homeostasis and its receptor, the Ca2+-sensing receptor (CaSR), conveys the Ca2+o signals to promote keratinocyte adhesion, differentiation, and survival via activation of intracellular Ca2+ (Ca2+i) and E-cadherin-mediated signaling. Here, we took genetic loss-of-function approaches to delineate the functions of CaSR in wound re-epithelialization. Cutaneous injury triggered a robust CaSR expression and a surge of Ca2+i in epidermis. CaSR and E-cadherin were co-expressed at the cell-cell membrane between migratory keratinocytes in the nascent epithelial tongues. Blocking the expression of CaSR or E-cadherin in cultured keratinocytes markedly inhibited the wound-induced Ca2+i propagation and their ability to migrate collectively. Depleting CaSR also suppressed keratinocyte proliferation by downregulating the E-cadherin/epidermal growth factor receptor/mitogen-activated protein kinase signaling axis. Blunted epidermal Ca2+i response to wounding and retarded wound healing were observed in the keratinocyte-specific CaSR knockout (EpidCasr-/-) mice, whose shortened neo-epithelia exhibited declined E-cadherin expression and diminished keratinocyte proliferation and differentiation. Conversely, stimulating endogenous CaSR with calcimimetic NPS-R568 accelerated wound re-epithelialization through enhancing the epidermal Ca2+i signals and E-cadherin membrane expression. These findings demonstrated a critical role for the CaSR in epidermal regeneration and its therapeutic potential for improving skin wound repair.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Medicine, University of California, San Francisco, California, USA.
| | - Anna Celli
- Dermatology Department, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Theodora Mauro
- Dermatology Department, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
20
|
Lin J, Chen Z, Huang Z, Chen F, Ye Z, Lin S, Wang W. Effect of T-cadherin on the AKT/mTOR signaling pathway, gastric cancer cell cycle, migration and invasion, and its association with patient survival rate. Exp Ther Med 2019; 17:3607-3613. [PMID: 30988743 PMCID: PMC6447793 DOI: 10.3892/etm.2019.7350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/03/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer (GC) is among the most common types of human cancer and is associated with recurrence and metastasis, despite comprehensive surgical and medical treatment. Previous studies observed downregulation of T-cadherin expression in GC tissues, suggesting that this protein may act as an oncosuppressor. The current study investigated the activity of T-cadherin in GC tissues. In a follow-up study of 81 patients with GC, a Kaplan-Meier analysis of overall survival revealed a strong association of T-cadherin overexpression with increased overall survival (P<0.01). Furthermore, stable T-cadherin-overexpressing cell lines were established from HGC-27 cells via transfection of a pcDNA3.1-T-cadherin plasmid and in vitro growth and cell cycle of these cells were measured using MTT and flow cytometry assays, respectively. MTT assays revealed that proliferation of engineered T-cadherin-overexpressing cells was significantly inhibited and flow cytometry demonstrated that T-cadherin overexpression in HGC-27 cells induced cell cycle arrest in the G0/G1 phase. Transwell assays demonstrated that T-cadherin-overexpressing HGC-27 cells exhibited reduced invasiveness and metastatic potential. Phosphorylated (p)-protein kinase B (AKT) and p-mammalian target of rapamycin (mTOR) protein levels were reduced in T-cadherin overexpressing HGC-27 cells, suggesting that the AKT/mTOR signaling pathway was involved in the gastric tumor inhibitory effect of T-cadherin. Administration of AKT-activator, insulin-like growth factor-1, to T-cadherin-overexpressing HGC-27 cells significantly affected the proliferation phenotype. In conclusion, the current study provided clinical evidence and revealed a potential mechanism supporting that T-cadherin inhibits gastric tumorigenesis through inhibition of the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jianqing Lin
- Department of Surgical Oncology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhiyao Chen
- Department of Surgical Oncology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhijun Huang
- Department of Surgical Oncology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Feng Chen
- Department of Surgical Oncology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zeyi Ye
- Department of Surgical Oncology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Shaoze Lin
- Department of Surgical Oncology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Weidong Wang
- Department of Surgical Oncology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
21
|
Abstract
E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.
