1
|
de Bruin CR, de Bruijn WJC, Hemelaar MA, Vincken JP, Hennebelle M. Separation of triacylglycerol (TAG) isomers by cyclic ion mobility mass spectrometry. Talanta 2025; 281:126804. [PMID: 39243443 DOI: 10.1016/j.talanta.2024.126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Triacylglycerols (TAGs), a major lipid class in foods and the human body, consist of three fatty acids esterified to a glycerol backbone. They can occur in various isomeric forms, including sn-positional, cis/trans configurational, acyl chain length, double bond positional, and mixed type isomers. Separating isomeric mixtures is of great interest as different isomers can have distinct influence on mechanisms, such as digestibility, oxidative stability, or lipid metabolism. However, TAG isomer separation remains challenging with established analytical methodologies such as liquid-chromatography coupled to mass spectrometry (LC-MS). In this study, we developed a method with cyclic ion mobility mass spectrometry (cIMS-MS) for the separation and identification of all types of TAG isomers. First, the influence of different adducts (Li+, NH4+, Na+, and K+) on the separation was studied. Overall, it was concluded that the sodium adduct is the best choice to efficiently separate all types of TAG isomers. In addition, trends were found in the influence of specific structural features on the drift time order. An order of relative influence (from high to low) was established; (1) degree of unsaturation of the fatty acid(s) on an exterior position (if the total degree of unsaturation(s) is equal in both TAGs), (2) acyl chain length on the exterior positions, (3) cis/trans configuration, and (4) double bond (DB)-position. Finally, various cIMS-MS strategies were developed for the separation of mixtures containing four, five, and six isomers. To conclude, the developed methods can be used for separation of complex mixtures of TAG isomers and have great potential to be expanded to isomers of similar types of lipids such as di- and monoacylglycerols. This study also shows the potential of cIMS-MS to be used for the application on real TAG samples.
Collapse
Affiliation(s)
- Carlo R de Bruin
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Mirjam A Hemelaar
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Pariyani R, Zhang Y, Haraldsson GG, Chen K, Linderborg KM, Yang B. Metabolomic Investigation of Brain and Liver in Rats Fed Docosahexaenoic Acid in Regio- and Enantiopure Triacylglycerols. Mol Nutr Food Res 2024; 68:e2300341. [PMID: 38396161 DOI: 10.1002/mnfr.202300341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/30/2023] [Indexed: 02/25/2024]
Abstract
SCOPE N-3 polyunsaturated fatty acids (n-3 PUFAs) play important roles in cognitive functions. However, there is a lack of knowledge on the metabolic impact of regio- and stereo-specific positioning of n-3 PUFAs in dietary triacylglycerols. METHODS AND RESULTS Rats in a state of mild n-3 PUFA deficiency are fed daily with 360 mg triacylglycerols containing DHA (docosahexaenoic acid) at sn (stereospecific numbering)-1, 2, or 3 positions and 18:0 at remaining positions, or an equal amount of tristearin for 5 days. Groups fed with n-3 deficient diet and normal n-3 adequate diet are included as controls. The metabolic profiles of the brain and liver are studied using NMR (nuclear magnetic resonance)-based metabolomics. Several metabolites of significance in membrane integrity and neurotransmission, and glutamate, in particular, are significantly lower in the brain of the groups fed with sn-1 and sn-3 DHA compared to the sn-2 DHA group. Further, the tristearin and DHA groups show a lower lactate level compared to the groups fed on normal or n-3 deficient diet, suggesting a prominent role of C18:0 in regulating energy metabolism. CONCLUSION This study sheds light on the impact of stereospecific positioning of DHA in triacylglycerols and the role of dietary stearic acid on metabolism in the brain and liver.
