1
|
Zhao F, Chen Y, Dong A, Song K. Experimental study of radial extracorporeal shock wave therapy for periprosthetic osteolysis induced by wear particles. J Orthop Surg Res 2025; 20:282. [PMID: 40083028 PMCID: PMC11908048 DOI: 10.1186/s13018-025-05661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Radial Extracorporeal Shock Wave Therapy (rESWT) is applied as a conservative treatment modality in orthopedics, yet its effectiveness in addressing aseptic loosening of cementless joint prostheses remains unclear. Through animal experimentation, we have revealed that in a titanium particle-induced osteolysis rat model, rESWT intervention significantly increased periprosthetic bone density compared to untreated controls, concurrently reducing osteolytic lesion area and lowering serum IL-1β levels. Histological analyses demonstrated a relative decrease in osteoclast counts within the treatment group versus non-treated controls. These findings indicate that rESWT, through mechanisms involving anti-inflammatory actions and suppression of osteoclastogenesis, may serve as a non-invasive therapeutic strategy for preventing and managing periprosthetic bone loss, demonstrating clinical potential to delay or eliminate the necessity for revision surgeries.
Collapse
Affiliation(s)
| | - Yufei Chen
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ao Dong
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Keguan Song
- First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Xing J, Yu G, Xiang Y, Xu H, Liu Z, Bai Z. Effect of low energy shock wave on testicular microenvironment homeostasis in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113710. [PMID: 35679733 DOI: 10.1016/j.ecoenv.2022.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To further investigate whether two sets of low-energy extracorporeal shock waves (LESWs) impulse parameters, i.e., 0.02 mJ/mm2 for 500 impulses and 0.04 mJ/mm2 for 500 impulses, which have been shown to directly affect the testes, can promote testicular spermatogenesis or positively regulate homeostasis of the testicular microenvironment. METHODS (1) Twenty-four experimental rats were randomly divided into a 0.02 mJ/mm2 500 impulses group (L1 group), a 0.04 mJ/mm2 500 impulses group (M1 group), a sham intervention group (S group) and a blank control group (N group). The experiment period was 8 weeks. (2) Apoptosis of the spermatogenic cells in the left testicle was detected by the TUNEL method, VEGF and eNOs protein expression was detected by immunohistochemistry, and histomorphological changes were observed in PAS-stained sections. Moreover, the morphologies of the spermatogenic tubules and testicular stroma were quantitatively analyzed by stereological analysis. The right testicle was used for Western blot detection of the protein expression levels of Bax, Cytochrome C, Caspase-3, Bcl-2, VEGF and eNOs. RESULTS Compared with the other three groups, the rate of M1 testicular germ cell apoptosis induced by shock treatment was higher, the expression levels of proapoptotic proteins increased significantly while that of the antiapoptotic protein was lower, and the suppression of cell proliferation correlated with the protein expression levels. Additionally, with respect to the absolute volume of the seminiferous tubules, the absolute interstitial testicular volume notably increased, producing a series of biological effects working against testicular sperm production and function. However, there was no significant difference between the L1 group and the N and S groups. CONCLUSIONS LESWs treatment with impulse parameters of 0.02 mJ/mm2 for 500 impulses showed a better protective effect on testicular spermatic function in rats and has a positive regulatory biological effect.
Collapse
Affiliation(s)
- Jiansheng Xing
- Department of Urology and Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China.
| | - Gang Yu
- Department of Urology, Renmin Hospital of Wuhan University Hubei General Hospital, Wuhan 430060, Hubei Province, China
| | - Yang Xiang
- Department of Urology and Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Haixia Xu
- Department of Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Zhenxiang Liu
- Department of Urology and Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Zhiming Bai
- Department of Urology and Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China.
| |
Collapse
|
3
|
Pirri C, Fede C, Petrelli L, De Rose E, Biz C, Guidolin D, De Caro R, Stecco C. Immediate Effects of Extracorporeal Shock Wave Therapy in Fascial Fibroblasts: An In Vitro Study. Biomedicines 2022; 10:biomedicines10071732. [PMID: 35885037 PMCID: PMC9312511 DOI: 10.3390/biomedicines10071732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
Extracorporeal shock waves (ESWs) are used in the treatment of soft tissue injuries, but their role in the treatment of myofascial pain has not yet been demonstrated. The aim of this study was to investigate changes in cell biology of fibroblasts derived from deep/muscular fascia following treatment with ESWs. Primary fascial fibroblasts were collected from small samples of human fascia lata of the thigh of three volunteer patients (two men, one woman) during orthopedic surgery, and put in culture. These cells were exposed to 100 impulses of 0.05 mJ/mm2 with a frequency of 2.5 Hz, using 3D-printed support. This study demonstrated for the first time that ESWs can lead to in vitro production of hyaluronan-rich vesicles immediately after the treatment. At 1, 4, and 24 h after treatment, Alcian blue and Toluidine blue staining; immunocytochemistry to detect hyaluronic acid binding protein (HABP), collagen I, and collagen III; and transmission electron microscopy demonstrated that these vesicles are rich in hyaluronan and collagen I and III. The diameter of these vesicles was assessed, highlighting a small size at 1 h after ESW treatment, whereas at 4 and 24 h, they had an increase in the size. Particularly evident was the release of hyaluronan-rich vesicles, collagen-I, and collagen-III starting at 1 h, with an increase at 4 h and maintenance by 24 h. These in vitro data indicate that fascial cells respond to ESW treatment by regulating and remodeling the formation of extracellular matrix.