Collapse
|
22
|
Geißler AL, Geißler M, Kottmann D, Lutz L, Fichter CD, Fritsch R, Weddeling B, Makowiec F, Werner M, Lassmann S. ATM mutations and E-cadherin expression define sensitivity to EGFR-targeted therapy in colorectal cancer. Oncotarget 2017; 8:17164-17190. [PMID: 28199979 PMCID: PMC5370031 DOI: 10.18632/oncotarget.15211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
EGFR-targeted therapy is a key treatment approach in patients with RAS wildtype metastatic colorectal cancers (CRC). Still, also RAS wildtype CRC may be resistant to EGFR-targeted therapy, with few predictive markers available for improved stratification of patients. Here, we investigated response of 7 CRC cell lines (Caco-2, DLD1, HCT116, HT29, LS174T, RKO, SW480) to Cetuximab and correlated this to NGS-based mutation profiles, EGFR promoter methylation and EGFR expression status as well as to E-cadherin expression. Moreover, tissue specimens of primary and/or recurrent tumors as well as liver and/or lung metastases of 25 CRC patients having received Cetuximab and/or Panitumumab were examined for the same molecular markers. In vitro and in situ analyses showed that EGFR promoter methylation and EGFR expression as well as the MSI and or CIMP-type status did not guide treatment responses. In fact, EGFR-targeted treatment responses were also observed in RAS exon 2 p.G13 mutated CRC cell lines or CRC cases and were further linked to PIK3CA exon 9 mutations. In contrast, non-response to EGFR-targeted treatment was associated with ATM mutations and low E-cadherin expression. Moreover, down-regulation of E-cadherin by siRNA in otherwise Cetuximab responding E-cadherin positive cells abrogated their response. Hence, we here identify ATM and E-cadherin expression as potential novel supportive predictive markers for EGFR-targeted therapy.
Collapse
Affiliation(s)
- Anna-Lena Geißler
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Geißler
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Kottmann
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lisa Lutz
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christiane D Fichter
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ralph Fritsch
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Internal Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Britta Weddeling
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Frank Makowiec
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Surgery, University of Freiburg, Freiburg im Breisgau, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Werner
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Silke Lassmann
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
23
|
Nguyen T, Mège RM. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations. Eur J Cell Biol 2016; 95:415-426. [PMID: 27320194 DOI: 10.1016/j.ejcb.2016.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - René Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
24
|
Rauner G, Barash I. Enrichment for Repopulating Cells and Identification of Differentiation Markers in the Bovine Mammary Gland. J Mammary Gland Biol Neoplasia 2016; 21:41-9. [PMID: 26615610 DOI: 10.1007/s10911-015-9348-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/15/2015] [Indexed: 10/22/2022] Open
Abstract
Elucidating cell hierarchy in the mammary gland is fundamental for understanding the mechanisms governing its normal development and malignant transformation. There is relatively little information on cell hierarchy in the bovine mammary gland, despite its agricultural potential and relevance to breast cancer research. Challenges in bovine-to-mouse xenotransplantation and difficulties obtaining bovine-compatible antibodies hinder the study of mammary stem-cell dynamics in this species. In-vitro indications of distinct bovine mammary epithelial cell populations, sorted according to CD24 and CD49f expression, have been provided. Here, we successfully transplanted these bovine populations into the cleared fat pads of immunocompromised mice, providing in-vivo evidence for the multipotency and self-renewal capabilities of cells that are at the top of the cell hierarchy (termed mammary repopulating units). Additional outgrowths from transplantation, composed exclusively of myoepithelial cells, were indicative of unipotent basal stem cells or committed progenitors. Sorting luminal cells according to E-cadherin revealed three distinct populations: luminal progenitors, and early- and late-differentiating cells. Finally, miR-200c expression was negatively correlated with differentiation levels in both the luminal and basal branches of the bovine mammary cell hierarchy. Together, these experiments provide further evidence for the presence of a regenerative entity in the bovine mammary gland and for the multistage differentiation process within the luminal lineage.