Collapse
Affiliation(s)
- Raghunath Pariyani
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University, Beijing, 100191, China
| | | | - Kang Chen
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
3
|
Hokkanen S, Frey AD, Yang B, Linderborg KM. Similarity Index for the Fat Fraction between Breast Milk and Infant Formulas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6191-6201. [PMID: 35543583 PMCID: PMC9136929 DOI: 10.1021/acs.jafc.1c08029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The similarity of the fat fraction in infant formulas rich in either bovine milk fat (MF) or vegetable oil (VO) to breast milk was evaluated by analyzing their lipid composition. Milk fat-rich formulas were highly similar (average similarity index 0.68) to breast milk compared to the VO-rich formulas (average similarity index 0.56). The highest difference in the indices was found in the contents of cholesterol (0.66 vs 0.28 in MF- and VO-rich formulas, respectively, on average) and polar lipids (0.84 vs 0.53), the positional distribution of fatty acids in the sn-2 position of triacylglycerols (0.53 vs 0.28), and fatty acid composition (0.72 vs 0.54). The VO-based formulas were superior in similarity in n - 6 PUFA. Thus, the addition of bovine MF fractions is an effective way to increase the similarity between the lipid composition of infant formulas and human milk.
Collapse
Affiliation(s)
- Sanna Hokkanen
- Molecular
Biotechnology, Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Alexander D. Frey
- Molecular
Biotechnology, Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| | - Kaisa M. Linderborg
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| |
Collapse
|
4
|
Kalpio M, Linderborg KM, Fabritius M, Kallio H, Yang B. Strategy for stereospecific characterization of natural triacylglycerols using multidimensional chromatography and mass spectrometry. J Chromatogr A 2021; 1641:461992. [PMID: 33706165 DOI: 10.1016/j.chroma.2021.461992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Stereoisomeric determination of individual triacylglycerols (TAGs) in natural oils and fats is a challenge due to similar physicochemical properties of TAGs with different fatty acid combinations. In this study, we present a strategy to resolve the enantiomeric composition of nutritionally important TAGs in sea buckthorn (Hippophaë rhamnoides) as an example food matrix. The targeted strategy combines 1) fatty acid profiling with GC, 2) separation of TAGs with RP-HPLC, 3) stereospecific separation with chiral-phase HPLC and 4) structural characterization with MS. Three major asymmetric diacid- and triacid-TAG species were analyzed in sea buckthorn pulp oil. Off-line coupling of RP-HPLC and chiral-phase HPLC allowed separation of several TAG regioisomers and enantiomers, which could not be resolved using one-dimensional techniques. Enantiomeric ratios were determined and specific structural analysis of separated TAGs was performed using direct inlet ammonia negative ion chemical ionization method. Of the TAG 16:0/16:1/16:1 palmitic acid (C16:0) was located predominantly in a primary position and the enantiomeric ratio of TAG sn-16:1-16:1-16:0 to sn-16:0-16:1-16:1 was 70.5/29.5. Among the TAGs 16:0/16:0/18:2 and 16:0/16:0/16:1, only ca 5% had C16:0 in the sn-2 position, thus, ca 95% were symmetric sn-16:0-18:2-16:0 and sn-16:0-16:1-16:0. The enantiomeric ratio of triacid-TAGs containing C16:0 and two unsaturated fatty acids (palmitoleic C16:1, oleic C18:1 or linoleic acids C18:2) could not be resolved due to lack of commercial enantiopure reference compounds. However, it became clear that the targeted strategy presented offer unique and convenient method to study the enantiomeric structure of individual TAGs.
Collapse
Affiliation(s)
- Marika Kalpio
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Mikael Fabritius
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
5
|
West AL, Michaelson LV, Miles EA, Haslam RP, Lillycrop KA, Georgescu R, Han L, Sayanova O, Napier JA, Calder PC, Burdge GC. Differential postprandial incorporation of 20:5n-3 and 22:6n-3 into individual plasma triacylglycerol and phosphatidylcholine molecular species in humans. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158710. [PMID: 32289503 DOI: 10.1016/j.bbalip.2020.158710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 11/17/2022]
Abstract
The mechanisms by which digested fat is absorbed and transported in the circulation are well documented. However, it is uncertain whether the molecular species composition of dietary fats influences the molecular species composition of meal-derived lipids in blood. This may be important because enzymes that remove meal-derived fatty acids from the circulation exhibit differential activities towards individual lipid molecular species. To determine the effect of consuming oils with different molecular compositions on the incorporation of 20:5n-3 and 22:6n-3 into plasma lipid molecular species. Men and women (18-30 years) consumed standardised meals containing 20:5n-5 and 22:6n-3 (total 450 mg) provided by an oil from transgenic Camelina sativa (CSO) or a blended fish oil (BFO) which differed in the composition of 20:5n-3 and 22:6n-3 - containing molecular species. Blood was collected during the subsequent 8 h. Samples were analysed by liquid chromatography-mass spectrometry. The molecular species composition of the test oils was distinct from the composition of plasma triacylglycerol (TG) or phosphatidylcholine (PC) molecular species at baseline and at 1.5 or 6 h after the meal. The rank order by concentration of both plasma PC and TG molecular species at baseline was maintained during the postprandial period. 20:5n-3 and 22:6n-3 were incorporated preferentially into plasma PC compared to plasma TG. Together these findings suggest that the composition of dietary lipids undergoes extensive rearrangement after absorption, such that plasma TG and PC maintain their molecular species composition, which may facilitate lipase activities in blood and/or influence lipoprotein structural stability and function.
