1
|
Xiang Y, Li X, Huang Y, Gao S, Wei P, Wu L, Dong J. ADSCs encapsulated in Gelatin methacrylate substrate promotes the repair of peripheral nerve injury by SIRT6/PGC-1α pathway. Regen Ther 2024; 26:671-682. [PMID: 39281107 PMCID: PMC11402067 DOI: 10.1016/j.reth.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Peripheral nerve injury is a prevalent disease but the spontaneous recovery of nerve function is protracted and incomplete. Given the damaging of stem cells and fragile of intra-neural structures in the course of stem cell transplantation, our study tried to investigate whether encapsulating adipose derived mesenchymal stem cells (ADSCs) with GelMA could achieve better repair in peripheral nerve injury. PC-12 cells were cultured on the surface of GelMA encapsulating ADSCs and 3D co-culture system was constructed. CCK-8, Real-Time PCR, ELISA, Immunofluorescent Assay and Western Blot were used to evaluate the functionality of this system. Ultimately, nerve conduit containing the 3D co-culture system was linked between the two ends of an injured nerve. ADSCs encapsulated in 5% GeIMA had a better activity than 10% GeIMA. Furthermore, the viability of PC-12 cells was also better in this 3D co-culture system than in co-culture system with ADSCs without GeIMA. The expression of SIRT6 and PGC-1α in PC-12 cells were prominently promoted, and the entry to nuclear of PGC-1α was more obvious in this 3D co-culture system. After silencing of SIRT6, the protein expression level of PGC-1α was inhibited, and the activity of PC-12 cells was significantly reduced, suggesting that ADSCs encapsulated in GelMA upregulated the expression of SIRT6 to induce the level of PGC-1α protein, thereby achieving an impact on the activity of PC-12 cells. In vivo, nerve conduit containing the 3D co-culture system significantly promoted the repair of damaged peripheral nerves. In conclusion, our study demonstrated that 5% GelMA enhanced ADSCs activity, thereby promoting the activity of nerve cells and repair of damaged peripheral nerves by SIRT6/PGC-1α pathway.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
- Department of Plastic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xin Li
- Jiaxing Shuguang Cosmetic Hospital, Cosmetic Surgery Department, Jiaxing, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Suyue Gao
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peng Wei
- Department of Plastic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lijun Wu
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| |
Collapse
|
2
|
Rehman A, Nigam A, Laino L, Russo D, Todisco C, Esposito G, Svolacchia F, Giuzio F, Desiderio V, Ferraro G. Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1449. [PMID: 37629738 PMCID: PMC10456353 DOI: 10.3390/medicina59081449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Soft tissue regeneration holds significant promise for addressing various clinical challenges, ranging from craniofacial and oral tissue defects to blood vessels, muscle, and fibrous tissue regeneration. Mesenchymal stem cells (MSCs) have emerged as a promising tool in regenerative medicine due to their unique characteristics and potential to differentiate into multiple cell lineages. This comprehensive review explores the role of MSCs in different aspects of soft tissue regeneration, including their application in craniofacial and oral soft tissue regeneration, nerve regeneration, blood vessel regeneration, muscle regeneration, and fibrous tissue regeneration. By examining the latest research findings and clinical advancements, this article aims to provide insights into the current state of MSC-based therapies in soft tissue regenerative medicine.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Luigi Laino
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | - Diana Russo
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | | | | | - Fabiano Svolacchia
- Departments of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00118 Rome, Italy;
| | - Federica Giuzio
- Department of Sciences, University of Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy;
- U.O.S.D. of Plastic Surgery A.O.R “San Carlo”, 85100 Potenza, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| |
Collapse
|
3
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Mesenchymal stem cells in chemotherapy-induced peripheral neuropathy: A new challenging approach that requires further investigations. J Tissue Eng Regen Med 2019; 14:108-122. [PMID: 31677248 DOI: 10.1002/term.