Collapse
Affiliation(s)
- Carmelo Pirri
- Institute of Humana Anatomy, Department of Neurosciences, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (E.D.R.); (D.G.); (R.D.C.)
- Correspondence: (C.P.); (C.S.)
| | - Caterina Fede
- Institute of Humana Anatomy, Department of Neurosciences, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (E.D.R.); (D.G.); (R.D.C.)
| | - Lucia Petrelli
- Institute of Humana Anatomy, Department of Neurosciences, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (E.D.R.); (D.G.); (R.D.C.)
| | - Enrico De Rose
- Institute of Humana Anatomy, Department of Neurosciences, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (E.D.R.); (D.G.); (R.D.C.)
| | - Carlo Biz
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35128 Padua, Italy;
| | - Diego Guidolin
- Institute of Humana Anatomy, Department of Neurosciences, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (E.D.R.); (D.G.); (R.D.C.)
| | - Raffaele De Caro
- Institute of Humana Anatomy, Department of Neurosciences, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (E.D.R.); (D.G.); (R.D.C.)
| | - Carla Stecco
- Institute of Humana Anatomy, Department of Neurosciences, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (E.D.R.); (D.G.); (R.D.C.)
- Correspondence: (C.P.); (C.S.)
| |
Collapse
|
4
|
Wuerfel T, Schmitz C, Jokinen LLJ. The Effects of the Exposure of Musculoskeletal Tissue to Extracorporeal Shock Waves. Biomedicines 2022; 10:biomedicines10051084. [PMID: 35625821 PMCID: PMC9138291 DOI: 10.3390/biomedicines10051084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Extracorporeal shock wave therapy (ESWT) is a safe and effective treatment option for various pathologies of the musculoskeletal system. Many studies address the molecular and cellular mechanisms of action of ESWT. However, to date, no uniform concept could be established on this matter. In the present study, we perform a systematic review of the effects of exposure of musculoskeletal tissue to extracorporeal shock waves (ESWs) reported in the literature. The key results are as follows: (i) compared to the effects of many other forms of therapy, the clinical benefit of ESWT does not appear to be based on a single mechanism; (ii) different tissues respond to the same mechanical stimulus in different ways; (iii) just because a mechanism of action of ESWT is described in a study does not automatically mean that this mechanism is relevant to the observed clinical effect; (iv) focused ESWs and radial ESWs seem to act in a similar way; and (v) even the most sophisticated research into the effects of exposure of musculoskeletal tissue to ESWs cannot substitute clinical research in order to determine the optimum intensity, treatment frequency and localization of ESWT.
Collapse
|
5
|
Buarque de Gusmão CV, Batista NA, Vidotto Lemes VT, Maia Neto WL, de Faria LD, Alves JM, Belangero WD. Effect of Low-Intensity Pulsed Ultrasound Stimulation, Extracorporeal Shockwaves and Radial Pressure Waves on Akt, BMP-2, ERK-2, FAK and TGF-β1 During Bone Healing in Rat Tibial Defects. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2140-2161. [PMID: 31101448 DOI: 10.1016/j.ultrasmedbio.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/24/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
An experimental study was conducted to determine whether low-intensity pulsed ultrasound stimulation (LIPUS), extracorporeal shockwave treatment (ESWT) and radial pressure wave treatment (RPWT) modulate Akt, bone morphogenetic protein-2 (BMP-2), extracellular signal-regulated kinase-2 (ERK-2), focal adhesion kinase (FAK) and transforming growth factor-β1 (TGF-β1) during bone healing in rat tibial defects. Rat tibial defects were exposed to 500 shots of ESWT delivered at 0.12 mJ/mm2, 500 impulses of RPWT operated at 2.0 bar or to daily 20-min 30 mW/cm2 LIPUS. Following 1, 3 and 6 wk, bones were harvested to determine the expression and activity of Akt, BMP-2, ERK-2, FAK and TGF-β1. Animals exposed to ultrasound were followed up to 3 wk. Protein expression and activity were unchanged following LIPUS treatment. ESWT increased Akt activity 2.11-fold (p = 0.043) and TGF-β1 expression 9.11-fold (p = 0.016) at 1 wk and increased FAK activity 2.16-fold (p = 0.047) at 3 wk. RPWT increased FAK activity 2.6-fold (p = 0.028) at 3 wk and decreased Akt expression 0.52-fold (p = 0.05) at 6 wk. In conclusion, the protocols employed for ESWT and RPWT modulated distinct signaling pathways during fracture healing, while LIPUS standard protocol did not change the usual signaling pathways of the proteins investigated. Future studies are required to monitor osteogenesis so that the biologic meaning of our results can be clarified.