Collapse
Affiliation(s)
- Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Richard P Haslam
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Ramona Georgescu
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Lihua Han
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Olga Sayanova
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
6
|
Linderborg KM, Kulkarni A, Zhao A, Zhang J, Kallio H, Magnusson JD, Haraldsson GG, Zhang Y, Yang B. Bioavailability of docosahexaenoic acid 22:6(n-3) from enantiopure triacylglycerols and their regioisomeric counterpart in rats. Food Chem 2019; 283:381-389. [PMID: 30722887 DOI: 10.1016/j.foodchem.2018.12.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 01/14/2023]
Abstract
Lack of synthetic enantiospecific triacylglycerols (TAGs) has hindered our understanding of the impact of TAG structure on the absorption and metabolic fate of fatty acids (FAs). In a five-day feeding trial with mildly (n-3) deficient rats, the bioavailability of docosahexaenoic acid [22:6(n-3), DHA] and stearic acid (18:0) from the two different enantiomers of TAG: sn-22:6(n-3)-18:0-18:0 and sn-18:0-18:0-22:6(n-3), and their regioisomeric TAG: sn-18:0-22:6(n-3)-18:0 was compared. Less secretion of fecal DHA was detected from the sn-2 position compared with the sn-1 and sn-3 positions, but no difference was found in DHA content of the fasting plasma or in the weight of the body or organs. 18:0 was lost to feces mainly as cleaved from the primary positions but also as glycerol-bound. The 5-day intervention in rats was long enough to modify the fatty acid profile of plasma phospholipids.
Collapse
Affiliation(s)
- Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Amruta Kulkarni
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Ai Zhao
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jian Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | | | | | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China.
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland.
| |
Collapse
|
7
|
Zhang J, Qian L, Teng M, Mu X, Qi S, Chen X, Zhou Y, Cheng Y, Pang S, Li X, Wang C. The lipid metabolism alteration of three spirocyclic tetramic acids on zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:715-725. [PMID: 30849589 DOI: 10.1016/j.envpol.2019.02.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Spirocyclic tetramic acids are widely used in controlling phytophagous mite species throughout the world. the data set is incomplete and provides insufficient evidence for drawing the same conclusion for fish. To fill the gap whether these acaricides alter lipid metabolism on vertebrates, zebrafish embryos exposed to a series concentration of pesticides, the developmental effects, enzyme activities and levels of gene expression were assessed, battery of biomarker utilized by the integrated biomarker response (IBRv2) model. The 96 h-LC50 of spirodiclofen, spiromesifen and spirotetramat were 0.14, 0.12 and 5.94 mg/L, respectively. Yolk sac deformity, pericardial edema, spinal curvature and tail malformation were observed. Three spirocyclic acids were unfavouring the lipid accumulation of by inhibited the acetyl-CoA carboxylase (ACC), fatty acid synthesis (FAS), fatty acid binding proteins (FABP2) and lipoprotein lipase (LPL) activity. The total cholesterol (TCHO) level significantly decreased in the 0.072 mg/L spirodiclofen group and 0.015 and 0.030 mg/L in the spiromesifen groups. No expected change in spirotetramat group on the TCHO and triglycerides (TGs) levels for any of the treatments. The mRNA levels of the genes related to lipid metabolism also significantly altered. In both spirodiclofen and spiromesifen, ACC achieved the highest scores among a battery of biomarkers using integrated biomarker response (IBRv2). The results suggest that spiromesifen was the most toxic for embryos development and spirodiclofen was the most toxic for lipid metabolism in embryos. The 0.07 mg/L of spirodiclofen, 0.05 mg/L of spiromesifen and 2.00 mg/L would cause malformation on zebrafish embryos. This study will provide new insight that fatty acid metabolism may be a suitable biomarker for the spirocyclic tetramic acids in fish species.