Collapse
Affiliation(s)
- Gat Rauner
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel.
| |
Collapse
|
25
|
Muhamed I, Wu J, Sehgal P, Kong X, Tajik A, Wang N, Leckband DE. E-cadherin-mediated force transduction signals regulate global cell mechanics. J Cell Sci 2016; 129:1843-54. [PMID: 26966187 DOI: 10.1242/jcs.185447] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
This report elucidates an E-cadherin-based force-transduction pathway that triggers changes in cell mechanics through a mechanism requiring epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), and the downstream formation of new integrin adhesions. This mechanism operates in addition to local cytoskeletal remodeling triggered by conformational changes in the E-cadherin-associated protein α-catenin, at sites of mechanical perturbation. Studies using magnetic twisting cytometry (MTC), together with traction force microscopy (TFM) and confocal imaging identified force-activated E-cadherin-specific signals that integrate cadherin force transduction, integrin activation and cell contractility. EGFR is required for the downstream activation of PI3K and myosin-II-dependent cell stiffening. Our findings also demonstrated that α-catenin-dependent cytoskeletal remodeling at perturbed E-cadherin adhesions does not require cell stiffening. These results broaden the repertoire of E-cadherin-based force transduction mechanisms, and define the force-sensitive signaling network underlying the mechano-chemical integration of spatially segregated adhesion receptors.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Poonam Sehgal
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Xinyu Kong
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Arash Tajik
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Department of Chemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Carl W. Woese Institute of Genomic Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Zhang Y, Mao H, Qian M, Hu F, Cao L, Xu K, Shuai Q, Gao C, Lang R, Akaike T, Yang J. Surface modification with E-cadherin fusion protein for mesenchymal stem cell culture. J Mater Chem B 2016; 4:4267-4277. [PMID: 32263408 DOI: 10.1039/c6tb00765a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To effectively expand human mesenchymal stem cells (hMSCs) in vitro without affecting their innate biological properties, a fusion protein (hE-cad-Fc) was fabricated and used as a biomimetic matrix for MSC culture surface modification.
Collapse
|
27
|
Chen J, Xie ZR, Wu Y. Elucidating the general principles of cell adhesion with a coarse-grained simulation model. MOLECULAR BIOSYSTEMS 2016; 12:205-18. [DOI: 10.1039/c5mb00612k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-grained simulation of interplay between cell adhesion and cell signaling.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| | - Yinghao Wu
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| |
Collapse
|
28
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
29
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
30
|
Du W, Liu X, Fan G, Zhao X, Sun Y, Wang T, Zhao R, Wang G, Zhao C, Zhu Y, Ye F, Jin X, Zhang F, Zhong Z, Li X. From cell membrane to the nucleus: an emerging role of E-cadherin in gene transcriptional regulation. J Cell Mol Med 2014; 18:1712-9. [PMID: 25164084 PMCID: PMC4196647 DOI: 10.1111/jcmm.12340] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/05/2014] [Indexed: 01/06/2023] Open
Abstract
E-cadherin is a well-known mediator of cell–cell adherens junctions. However, many other functions of E-cadherin have been reported. Collectively, the available data suggest that E-cadherin may also act as a gene transcriptional regulator. Here, evidence supporting this claim is reviewed, and possible mechanisms of action are discussed. E-cadherin has been shown to modulate the activity of several notable cell signalling pathways, and given that most of these pathways in turn regulate gene expression, we proposed that E-cadherin may regulate gene transcription by affecting these pathways. Additionally, E-cadherin has been shown to accumulate in the nucleus where documentation of an E-cadherin fragment bound to DNA suggests that E-cadherin may directly regulate gene transcription. In summary, from the cell membrane to the nucleus, a role for E-cadherin in gene transcription may be emerging. Studies specifically focused on this potential role would allow for a more thorough understanding of this transmembrane glycoprotein in mediating intra- and intercellular activities.