Collapse
Affiliation(s)
- Carlos Vinícius Buarque de Gusmão
- Department of Orthopedics and Traumatology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Nilza Alzira Batista
- Department of Orthopedics and Traumatology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valeria Trombini Vidotto Lemes
- Department of Orthopedics and Traumatology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wilson Leite Maia Neto
- Department of Orthopedics and Traumatology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lidia Dornelas de Faria
- Department of Orthopedics and Traumatology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Marcos Alves
- Electrical Engineering Department, College of Engineering of São Carlos, University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - William Dias Belangero
- Department of Orthopedics and Traumatology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Cheng JH, Wang CJ, Su SH, Huang CY, Hsu SL. Next-generation sequencing identifies articular cartilage and subchondral bone miRNAs after ESWT on early osteoarthritis knee. Oncotarget 2018; 7:84398-84407. [PMID: 27542282 PMCID: PMC5356668 DOI: 10.18632/oncotarget.11331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Extracorporeal shockwave therapy (ESWT) has shown chondroprotective effects on the initiation of the osteoarthritis (OA) changes of the rat knee. This study evaluated 69 significant expressed profiles of microRNA (miRNA) in the articular cartilage and subchondral bone after ESWT. There were 118 target genes identified for miRNAs of interest in articular cartilage and 214 target genes in subchondral bone by next generation sequencing (NGS). In principal component analysis (PCA), the relationships of miRNA expression in bone and cartilage were improved after ESWT. Global functional annotation showed that predicted targets were involved in cartilage development, inflammatory and immune response, ion binding, angiogenesis, cell adhesion, cell cycle, transcription and translation, gene expression, NTP binding, signal transduction, collagen fibril organization, apoptotic process, chondrocyte differentiation, cell differentiation, bone development as well as cell proliferation. The miRNAs profile and the target genes were comprehensively surveyed and compared in articular cartilage and subchondral bone of early OA knee before and after ESWT. Our study represents the direct assessment to date of miRNA expression profiling in early OA articular cartilage and subchondral bone. The results provide insights that could contribute to the development of new biomarkers and therapeutic strategies for OA changes and the treatment with ESWT.
Collapse
Affiliation(s)
- Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Jen Wang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shi-Hao Su
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Yiu Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shan-Ling Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Martini L, Giavaresi G, Fini M, Torricelli P, Borsari V, Giardino R, De Pretto M, Remondini D, Castellani GC. Shock Wave Therapy as an Innovative Technology in Skeletal Disorders: Study on Transmembrane Current in Stimulated Osteoblast-Like Cells. Int J Artif Organs 2018; 28:841-7. [PMID: 16211535 DOI: 10.1177/039139880502800810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extracorporeal shock wave treatment (ESWT) is successfully used in various musculoskeletal disorders and pathologies. Despite the increasing use of this kind of therapy, some aspects of its mechanism of action are still unclear. In vitro bone cell behavior under ESWT were previously investigated by the present author and MG63 osteoblast-like cells showed an enhancement in proliferation and in the osteoblast differentiation after therapy with a low-energy flux density. The aim of the present study was to evaluate the effect of ESWT on the permeabilization of cell membrane. We characterized physiological changes in the MG63 associated with ESWT generated by an ESW device and patch clamp recording was performed to study ion channels. Experiments were carried out using the whole-cell recording configuration of the patch-clamp technique and the ionic current measurements were performed on cell samples of ESW treated and control groups. The patch-clamp technique showed the effect of ESWT on the amplitude of transmembrane currents. The treatment with ESW enhanced the transmembrane current as well the voltage dependence of Ca-activated and K channels that mediate these currents: the differences between treated cells and control at 80mV were over 1000 pA (P<0.05). These modifications of ion channels activity positively influence cell proliferation (MTT test, P<0.0001) without interfering with the normal synthesis activity of stimulated osteoblasts.
Collapse
Affiliation(s)
- L Martini
- Experimental Surgery Department, Research Institute Codivilla-Putti, Rizzoli Orthopedic Institute, Via de Barbiano 1/10, 4-136 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Radial shockwave therapy for a painful bone spur in an above-knee amputee. Ann Phys Rehabil Med 2017; 60:357-359. [DOI: 10.1016/j.rehab.2017.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 11/24/2022]
|
9
|
Wang HJ, Cheng JH, Chuang YC. Potential applications of low-energy shock waves in functional urology. Int J Urol 2017; 24:573-581. [PMID: 28697536 DOI: 10.1111/iju.13403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022]
Abstract
A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology.