Collapse
Affiliation(s)
- Jie Zhang
- College of Sciences, China Agricultural University, Beijing, China
| | - Le Qian
- College of Sciences, China Agricultural University, Beijing, China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, Beijing, China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xiangguang Chen
- College of Sciences, China Agricultural University, Beijing, China
| | - Yimeng Zhou
- College of Sciences, China Agricultural University, Beijing, China
| | - Yi Cheng
- College of Sciences, China Agricultural University, Beijing, China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Wang X, Wang T, Spurlock ME, Wang X. Effects of triacylglycerol structure and solid fat content on fasting responses of mice. Eur J Nutr 2015; 55:1545-53. [DOI: 10.1007/s00394-015-0972-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/18/2015] [Indexed: 01/06/2023]
|
9
|
Kalpio M, Nylund M, Linderborg KM, Yang B, Kristinsson B, Haraldsson GG, Kallio H. Enantioselective chromatography in analysis of triacylglycerols common in edible fats and oils. Food Chem 2015; 172:718-24. [DOI: 10.1016/j.foodchem.2014.09.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
10
|
Vilarrasa E, Tres A, Bayés-García L, Parella T, Esteve-Garcia E, Barroeta AC. Re-esterified palm oils, compared to native palm oil, do not alter fat absorption, postprandial lipemia or growth performance in broiler chicks. Lipids 2014; 49:795-805. [PMID: 24934588 PMCID: PMC4107283 DOI: 10.1007/s11745-014-3920-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/29/2014] [Indexed: 12/02/2022]
Abstract
Re-esterified palm oils are obtained from the chemical esterification of palm acid oils (rich in free fatty acids) with glycerol, both economically interesting by-products from oil refining and biodiesel industries, respectively. Thus, re-esterified palm oils could be an economically interesting alternative to native palm oil in broiler chick diets. However, because they may have different physicochemical properties than have their corresponding native oil, we assessed the effect of fatty acid (FA) positional distribution within acylglycerol molecules and the effect of acylglycerol composition on FA apparent absorption, and their possible consequences on the evolution of postprandial lipemia and growth performance in broiler chicks. Seventy-two 1-day-old female broiler chicks were randomly distributed into 18 cages. The three treatments used were the result of a basal diet supplemented with 6 wt% of native palm oil (N-TAG), re-esterified palm oil (E-TAG), or re-esterified palm oil high in mono- and diacylglycerols (E-MDAG). Chemical esterification raised the fraction of palmitic acid at the sn-2 position from 9.63 mol% in N-TAG oil to 17.9 mol% in E-TAG oil. Furthermore, E-MDAG oil presented a high proportion of mono- (23.1 wt%) and diacylglycerols (51.2 wt%), with FA mainly located at the sn-1,3 positions, which resulted in a lower gross-energy content and an increased solid-fat index at the chicken’s body temperature. However, re-esterified palm oils did not alter fat absorption, postprandial lipemia, or growth performance, compared to native palm oil, so they can be used as alternative fat sources in broiler chick diets.