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/08/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic drugs may disrupt the nervous system and cause chemotherapy-induced peripheral neuropathy (CIPN) as side effects. There are no completely successful medications for the prevention or treatment of CIPN. Many drugs such as tricyclic antidepressants and anticonvulsants have been used for symptomatic treatment of CIPN. Unfortunately, these drugs often give only partial relief or have dose-limiting side effects. Thus, the treatment of CIPN becomes a challenge because of failure to regenerate and repair the injured neurons. Mesenchymal stem cell (MSC) therapy is a new attractive approach for CIPN. Evidence has demonstrated that MSCs play important roles in reducing oxidative stress, neuroinflammation, and apoptosis, as well as mediating axon regeneration after nerve damage in several experimental studies and some clinical trials. We will briefly review the pathogenesis of CIPN, traditional therapies used and their drawbacks as well as therapeutic effects of MSCs, their related mechanisms, future challenges for their clinical application, and the additional benefit of their combination with pharmacological agents. MSCs-based therapies may provide a new therapeutic strategy for patients suffering from CIPN where further investigations are required for studying their exact mechanisms. Combined therapy with pharmacological agents can provide another promising option for enhancing MSC therapy success while limiting its adverse effects.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Rink S, Bendella H, Akkin SM, Manthou M, Grosheva M, Angelov DN. Experimental Studies on Facial Nerve Regeneration. Anat Rec (Hoboken) 2019; 302:1287-1303. [DOI: 10.1002/ar.24123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/09/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral MedicineUniversity of Cologne Cologne Germany
| | - Habib Bendella
- Department of NeurosurgeryUniversity of Witten/Herdecke, Cologne Merheim Medical Center (CMMC) Cologne Germany
| | - Salih Murat Akkin
- Department of Anatomy, School of MedicineSANKO University Gaziantep Turkey
| | - Marilena Manthou
- Department of Histology and EmbryologyAristotle University Thessaloniki Thessaloniki Greece
| | - Maria Grosheva
- Department of Oto‐Rhino‐LaryngologyUniversity of Cologne Cologne Germany
| | | |
Collapse
|
5
|
Patel M, Lee HJ, Kwon OH, Jeong B. Polypeptide Thermogel-Filled Silk Tube as a Bioactive Nerve Conduit. ACS APPLIED BIO MATERIALS 2019; 2:1967-1974. [DOI: 10.1021/acsabm.9b00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Oh Hyeong Kwon
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk 39177, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
6
|
Petrova ES. Differentiation Potential of Mesenchymal Stem Cells and Stimulation of Nerve Regeneration. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418040033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Ruven C, Li W, Li H, Wong WM, Wu W. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury. Int J Mol Sci 2017; 18:ijms18030511. [PMID: 28264437 PMCID: PMC5372527 DOI: 10.3390/ijms18030511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy.
Collapse
Affiliation(s)
- Carolin Ruven
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wen Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Heng Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wai-Man Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Joint Laboratory for CNS Regeneration, Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510000, China.
- Guangdong Engineering Research Center of Stem Cell Storage and Clinical Application, Saliai Stem Cell Science and Technology, Guangzhou 510000, China.
| |
Collapse
|
8
|
Mesenchymal Stem Cells Enhance Nerve Regeneration in a Rat Sciatic Nerve Repair and Hindlimb Transplant Model. Sci Rep 2016; 6:31306. [PMID: 27510321 PMCID: PMC4980673 DOI: 10.1038/srep31306] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/18/2016] [Indexed: 01/16/2023] Open
Abstract
This study investigates the efficacy of local and intravenous mesenchymal stem cell (MSC) administration to augment neuroregeneration in both a sciatic nerve cut-and-repair and rat hindlimb transplant model. Bone marrow-derived MSCs were harvested and purified from Brown-Norway (BN) rats. Sciatic nerve transections and repairs were performed in three groups of Lewis (LEW) rats: negative controls (n = 4), local MSCs (epineural) injection (n = 4), and systemic MSCs (intravenous) injection (n = 4). Syngeneic (LEW-LEW) (n = 4) and allogeneic (BN-LEW) (n = 4) hindlimb transplants were performed and assessed for neuroregeneration after local or systemic MSC treatment. Rats undergoing sciatic nerve cut-and-repair and treated with either local or systemic injection of MSCs had significant improvement in the speed of recovery of compound muscle action potential amplitudes and axon counts when compared with negative controls. Similarly, rats undergoing allogeneic hindlimb transplants treated with local injection of MSCs exhibited significantly increased axon counts. Similarly, systemic MSC treatment resulted in improved nerve regeneration following allogeneic hindlimb transplants. Systemic administration had a more pronounced effect on electromotor recovery while local injection was more effective at increasing fiber counts, suggesting different targets of action. Local and systemic MSC injections significantly improve the pace and degree of nerve regeneration after nerve injury and hindlimb transplantation.