Collapse
Affiliation(s)
- Wenjun Du
- Department of Digestion, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oliveira MEF, Culton DA, Prisayanh P, Qaqish BF, Diaz LA. E-cadherin autoantibody profile in patients with pemphigus vulgaris. Br J Dermatol 2014; 169:812-8. [PMID: 23725016 DOI: 10.1111/bjd.12455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is an autoimmune skin blistering disease. The main targets of autoantibodies are the desmosomal proteins desmoglein (Dsg)3 and Dsg1. Anti-E-cadherin antibody is the second most frequent antibody found in pemphigus foliaceus (fogo selvagem), but the frequency in PV is unknown. OBJECTIVES To determine the anti-E-cadherin antibody profile in the two major subtypes of PV: mucosal PV (mPV) and mucocutaneous PV (mcPV). METHODS Sera from 80 patients with PV and 80 controls were tested. Patients with PV were subdivided into mPV (n = 18) and mcPV (n = 62). Samples were tested by E-cadherin, Dsg1 and Dsg3 enzyme-linked immunosorbent assays (ELISAs), and immunoprecipitation coupled with Western blotting (IP-WB). RESULTS Both mPV and mcPV sera have antibodies against E-cadherin as demonstrated by ELISA and IP-WB. Both subtypes of PV have low levels of anti-E-cadherin antibodies, but significantly higher levels than healthy controls by ELISA (P < 0·0001). No difference exists in antibody levels between subgroups (P = 0·82). By IP-WB, 78% of mcPV sera reacted to E-cadherin, vs. 33% of mPV sera tested. Correlation analysis suggests a moderate correlation between anti-E-cadherin antibodies and Dsg1 antibodies (average r = 0·61), but no correlation with Dsg3 antibodies (average r = 0·19). Patients with mPV can have lower levels of Dsg1 antibodies compared with controls by ELISA (P < 0·0001). A few mPV sera also reacted to Dsg1 protein by IP-WB (17%). CONCLUSIONS Anti-E-cadherin antibodies are present in both major subtypes of PV. A moderate correlation exists between E-cadherin and Dsg1 antibodies. Patients with mPV can have low levels of both E-cadherin and Dsg1 antibodies.
Collapse
Affiliation(s)
- M E F Oliveira
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, U.S.A; Duke University School of Medicine, Durham, NC, 27710, U.S.A
| | | | | | | | | |
Collapse
|
32
|
Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency. Stem Cell Res 2013; 11:1250-63. [DOI: 10.1016/j.scr.2013.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/24/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022] Open
|
33
|
Owens MB, Hill AD, Hopkins AM. Ductal barriers in mammary epithelium. Tissue Barriers 2013; 1:e25933. [PMID: 24665412 PMCID: PMC3783220 DOI: 10.4161/tisb.25933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022] Open
Abstract
Tissue barriers play an integral role in the biology and pathobiology of mammary ductal epithelium. In normal breast physiology, tight and adherens junctions undergo dynamic changes in permeability in response to hormonal and other stimuli, while several of their proteins are directly involved in mammary tumorigenesis. This review describes first the structure of mammary ductal epithelial barriers and their role in normal mammary development, examining the cyclical changes in response to puberty, pregnancy, lactation and involution. It then examines the role of adherens and tight junctions and the participation of their constituent proteins in mammary tumorigenic functions such as migration, invasion and metastasis. Finally, it discusses the potential of these adhesion proteins as both prognostic biomarkers and potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Mark B Owens
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Arnold Dk Hill
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| |
Collapse
|
34
|
Staberg M, Riemer C, Xu R, Dmytriyeva O, Bock E, Berezin V. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells. Cell Oncol (Dordr) 2013; 36:201-11. [PMID: 23580313 DOI: 10.1007/s13402-013-0128-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Receptors of the ErbB family are involved in the development of various cancers, and the inhibition of these receptors represents an attractive therapeutic concept. Upon ligand binding, ErbB receptors become activated as homo- or heterodimers, leading to the activation of downstream signaling cascades that result in the facilitation of cell proliferation and migration. A region of the extracellular part of the receptor, termed the 'dimerization arm', is important for the formation of receptor dimers and represents an attractive target for the design of ErbB inhibitors. METHODS An ErbB1 targeting peptide, termed Herfin-1, was designed based on a model of the tertiary structure of the EGF-EGFR ternary complex. The binding kinetics of this peptide were determined employing surface plasmon resonance analyses. ErbB1-4 expression and phosphorylation in human glioblastoma cell lines U87 and U118 were determined by Western blotting using specific antibodies. Cell proliferation was determined by MTS staining. Cell migration was examined using a Chemotaxis Migration Kit. Neurite outgrowth from primary cerebellar granule neurons was evaluated by fluorescence microscopy and image processing. RESULTS The present study shows that Herfin-1 functions as an ErbB1 antagonist. It binds to the extracellular domain of ErbB1 with a KD value of 361 nM. In U87 and U118 cells, both expressing high levels of ErbB1, Herfin-1 inhibits EGF-induced ErbB1 phosphorylation and cell migration. Additionally, Herfin-1 was found to increase neurite outgrowth in cerebellar granule neurons, likely through the inhibition of a sustained weak ErbB1 activation. CONCLUSIONS Targeting the ErbB1 receptor dimerization interface is a promising strategy to inhibit receptor activation in ErbB1-expressing glioma cells.