Collapse
Affiliation(s)
- E Vilarrasa
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain,
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Fragua V, Vilarrasa E, Manzanilla EG, Villaverde C, Barroeta AC. Comparison of postprandial lipaemia between native and palm random esterified acid oils in two different monogastric species (dogs and broiler chickens). J Anim Physiol Anim Nutr (Berl) 2013; 97 Suppl 1:74-9. [PMID: 23639020 DOI: 10.1111/jpn.12066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/02/2013] [Indexed: 11/28/2022]
Abstract
It has been reported that applying a chemical reesterification process to a native fat results in a new fat source with different physicochemical properties due to their different fatty acid (FA) positional distribution within the glycerol moiety and their different proportions of mono (MAG)-, di (DAG)- and triacylglycerides (TAG). Thus, this reesterification could affect fat digestion, absorption and metabolism; and this effect could vary among species given their differences in fat metabolism. The aim of this study was to compare the effect of feeding two different random esterified acid oils (REAO), presenting different MAG, DAG and TAG proportions, with their corresponding native oil on postprandial lipaemia in broiler chickens and dogs. For this purpose, 18 dogs and 54 broiler chickens were fed a basal diet supplemented with palm native oil, palm REAO low MAG or palm REAO high MAG. The inclusion level of the oils was 10% of the diet in dogs and 6% in broiler chickens. Serum postprandial TAG concentration (mg/dl) after feeding a single meal was measured at different time points during 12 h in dogs and 3 h in chickens. Although fasting serum TAG concentration values were similar for both species (47 ± 2.4 mg/dl for dogs and 44 ± 3.0 mg/dl for broilers; p = 0.522), postprandial TAG concentrations tended to be higher in broilers than in dogs (p = 0.058). Treatment had no effect on TAG concentration at any time point in any species (p = 0.768 for dogs, p = 0.947 for broilers). However, the postprandial TAG curves were very different between species; in broiler chickens, TAG concentration returned to the fasting values 3 h after feeding while in dogs, the TAG concentration still had not returned to basal levels 12 h after feeding.
Collapse
Affiliation(s)
- V Fragua
- Grup de Nutrició, Maneig i Benestar Animal, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Philippaerts A, Jacobs PA, Sels BF. Hat die Hydrierung von Pflanzenölen noch eine Zukunft? Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Philippaerts A, Jacobs PA, Sels BF. Is there still a Future for Hydrogenated Vegetable Oils? Angew Chem Int Ed Engl 2013; 52:5220-6. [DOI: 10.1002/anie.201209731] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/04/2013] [Indexed: 12/29/2022]
|
15
|
Philippaerts A, Breesch A, De Cremer G, Kayaert P, Hofkens J, Van den Mooter G, Jacobs P, Sels B. Physical Properties of Nutritive Shortenings Produced from Regioselective Hardening of Soybean Oil with Pt Containing Zeolite. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1878-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Philippaerts A, Goossens S, Jacobs PA, Sels BF. Catalytic production of conjugated fatty acids and oils. CHEMSUSCHEM 2011; 4:684-702. [PMID: 21634014 DOI: 10.1002/cssc.201100086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Indexed: 05/30/2023]
Abstract
The reactive double bonds in conjugated vegetable oils are of high interest in industry. Traditionally, conjugated vegetable oils are added to paints, varnishes, and inks to improve their drying properties, while recently there is an increased interest in their use in the production of bioplastics. Besides the industrial applications, also food manufactures are interested in conjugated vegetable oils due to their various positive health effects. While the isomer type is less important for their industrial purposes, the beneficial health effects are mainly associated with the c9,t11, t10,c12 and t9,t11 CLA isomers. The production of CLA-enriched oils as additives in functional foods thus requires a high CLA isomer selectivity. Currently, CLAs are produced by conjugation of oils high in linoleic acid, for example soybean and safflower oil, using homogeneous bases. Although high CLA productivities and very high isomer selectivities are obtained, this process faces many ecological drawbacks. Moreover, CLA-enriched oils can not be produced directly with the homogeneous bases. Literature reports describe many catalytic processes to conjugate linoleic acid, linoleic acid methyl ester, and vegetable oils rich in linoleic acid: biocatalysts, for example enzymes and cells; metal catalysts, for example homogeneous metal complexes and heterogeneous catalysts; and photocatalysts. This Review discusses state-of-the-art catalytic processes in comparison with some new catalytic production routes. For each category of catalytic process, the CLA productivities and the CLA isomer selectivity are compared. Heterogeneous catalysis seems the most attractive approach for CLA production due to its easy recovery process, provided that the competing hydrogenation reaction is limited and the CLA production rate competes with the current homogeneous base catalysis. The most important criteria to obtain high CLA productivity and isomer selectivity are (1) absence of a hydrogen donor, (2) absence of catalyst acidity, (3) high metal dispersion, and (4) highly accessible pore architecture.
Collapse
Affiliation(s)
- An Philippaerts
- Department M2S, K.U. Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
| | | | | | | |
Collapse
|