Collapse
Affiliation(s)
- Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Division of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Zhai L, Ma XL, Jiang C, Zhang B, Liu ST, Xing GY. Human autologous mesenchymal stem cells with extracorporeal shock wave therapy for nonunion of long bones. Indian J Orthop 2016; 50:543-550. [PMID: 27746499 PMCID: PMC5017178 DOI: 10.4103/0019-5413.189602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Currently, the available treatments for long bone nonunion (LBN) are removing of focus of infection, bone marrow transplantation as well as Ilizarov methods etc. Due to a high percentage of failures, the treatments are complex and debated. To develop an effective method for the treatment of LBN, we explored the use of human autologous bone mesenchymal stems cells (hBMSCs) along with extracorporeal shock wave therapy (ESWT). MATERIALS AND METHODS Sixty three patients of LBN were subjected to ESWT treatment and were divided into hBMSCs transplantation group (Group A, 32 cases) and simple ESWT treatment group (Group B, 31 cases). RESULTS The patients were evaluated for 12 months after treatment. In Group A, 14 patients were healed and 13 showed an improvement, with fracture healing rate 84.4%. In Group B, eight patients were healed and 13 showed an improvement, with fracture healing rate 67.7%. The healing rates of the two groups exhibited a significant difference (P < 0.05). There was no significant difference for the callus formation after 3 months treatment (P > 0.05). However, the callus formation in Group A was significantly higher than that in the Group B after treatment for 6, 9, and 12 months (P < 0.05). CONCLUSION Autologous bone mesenchymal stems cell transplantation with ESWT can effectively promote the healing of long bone nonunions.
Collapse
Affiliation(s)
- Lei Zhai
- Department of Orthopaedic Surgery, The General Hospital of Tianjin Medical University, Tianjin 300052, P. R. China
| | - Xin-Long Ma
- Department of Orthopaedic Surgery, Tianjin Hospital, Hexi District, Tianjin 300211, P. R. China
| | - Chuan Jiang
- Department of Orthopaedic Surgery, The General Hospital of Chinese People's Armed Police Force, Haidian District, Beijing 100039, P. R. China
| | - Bo Zhang
- Department of Immunology, Tianjin Medical University, Heping District, Tianjin 300052, P. R. China
| | - Shui-Tao Liu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Logistics College of Chinese People's Armed Police Force, Pingjin Hospital, Hedong District, Tianjin 300162, P. R. China
| | - Geng-Yan Xing
- Department of Orthopaedic Surgery, The General Hospital of Chinese People's Armed Police Force, Haidian District, Beijing 100039, P. R. China,Address for correspondence: Dr. Geng-Yan Xing, Department of Orthopaedic Surgery, The General Hospital of Chinese People's Armed Police Force, Haidian District, Beijing 100039, P. R. China. E-mail:
| |
Collapse
|
11
|
Dietz-Laursonn K, Beckmann R, Ginter S, Radermacher K, de la Fuente M. In-vitro cell treatment with focused shockwaves-influence of the experimental setup on the sound field and biological reaction. J Ther Ultrasound 2016; 4:10. [PMID: 27030807 PMCID: PMC4812651 DOI: 10.1186/s40349-016-0053-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/29/2016] [Indexed: 01/12/2023] Open
Abstract
Background To improve understanding of shockwave therapy mechanisms, in vitro experiments are conducted and the correlation between cell reaction and shockwave parameters like the maximum pressure or energy density is studied. If the shockwave is not measured in the experimental setup used, it is usually assumed that the device’s shockwave parameters (=manufacturer’s free field measurements) are valid. But this applies only for in vitro setups which do not modify the shockwave, e.g., by reflection or refraction. We hypothesize that most setups used for in vitro shockwave experiments described in the literature influence the sound field significantly so that correlations between the physical parameters and the biological reaction are not valid. Methods To reveal the components of common shockwave in vitro setups which mainly influence the sound field, 32 publications with 37 setups used for focused shockwave experiments were reviewed and evaluated regarding cavitation, cell container material, focal sound field size relative to cell model size, and distance between treated cells and air. For further evaluation of the severity of those influences, experiments and calculations were conducted. Results In 37 setups, 17 different combinations of coupling, cell container, and cell model are described. The setup used mainly is a transducer coupled via water to a tube filled with a cell suspension. As changes of the shockwaves’ maximum pressure of 11 % can already induce changes of the biological reaction, the sound field and biological reactions are mainly disturbed by use of standard cell containers, use of coupling gel, air within the 5 MPa focal zone, and cell model sizes which are bigger than half the −6 dB focal dimensions. Conclusions Until now, correct and sufficient information about the shockwave influencing cells in vitro is only provided in 1 of 32 publications. Based on these findings, guidelines for improved in vitro setups are proposed which help minimize the influence of the setup on the sound field. Electronic supplementary material The online version of this article (doi:10.1186/s40349-016-0053-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin Dietz-Laursonn
- Chair of medical engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen, 52074 Germany
| | - Rainer Beckmann
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, 52074 Germany
| | - Siegfried Ginter
- Richard Wolf GmbH, Pforzheimer Straße 32, Knittlingen, 75438 Germany
| | - Klaus Radermacher
- Chair of medical engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen, 52074 Germany
| | - Matías de la Fuente
- Chair of medical engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen, 52074 Germany
| |
Collapse
|
12
|
Current concepts of shockwave therapy in stress fractures. Int J Surg 2015; 24:195-200. [DOI: 10.1016/j.ijsu.2015.07.723] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/26/2015] [Indexed: 12/20/2022]