Collapse
|
9
|
Kurwale NS, Suri V, Srivastava A, Suri A, Mohanti S, Yadav P, Sharma MC, Sarkar C. Role of bone marrow derived pluripotent stem cells in peripheral nerve repair in adult rats: A morphometric evaluation. J Neurosci Rural Pract 2015; 6:152-9. [PMID: 25883471 PMCID: PMC4387802 DOI: 10.4103/0976-3147.153218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objectives: Semi-quantitative and quantitative assessment of the effect of bone marrow-derived mononuclear cells (BM-MNC) on early and late phase of nerve regeneration in rat sciatic nerve model. Materials and Methods: Sciatic nerve transection and repair was performed in 50 inbred female Wistar albino rats divided equally in two groups. In the test group the gap was filled with BM-MNCs obtained from the two male rats and fibrin sealant, while in the control group only fibrin sealant was used. Sciatic nerve was harvested at 15 days and at 60 days interval. Parameters of regeneration were assessed at anastomosis (G), intermediate distal (C), and distal site (A). Semi-quantitative (histopathological) and quantitative (morphometric) parameters were analyzed. Results: At 15 days there was a statistically significant difference found in mean axon diameter, mean nerve thickness and myelin thickness at the repair site (P < 0.05). However, in the distal areas, the axons were sparse and myelin rings were very thin in both the groups. At 60 days, the difference in above-mentioned parameters was statistically significant at the distal most sites. FISH assay confirmed the presence of Y chromosome, confirming the presence of BM-MNCs from the male rats. Conclusions: Transplanting BM-MNCS at the site of peripheral nerve injury leads to significantly better recovery. These differences were evident at the repair site and at the intermediate distal site at 15 days and at the distal most sites at 60 days. With practically no ethical issue regarding their isolation and application, they can be easily used for clinical trials.
Collapse
Affiliation(s)
- Nilesh S Kurwale
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Arati Srivastava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanti
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Yadav
- Central Animal Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Meher C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Bone marrow-derived, neural-like cells have the characteristics of neurons to protect the peripheral nerve in microenvironment. Stem Cells Int 2015; 2015:941625. [PMID: 25861281 PMCID: PMC4378708 DOI: 10.1155/2015/941625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that "neural-like cells" may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG), immunohistochemistry, and transmission electron microscopy (TEM) were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.
Collapse
|
11
|
Li B, Jung HJ, Kim SM, Kim MJ, Jahng JW, Lee JH. Human periodontal ligament stem cells repair mental nerve injury. Neural Regen Res 2014; 8:2827-37. [PMID: 25206604 PMCID: PMC4146018 DOI: 10.3969/j.issn.1673-5374.2013.30.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/26/2013] [Indexed: 01/31/2023] Open
Abstract
Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was significantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after injection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.
Collapse
Affiliation(s)
- Bohan Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Binzhou Medical College, Binzhou, Shandong Province, China
| | - Hun-Jong Jung
- Department of Occupation and Environment, Konkuk Postgraduate Medical School, Choong-Ju, Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Myung-Jin Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jeong Won Jahng
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea ; Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Berrocal YA, Almeida VW, Gupta R, Levi AD. Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats. J Neurosurg 2013; 119:720-32. [DOI: 10.3171/2013.4.jns121189] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Segmental nerve defects pose a daunting clinical challenge, as peripheral nerve injury studies have established that there is a critical nerve gap length for which the distance cannot be successfully bridged with current techniques. Construction of a neural prosthesis filled with Schwann cells (SCs) could provide an alternative treatment to successfully repair these long segmental gaps in the peripheral nervous system. The object of this study was to evaluate the ability of autologous SCs to increase the length at which segmental nerve defects can be bridged using a collagen tube.
Methods
The authors studied the use of absorbable collagen conduits in combination with autologous SCs (200,000 cells/μl) to promote axonal growth across a critical size defect (13 mm) in the sciatic nerve of male Fischer rats. Control groups were treated with serum only–filled conduits of reversed sciatic nerve autografts. Animals were assessed for survival of the transplanted SCs as well as the quantity of myelinated axons in the proximal, middle, and distal portions of the channel.