Collapse
Affiliation(s)
- Mikkel Staberg
- Department of Neuroscience and Pharmacology, Protein Laboratory, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
35
|
del Valle I, Rudloff S, Carles A, Li Y, Liszewska E, Vogt R, Kemler R. E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic stem cells. Development 2013; 140:1684-92. [PMID: 23487312 DOI: 10.1242/dev.088690] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The leukemia inhibitory factor (Lif) signaling pathway is a crucial determinant for mouse embryonic stem (mES) cell self-renewal and pluripotency. One of the hallmarks of mES cells, their compact growth morphology, results from tight cell adhesion mediated through E-cadherin, β-catenin (Ctnnb1) and α-catenin with the actin cytoskeleton. β-catenin is also involved in canonical Wnt signaling, which has also been suggested to control mES cell stemness. Here, we analyze Ctnnb1(-/-) mES cells in which cell adhesion is preserved by an E-cadherin-α-catenin (Eα) fusion protein (Ctnnb1(-/-)Eα mES cells), and show that mimicking only the adhesive function of β-catenin is necessary and sufficient to maintain the mES cell state, making β-catenin/Wnt signaling obsolete in this process. Furthermore, we propose a role for E-cadherin in promoting the Lif signaling cascade, showing an association of E-cadherin with the Lifr-Gp130 receptor complex, which is most likely facilitated by the extracellular domain of E-cadherin. Without Eα, and thus without maintained cell adhesion, Ctnnb1(-/-) mES cells downregulate components of the Lif signaling pathway, such as Lifr, Gp130 and activated Stat3, as well as pluripotency-associated markers. From these observations, we hypothesize that the changes in gene expression accompanying the loss of pluripotency are a direct consequence of dysfunctional cell adhesion. Supporting this view, we find that the requirement for intact adhesion can be circumvented by the forced expression of constitutively active Stat3. In summary, we put forward a model in which mES cells can be propagated in culture in the absence of Ctnnb1, as long as E-cadherin-mediated cell adhesion is preserved.
Collapse
Affiliation(s)
- Ignacio del Valle
- Department of Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Nakamoto K, Nagahara H, Maeda K, Noda E, Inoue T, Yashiro M, Nishiguchi Y, Ohira M, Hirakawa K. Expression of E-cadherin and KRAS mutation may serve as biomarkers of cetuximab-based therapy in metastatic colorectal cancer. Oncol Lett 2013; 5:1295-1300. [PMID: 23599782 PMCID: PMC3629210 DOI: 10.3892/ol.2013.1187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/05/2012] [Indexed: 01/05/2023] Open
Abstract
Cetuximab (Cmab), a chimeric monoclonal antibody for targeting the epidermal growth factor receptor, has become one of the standard treatments for metastatic colorectal cancer (mCRC). However, only a small proportion of patients respond to Cmab, and it has been reported that KRAS mutation is a negative biomarker of response to Cmab therapy. The aim of this study was to detect additional biomarkers of response to Cmab therapy in patients with mCRC. We evaluated the effects of Cmab therapy in 36 patients with mCRC according to the Response Evaluation Criteria in Solid Tumors, and classified patients who achieved complete response, partial response or stable disease as responders, and patients who achieved progressive disease as non-responders. We retrospectively examined the difference between the two groups using KRAS analysis and immunohistochemistry to determine the expression of E-cadherin, p53 and Ki67. Nineteen patients were responders, while 17 patients were non-responders. KRAS status and expression of E-cadherin were significantly correlated with the effect of Cmab therapy. Moreover, the expression of E-cadherin was significantly correlated with the effect of Cmab therapy in KRAS wild-type patients. In KRAS mutant-type patients, the expression of E-cadherin did not significantly correlate with the effect of Cmab therapy, but all responders with KRAS mutant-type tumors expressed E-cadherin. Our results indicate that the expression of E-cadherin detected by immunohistochemistry may be a positive predictor of Cmab-based therapy in mCRC, and that a combination of E-cadherin immunohistochemistry and KRAS analysis may be a more sensitive biomarker than KRAS analysis alone.