|
13
|
Wang CJ, Hsu SL, Weng LH, Sun YC, Wang FS. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats. BMC Musculoskelet Disord 2013; 14:44. [PMID: 23356403 PMCID: PMC3626641 DOI: 10.1186/1471-2474-14-44] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/24/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Extracorporeal shockwave therapy (ESWT) shows chondroprotective effect in osteoarthritis of the rat knees. However, the ideal number of ESWT is unknown. This study investigated the effects of different numbers of ESWT in osteoarthritis of the knee in rats. METHODS Forty-five male Sprague-Dawley rats were divided into five groups. Group I underwent sham arthrotomy without anterior cruciate ligament transection (ACLT) or medial meniscectomy (MM) and received no ESWT. Group II underwent ACLT + MM and received no ESWT. Group III underwent ACLT + MM, and received ESWT once a week for one treatment. Group IV underwent ACLT + MM and received ESWT twice a week for 2 treatments. Group V underwent ACLT + MM and received ESWT three times a week for 3 treatments. Each treatment consisted of 800 impulses of shockwave at 14 Kv to the medial tibia condyle. The evaluations included radiographs of the knee, histomorphological examination and immunohistochemical analysis at 12 weeks. RESULTS At 12 weeks, group II and V showed more radiographic arthritis than groups I, III and IV. On histomorphological examination, the Safranin O matrix staining in groups III and IV are significantly better than in groups II and V, and the Mankin scores in groups III and IV are less than groups II and V. Groups III and IV showed significant decreases of Mankin score and increase of Safranin O stain as compared to group I. Group V showed significant increases of Mankin score and a decrease of Safranin O stain as compared to group II. In articular cartilage, group II showed significant increase of MMP13 and decrease of collagen II as compared to group I. Groups III and IV showed significant decrease of MMP13 and increase of collagen II as compared to group I. Group V showed significant increase of MMP13 and decrease of collagen II as compared to group II. In subchondral bone, vWF, VEGF, BMP-2 and osteocalcin significantly decreased in groups II and V, but increased in groups III and IV relative to group I. CONCLUSIONS ESWT shows a number of treatment related chondroproctective effect in osteoarthritis of the knee in rats.
Collapse
Affiliation(s)
- Ching-Jen Wang
- Department of Orthopedic Surgery, Chang Gung University College of Medicine Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shan-Ling Hsu
- Department of Orthopedic Surgery, Chang Gung University College of Medicine Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Lin-Hsiu Weng
- Department of Orthopedic Surgery, Chang Gung University College of Medicine Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chih Sun
- Department of Medical Research, Chang Gung University College of Medicine Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Chang Gung University College of Medicine Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Manzano-Moreno FJ, Rodríguez-Martínez JB, Ramos-Torrecillas J, Vallecillo-Capilla MF, Ruiz C, García-Martínez O, Reyes-Botella C. Proliferation and osteogenic differentiation of osteoblast-like cells obtained from two techniques for harvesting intraoral bone grafts. Clin Oral Investig 2012; 17:1349-56. [PMID: 22847857 DOI: 10.1007/s00784-012-0811-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The aims of our study were to verify the presence of viable osteoblasts in samples of bone tissue obtained by drilling or from cortico-cancellous bone blocks and to assess their growth and differentiation capacities. MATERIALS AND METHODS Bone tissue samples were processed independently and cultured in Dulbecco's modified Eagle medium, in a CO2 incubator at 37 °C. The proliferative capacity of osteoblasts was determined by spectrophotometry (MTT) at 24 and 48 h of culture. Cell cycle was analysed by flow cytometry. Cell differentiation was studied by red alizarin staining of nodules formed in mineralisation medium and by analysis of alkaline phosphatase activity. RESULTS In comparison to bone block-derived osteoblasts, the proliferative capacity was greater at 24 and 48 h of culture (P < 0.001) in the drilling-derived osteoblasts, which showed significantly increased G2/M (P = 0.014) and S (P < 0.001) phases in the cell cycle study. The number of mineralised nodules was proportional to the incubation time, with no differences between the two types of sample, which also did not significantly differ in alkaline phosphatase activity. CONCLUSION Superior autograft material is obtained by harvesting particulate bone from low-speed drilling fragments than from a cortico-cancellous bone block. CLINICAL RELEVANCE These results suggest that bone obtained from low-speed drilling is a simple and effective alternative to the classic procedure for obtaining bone tissue.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Department of Stomatology, School of Dentistry, University of Granada, Colegio Máximo s/n, Campus Universitario de Cartuja, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Furia JP, Rompe JD, Cacchio A, Maffulli N. Shock wave therapy as a treatment of nonunions, avascular necrosis, and delayed healing of stress fractures. Foot Ankle Clin 2010; 15:651-62. [PMID: 21056863 DOI: 10.1016/j.fcl.2010.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Shock wave therapy (SWT) stimulates angiogenesis and osteogenesis. SWT is commonly used to treat soft tissue musculoskeletal conditions such as fasciopathies and tendinopathies. Recent basic science and clinical data suggest that SWT can also be used to treat disorders of bone. Nonunions, avascular necrosis, and delayed healing of stress fractures have all been successfully treated with SWT. Success rates with SWT are equal to those with standard surgical treatment, but SWT has the advantage of decreased morbidity. The procedure is safe, well tolerated, yields few complications, and, typically, can be performed on an outpatient basis. SWT is a viable noninvasive alternative to stimulate healing of bone.