Collapse
Affiliation(s)
- Kentaro Nakamoto
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saito M, Tucker DK, Kohlhorst D, Niessen CM, Kowalczyk AP. Classical and desmosomal cadherins at a glance. J Cell Sci 2012; 125:2547-52. [PMID: 22833291 DOI: 10.1242/jcs.066654] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Masataka Saito
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
38
|
Thomas VT, Hinson S, Konduri K. Epithelial-mesenchymal transition in pulmonary carcinosarcoma: case report and literature review. Ther Adv Med Oncol 2012; 4:31-7. [PMID: 22229046 DOI: 10.1177/1758834011421949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pulmonary carcinosarcoma is a rare and aggressive neoplasm that has both epithelial and mesenchymal components. We report on a 63-year-old woman who was found to have a right upper-lobe pulmonary carcinosarcoma with metastases to the liver and gastric fundus. There are currently no published guidelines on the treatment of pulmonary sarcomatoid carcinomas. However, with our expanding knowledge of cancer metastasis, cases of carcinosarcoma illustrate our current understanding of epithelial-mesenchymal transition in action. Here, we discuss the development and treatment of these biphasic tumors and the possible role of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Vibha T Thomas
- Rocky Mountain Cancer Centers, Medical Oncology, 22 W. Dry Creek Cir Littleton, CO 80120, USA
| | | | | |
Collapse
|
39
|
Becker SF, Langhe R, Huang C, Wedlich D, Kashef J. Giving the right tug for migration: Cadherins in tissue movements. Arch Biochem Biophys 2012; 524:30-42. [DOI: 10.1016/j.abb.2012.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
|
40
|
The impact of E-cadherin expression on non-small cell lung cancer survival: a meta-analysis. Mol Biol Rep 2012; 39:9621-8. [DOI: 10.1007/s11033-012-1827-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 06/10/2012] [Indexed: 12/16/2022]
|
41
|
David JM, Rajasekaran AK. Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res 2012; 72:2917-23. [PMID: 22659456 DOI: 10.1158/0008-5472.can-11-3498] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Strong cell-cell interactions represent a major barrier against cancer cell mobility, and loss of intercellular adhesion by E-cadherin is a fundamental change that occurs during the progression of cancer to invasive disease. However, some aggressive carcinomas retain characteristics of differentiated epithelial cells, including E-cadherin expression. Emerging evidence indicates that proteolysis of E-cadherin generates fragments that promote tumor growth, survival, and motility, suggesting that E-cadherin cleavage converts this tumor suppressor into an oncogenic factor. In this review we discuss the emerging roles of cleaved E-cadherin fragments as modulators of cancer progression, and explore the translational and clinical implications of this research.
Collapse
Affiliation(s)
- Justin M David
- Department of Biological Sciences, University of Delaware, Newark, USA
| | | |
Collapse
|
42
|
EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation. Amino Acids 2012; 43:2027-35. [PMID: 22476347 PMCID: PMC3472071 DOI: 10.1007/s00726-012-1277-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.
Collapse
|
43
|
Bedzhov I, Liszewska E, Kanzler B, Stemmler MP. Igf1r signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin. PLoS Genet 2012; 8:e1002609. [PMID: 22479204 PMCID: PMC3315466 DOI: 10.1371/journal.pgen.1002609] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/05/2012] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor I receptor (Igf1r) signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation. In normal embryos total Igf1r is present throughout the membrane, whereas the activated form is found exclusively at cell contact sites, colocalizing with E-cadherin. Using genetic domain switching, we show a requirement for E-cadherin to maintain proper activation of Igf1r. Embryos expressing exclusively a cadherin chimera with N-cadherin extracellular and E-cadherin intracellular domains (NcEc) fail to form a trophectoderm and cells die by apoptosis. In contrast, homozygous mutant embryos expressing a reverse-structured chimera (EcNc) show trophectoderm survival and blastocoel cavitation, indicating a crucial and non-substitutable role of the E-cadherin ectodomain for these processes. Strikingly, blastocyst formation can be rescued in homozygous NcEc embryos by restoring Igf1r signaling, which enhances cell survival. Hence, perturbation of E-cadherin extracellular integrity, independent of its cell-adhesion function, blocked Igf1r signaling and induced cell death in the trophectoderm. Our results reveal an important and yet undiscovered function of Igf1r during preimplantation development mediated by a unique physical interaction between Igf1r and E-cadherin indispensable for proper receptor activation and anti-apoptotic signaling. We provide novel insights into how ligand-dependent Igf1r activity is additionally gated to sense developmental potential in utero and into a bifunctional role of adhesion molecules in contact formation and signaling. One of the most important steps during mammalian development is the formation of a blastocyst before implantation. Proper blastocyst development is fundamentally reliant on the function of the E-cadherin adhesion molecule, which cannot be replaced by another highly related member of the cadherin family. We have addressed the question of how E-cadherin unfolds its unique function during this central embryonic process. We generated mouse mutants that allow specific domain swapping of extra- and intracellular protein domains of E-cadherin with the corresponding portion of N-cadherin. Upon E-cadherin (Cdh1) depletion, apoptosis is induced in cells that are required to form the trophectoderm, the outer cells of a functional blastocyst. Uncoupling of the two E-cadherin domains demonstrated that specifically the presence of the extracellular domain is indispensable in providing essential survival cues. To establish a proper trophectoderm the insulin-like growth factor I receptor (Igf1r) is intimately connected to the E-cadherin–mediated suppression of apoptosis. By interaction of the two proteins Igf1r is efficiently activated to allow embryo survival, blastocyst formation, and implantation. This novel and adhesion-independent function of E-cadherin may serve as paradigm for bifunctionality of adhesion molecules and how they are particularly utilized to interpret signal transduction activities in specific cellular contexts.
Collapse
Affiliation(s)
| | | | | | - Marc P. Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail:
| |
Collapse
|
44
|
Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin's dark side: possible role in tumor progression. Biochim Biophys Acta Rev Cancer 2012; 1826:23-31. [PMID: 22440943 DOI: 10.1016/j.bbcan.2012.03.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023]
Abstract
In the context of cancer, E-cadherin has traditionally been categorized as a tumor suppressor, given its essential role in the formation of proper intercellular junctions, and its downregulation in the process of epithelial-mesenchymal transition (EMT) in epithelial tumor progression. Germline or somatic mutations in the E-cadherin gene (CDH1) or downregulation by epigenetic mechanisms have been described in a small subset of epithelial cancers. However, recent evidence also points toward a promoting role of E-cadherin in several aspects of tumor progression. This includes preserved (or increased) E-cadherin expression in microemboli of inflammatory breast carcinoma, a possible "mesenchymal to epithelial transition" (MET) in ovarian carcinoma, collective cell invasion in some epithelial cancers, a recent association of E-cadherin expression with a more aggressive brain tumor subset, as well as the intriguing possibility of E-cadherin involvement in specific signaling networks in the cytoplasm and/or nucleus. In this review we address a lesser-known, positive role for E-cadherin in cancer.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
45
|
Governing epidermal homeostasis by coupling cell-cell adhesion to integrin and growth factor signaling, proliferation, and apoptosis. Proc Natl Acad Sci U S A 2012; 109:4886-91. [PMID: 22411810 DOI: 10.1073/pnas.1202120109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherin/catenin-based adhesions coordinate cellular growth, survival, migration, and differentiation within a tissue by mechanically anchoring cells to their neighbors. They also intersect with diverse signaling pathways in development and cancer. Although the adhesive functions of adherens junction proteins are well characterized, their contribution to other signaling pathways is less well understood. Here, we show that ablation of α-catenin in the epidermis selectively induces apoptosis in suprabasal differentiating keratinocytes while sparing basal cell progenitors. This protection from death is coupled to elevated focal adhesion signaling, faster migration, and an altered distribution of growth factor receptors. We show that simultaneous depletion of α-catenin and focal adhesion kinase or p21-activated kinase eliminates basal cell protection as well as the elevated migration and proliferation of cells. The increased dependency of cells upon matrix interactions for their survival when cell-cell adhesions are destabilized has important implications for cancer progression and metastasis.