Collapse
Affiliation(s)
- John P Furia
- SUN Orthopedics and Sports Medicine, Department of Orthopedic Surgery, 900 Buffalo Road, Lewisburg, PA 17837, USA.
| | | | | | | |
Collapse
|
16
|
Tamma R, dell'Endice S, Notarnicola A, Moretti L, Patella S, Patella V, Zallone A, Moretti B. Extracorporeal shock waves stimulate osteoblast activities. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:2093-2100. [PMID: 19679388 DOI: 10.1016/j.ultrasmedbio.2009.05.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/16/2009] [Accepted: 05/28/2009] [Indexed: 05/28/2023]
Abstract
The extracorporeal shock wave therapy (ESWT) is an extensively applied treatment for musculoskeletal disorders because it promotes bone repair. The aim of this study was to evaluate the direct effect of ESWT on murine osteoblasts to clarify the cellular mechanism that leads to the induction of osteogenesis. Osteoblasts in culture flasks were treated with ESWT pulses (500 impulses of 0.05 mJ/mm(2)) generated by an electromagnetic device. Using western blot analysis 3h after ESWT, an increased expression of Bax was found, indicating a fast pro-apoptotic effect of treatment on some of the osteoblasts. Activation of the cyclin E2/CDK2 is the complex that regulates the G1-S transition and is essential for cell proliferation. It was evident 24 to 72h after treatment, indicating a proliferative stimulus. A decreased expression of osteoprotegerin (OPG) and receptor activator NF kappa B ligand (RANKL) 24 and 48h after ESW, followed by a later increase of OPG, paired with a much smaller increase of RANKL, was evident by real-time polymerase chain reaction (PCR). The decreased RANKL/OPG ratio suggests inhibition of osteoclastogenesis. We can conclude that ESWT induces bone repair through the proliferation and differentiation of osteoblasts and the reduction of their secretion of pro-osteoclastogenic factors.
Collapse
Affiliation(s)
- Roberto Tamma
- Department of Human Anatomy and Histology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Berta L, Fazzari A, Ficco AM, Enrica PM, Catalano MG, Frairia R. Extracorporeal shock waves enhance normal fibroblast proliferation in vitro and activate mRNA expression for TGF-beta1 and for collagen types I and III. Acta Orthop 2009; 80:612-7. [PMID: 19916698 PMCID: PMC2823334 DOI: 10.3109/17453670903316793] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 04/23/2009] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Extracorporeal shock waves (ESWs) are used to good effect in the treatment of soft tissue injuries, but the underlying mechanisms are still unknown. We therefore determined the effects of ESWs on normal fibroblasts in vitro, in order to assess treatment-induced cell response. METHODS A normal human fibroblast cell line (NHDF-12519) was treated with ESWs generated by a piezoelectric device (Piezoson 100; Richard Wolfe) using different protocols of impulses (300, 1,000, or 2,000 shots) and energy (0.11 or 0.22 mJ/mm(2)). Untreated controls and treated cells were cultivated for 12 days following a single shock-wave treatment. Viability, growth rate, and expression of mRNA for TGFbeta-1 and collagen types I and III were evaluated at days 3, 6, 9, and 12. RESULTS 1 hour after shock-wave treatment, cell viability showed a decrease related mainly to impulse numbers applied. Fibroblasts treated with energy of 0.22 mJ/mm(2) subsequently showed an increase in proliferation from day 6 to day 9 that was higher than in untreated controls, without interference with the normal cell kinetic profile. mRNA expression was also higher in treated fibroblasts than in untreated controls for TGFbeta-1 on day 6 and day 9, for collagen type I on day 6, and for collagen type III on day 9. INTERPRETATION These in vitro data confirm that the main factors involved in the repair process of connective tissues are activated by ESWs. The study gives the rationale for, and may provide schedules for, ESW treatment of tendonopathies.
Collapse
Affiliation(s)
- Laura Berta
- Department of Clinical Pathophysiology, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Extracorporeal Shock Wave-Mediated Changes in Proliferation, Differentiation, and Gene Expression of Human Osteoblasts. ACTA ACUST UNITED AC 2008; 65:1402-10. [DOI: 10.1097/ta.0b013e318173e7c2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Martini L, Giavaresi G, Fini M, Borsari V, Torricelli P, Giardino R. Early Effects of Extracorporeal Shock Wave Treatment on Osteoblast-like Cells: A Comparative Study Between Electromagnetic and Electrohydraulic Devices. ACTA ACUST UNITED AC 2006; 61:1198-206. [PMID: 17099529 DOI: 10.1097/01.ta.0000203575.96896.34] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Extracorporeal shockwave therapy (ESWT) has been increasingly applied to treat orthopedic and musculoskeletal pathologies. ESWT involves mechanical perturbations that, as with other physical therapies, can result in mechanical stimuli to a large number of cells, including bone cells. The aim of this study was to evaluate the effects of shock waves on osteoblast-like cells (MG63) when using two different generators of shock waves (electrohydraulic and electromagnetic devices), in terms of cell damage, cell viability, osteogenic phenotype expression, and cytokine production. METHODS MG63 cells were suspended in 1.5 mL screw-cap cryotubes (1 x 10 cells/mL), containing phosphate buffer solution (PBS), which were maintained at 37 degrees C during all the experimental times. Two levels of energy flux density (EFD) were evaluated for each device: 0.15 to 0.18 mJ/mm2 and 0.40 mJ/mm2. Cells were then cultivated for 72 hours starting from a concentration of 1 x 10 cells/mL, and biological activity and viability were evaluated 24 and 72 hours after treatment. RESULTS The results obtained demonstrate that the factors most affecting osteoblast activity involve both the device and the level of EFD selected, and they must be considered all together. CONCLUSIONS The use of the electromagnetic device and a level of EFD lower than 0.40 mJ/mm2 would appear to induce fewer immediate cytodestructive effects and better stimulate subsequent proliferation and the synthetic activity of MG63.
Collapse
Affiliation(s)
- Lucia Martini
- Experimental Surgery Department, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Shock waves, as applied in urology and gastroenterology, were introduced in the middle of the last decade in Germany to treat different pathologies of the musculoskeletal system, including epicondylitis of the elbow, plantar fasciitis, and calcifying and noncalcifying tendinitis of the rotator cuff. With the noninvasive nature of these waves and their seemingly low complication rate, extracorporeal shock wave therapy (ESWT) seemed a promising alternative to the established conservative and surgical options in the treatment of patients with chronically painful conditions. However, the apparent advantages of the method led to a rapid diffusion and even inflationary use of ESWT; prospective, randomized studies on the mechanisms and effects of shock waves on musculoskeletal tissues were urgently needed to define more accurate indications and optimize therapeutic outcome. This review covers recent international research in the field and presents actual indications and results in therapy of musculoskeletal conditions with ESWT.
Collapse
Affiliation(s)
- Romain Seil
- Centre de l'Appareil Locomoteur, de Médecine du Sport et de Prévention, Centre Hospitalier de Luxembourg-Clinique d'Eich, Luxembourg.
| | | | | |
Collapse
|
21
|
Malay DS, Pressman MM, Assili A, Kline JT, York S, Buren B, Heyman ER, Borowsky P, LeMay C. Extracorporeal shockwave therapy versus placebo for the treatment of chronic proximal plantar fasciitis: results of a randomized, placebo-controlled, double-blinded, multicenter intervention trial. J Foot Ankle Surg 2006; 45:196-210. [PMID: 16818146 DOI: 10.1053/j.jfas.2006.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracorporeal shockwave therapy (ESWT) has demonstrated efficacy in the treatment of recalcitrant proximal plantar fasciitis. The objective of this investigation was to compare the outcomes of participants treated with a new ESWT device with those treated with placebo. A total of 172 volunteer participants were randomized in a 2:1 active-to-placebo ratio in this prospective, double-blind, multicenter trial conducted between October 2003 and December 2004. ESWT (n=115) or placebo control (n=57) was administered on a single occasion without local or systemic anesthesia or sedation, after which follow-up was undertaken. The primary outcomes were the blind assessor's objective, and the participant's subjective assessments of heel pain during the first 3 months of follow-up. Participants were also followed up to 1 year to identify any adverse outcomes that may have been related to the shockwave device. On the visual analog scale, the blind assessor's objective assessment of heel pain displayed a mean reduction of 2.51 in the shockwave group and 1.57 in the placebo group; this difference was statistically significant (P=.045). On the visual analog scale, the participant's self-assessment of heel pain displayed a mean reduction of 3.39 in the shockwave group and 1.78 in the placebo group; this difference was statistically significant (P<.001). No serious adverse events were observed at any time. It was concluded that ESWT was both efficacious and safe for participants with chronic proximal plantar fasciitis that had been unresponsive to exhaustive conservative treatment.