Collapse
|
46
|
Abstract
Cadherins are transmembrane receptors that function through calcium-dependent homophilic and heterophilic interactions that provide cell-cell contact and communication in many different organ systems. In the mammary gland only a few of the cadherins that make up this large superfamily of proteins have been characterized. Frequently in metastatic breast cancer, the genes for cadherins are epigenetically silenced, mutated, or regulated differently. During epithelial-mesenchymal transition, cadherins that are expressed normally in the epithelial cells are down-regulated, while cadherins expressed in the mesenchyme are up-regulated. This process is known as cadherin switching, and its regulation can sometimes facilitate the increased motility, invasiveness and proliferation that occurs in metastatic cancer cells. Depending on the context, however, cell motility, invasiveness, proliferation and expression of mesenchymal markers can be independently modulated from cadherin expression, leading to partial epithelial-mesenchymal transitions and even mesenchymal-epithelial transitions (METs). This review will summarize the current understanding of cadherins found in the mammary gland and what is known about their mechanism of regulation in the mammary gland during normal physiological conditions and in breast cancer.
Collapse
Affiliation(s)
- Jennifer L Andrews
- St Bonaventure University, Biology Department, William Walsh Science Building, #213, St Bonaventure, NY 14778, USA.
| | | | | |
Collapse
|
47
|
Abstract
The cadherin/catenin complex organizes to form a structural Velcro that joins the cytoskeletal networks of adjacent cells. Functional loss of this complex arrests the development of normal tissue organization, and years of research have gone into teasing out how the physical structure of adhesions conveys information to the cell interior. Evidence that most cadherin-binding partners also localize to the nucleus to regulate transcription supports the view that cadherins serve as simple stoichiometric inhibitors of nuclear signals. However, it is also clear that cadherin-based adhesion initiates a variety of molecular events that can ultimately impact nuclear signaling. This chapter discusses these two modes of cadherin signaling in the context of tissue growth and differentiation.
Collapse
|
48
|
New Insights into the Regulation of E-cadherin Distribution by Endocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:63-108. [DOI: 10.1016/b978-0-12-394306-4.00008-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Clinical Implications and Quality Assurance of Molecular Testing for EGFR-Targeting Agents in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2011. [DOI: 10.1007/s11888-011-0112-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Bi X, Pohl NM, Qian Z, Yang GR, Gou Y, Guzman G, Kajdacsy-Balla A, Iozzo RV, Yang W. Decorin-mediated inhibition of colorectal cancer growth and migration is associated with E-cadherin in vitro and in mice. Carcinogenesis 2011; 33:326-30. [PMID: 22159220 DOI: 10.1093/carcin/bgr293] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that decorin expression is significantly reduced in colorectal cancer tissues and cancer cells, and genetic deletion of the decorin gene is sufficient to cause intestinal tumor formation in mice, resulting from a downregulation of p21, p27(kip1) and E-cadherin and an upregulation of β-catenin signaling [Bi,X. et al. (2008) Genetic deficiency of decorin causes intestinal tumor formation through disruption of intestinal cell maturation. Carcinogenesis, 29, 1435-1440]. However, the regulation of E-cadherin by decorin and its implication in cancer formation and metastasis is largely unknown. Using a decorin knockout mouse model (Dcn(-/-) mice) and manipulated expression of decorin in human colorectal cancer cells, we found that E-cadherin, a protein that regulates cell-cell adhesion, epithelial-mesenchymal transition and metastasis, was almost completely lost in Dcn(-/-) mouse intestine, and loss of decorin and E-cadherin accelerated colon cancer cell growth and invasion in Dcn(-/-) mice. However, increasing decorin expression in colorectal cancer cells attenuated cancer cell malignancy, including inhibition of cancer cell proliferation, promotion of apoptosis and importantly, attenuation of cancer cell migration. All these changes were linked to the regulation of E-cadherin by decorin. Moreover, overexpression of decorin upregulated E-cadherin through increasing of E-cadherin protein stability as E-cadherin messenger RNA and promoter activity were not affected. Co-immunoprecipitation assay showed a physical binding between decorin and E-cadherin proteins. Taken together, our results provide direct evidence that decorin-mediated inhibition of colorectal cancer growth and migration are through the interaction with and stabilization of E-cadherin.
Collapse
Affiliation(s)
- Xiuli Bi
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | | | | | | | | | | | | | | | | |
Collapse
|