Collapse
Affiliation(s)
- D Scot Malay
- Ankle and Foot Medical Centers of the Delaware Valley, University of Pennsylvania School of Medicine, Philadelphia 19104, and Yale-New Haven Hospital, CT, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bischofberger AS, Ringer SK, Geyer H, Imboden I, Ueltschi G, Lischer CJ. Histomorphologic evaluation of extracorporeal shock wave therapy of the fourth metatarsal bone and the origin of the suspensory ligament in horses without lameness. Am J Vet Res 2006; 67:577-82. [PMID: 16579748 DOI: 10.2460/ajvr.67.4.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine via histologic examination and scintigraphy the effect of focused extracorporeal shock wave therapy (ESWT) on normal bone and the bone-ligament interface in horses. ANIMALS 6 horses without lameness. PROCEDURE Origins of the suspensory ligament at the metacarpus (35-mm probe depth) and fourth metatarsal bone (5-mm probe depth) were treated twice (days 0 and 16) with 2,000 shocks (energy flux density, 0.15 mJ/mm2). One forelimb and 1 hind limb were randomly treated, and the contralateral limbs served as nontreated controls. Bone scans were performed on days -1 (before ESWT), 3, 16, and 19. Histomorphologic studies of control and treated tissues were performed on day 30. RESULTS ESWT significantly increased the number of osteoblasts but caused no damage to associated soft tissue structures and did not induce cortical microfractures. A significant correlation between osteoblast numbers and radiopharmaceutical uptake was noticed on lateral views of the hind limb on days 3 and 16 and on caudal views of the forelimb on day 3. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that ESWT has the potential to increase osteoblast numbers in horses. The correlation between increased osteoblast numbers and radio-pharmaceutical uptake 3 days and 16 days after the first ESWT suggested that stimulation of osteogenesis occurred soon after ESWT. No damage to bone or the bone-ligament interface should occur at the settings used in this study, and ESWT can therefore be administered safely in horses.
Collapse
|
23
|
Ogden JA, Alvarez RG, Levitt RL, Johnson JE, Marlow ME. Electrohydraulic high-energy shock-wave treatment for chronic plantar fasciitis. J Bone Joint Surg Am 2004; 86:2216-28. [PMID: 15466731 DOI: 10.2106/00004623-200410000-00013] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Plantar fasciitis is a common foot disorder that may be resistant to nonoperative treatment. This study evaluated the use of electrohydraulic high-energy shock waves in patients who failed to respond to a minimum of six months of antecedent nonoperative treatment. METHODS A randomized, placebo-controlled, multiply blinded, crossover study was conducted. Phase 1 consisted of twenty patients who were nonrandomized to treatment with extracorporeal shock waves to assess the phase-2 study protocol. In phase 2, 293 patients were randomized and an additional seventy-one patients were nonrandomized. Following ankle-block anesthesia, each patient received 100 graded shocks starting at 0.12 to 0.22 mJ/mm(2), followed by 1400 shocks at 0.22 mJ/mm(2) with use of a high-energy electrohydraulic shock-wave device. Patients in the placebo group received minimal subcutaneous anesthetic injections and nontransmitted shock waves by the same protocol. Three months later, patients were given the opportunity to continue without further treatment or have an additional treatment. This allowed a patient in the active treatment arm to receive a second treatment and a patient who received the placebo to cross over to the active treatment arm. Patients were followed at least one year after the final treatment. RESULTS Treatment was successful in seventeen of the twenty phase-1 patients at three months. This improved to nineteen (95%) of twenty patients at one year and was maintained at five years. In phase 2, three months after treatment, sixty-seven (47%) of the 144 actively treated patients had a completely successful result compared with forty-two (30%) of the 141 placebo-treated patients (p = 0.008). At one year, sixty-five of the sixty-seven actively treated, randomized patients maintained a successful result. Thirty-six (71%) of the remaining fifty-one nonrandomized patients had a successful result at three months. For all 289 patients who had one or more actual treatments, 222 (76.8%) had a good or excellent result. No patient was made worse by the procedure. CONCLUSIONS The application of electrohydraulic high-energy shock waves to the heel is a safe and effective noninvasive method to treat chronic plantar fasciitis, lasting up to and beyond one year.
Collapse
Affiliation(s)
- John A Ogden
- Atlanta Medical Center and the Skeletal Educational Association, 3435 Habersham Road N.W., Atlanta, GA 30305, USA.
| | | | | | | | | |
Collapse
|