Results
Schwann cell survival was confirmed at 4 and 16 weeks postsurgery by the presence of prelabeled green fluorescent protein–positive SCs within the regenerated cable. The addition of SCs to the nerve guide significantly enhanced the regeneration of myelinated axons from the nerve stump into the proximal (p < 0.001) and middle points (p < 0.01) of the tube at 4 weeks. The regeneration of myelinated axons at 16 weeks was significantly enhanced throughout the entire length of the nerve guide (p < 0.001) as compared with their number in a serum–only filled tube and was similar in number compared with the reversed autograft. Autotomy scores were significantly lower in the animals whose sciatic nerve was repaired with a collagen conduit either without (p < 0.01) or with SCs (p < 0.001) when compared with a reversed autograft.
Conclusions
The technique of adding SCs to a guidance channel significantly enhanced the gap distance that can be repaired after peripheral nerve injury with long segmental defects and holds promise in humans. Most importantly, this study represents some of the first essential steps in bringing autologous SC-based therapies to the domain of peripheral nerve injuries with long segmental defects.
Collapse
Affiliation(s)
- Yerko A. Berrocal
- 1The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Vania W. Almeida
- 1The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Ranjan Gupta
- 2Department of Orthopedic Surgery, University of California–Irvine, California
| | - Allan D. Levi
- 1The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; and
| |
Collapse
|
13
|
Salomone R, Bento RF, Costa HJZR, Azzi-Nogueira D, Ovando PC, Da-Silva CF, Zanatta DB, Strauss BE, Haddad LA. Bone marrow stem cells in facial nerve regeneration from isolated stumps. Muscle Nerve 2013; 48:423-9. [PMID: 23824709 DOI: 10.1002/mus.23768] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Severe lesions in the facial nerve may have extensive axonal loss and leave isolated stumps that impose technical difficulties for nerve grafting. METHODS We evaluated bone marrow stem cells (BMSC) in a silicone conduit for rat facial nerve regeneration from isolated stumps. Group A utilized empty silicone tubes; in groups B-D, the tube was filled with acellular gel; and, in groups C and D, undifferentiated BMSC (uBMSC) or Schwann-like cells differentiated from BMSC (dBMSC) were added, respectively. Compound muscle action potentials (CMAPs) were measured, and histology was evaluated. RESULTS Groups C and D had the highest CMAP amplitudes. Group C had shorter CMAP durations than groups A, B, and D. Distal axonal number and density were increased in group C compared with groups A and B. CONCLUSIONS Regeneration of the facial nerve was improved by both uBMSC and dBMSC in rats, yet uBMSC was associated with superior functional results.
Collapse
Affiliation(s)
- Raquel Salomone
- Department of Otorhinolaryngology, University of São Paulo Medical School, Avenida Dr. Enéas de Carvalho Aguiar, 155-6° andar, Bloco 6, CEP 05403-000, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Aravamudhan S, Bellamkonda RV. Toward a Convergence of Regenerative Medicine, Rehabilitation, and Neuroprosthetics. J Neurotrauma 2011; 28:2329-47. [DOI: 10.1089/neu.2010.1542] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shyam Aravamudhan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia
| | - Ravi V. Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia
| |
Collapse
|
16
|
Usach V, Goitia B, Lavalle L, Martinez Vivot R, Setton-Avruj P. Bone marrow mononuclear cells migrate to the demyelinated sciatic nerve and transdifferentiate into Schwann cells after nerve injury: Attempt at a peripheral nervous system intrinsic repair mechanism. J Neurosci Res 2011; 89:1203-17. [DOI: 10.1002/jnr.22645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 12/13/2022]
|
17
|
Skouras E, Ozsoy U, Sarikcioglu L, Angelov DN. Intrinsic and therapeutic factors determining the recovery of motor function after peripheral nerve transection. Ann Anat 2011; 193:286-303. [PMID: 21458252 DOI: 10.1016/j.aanat.2011.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/01/2023]
Abstract
Insufficient recovery after peripheral nerve injury has been attributed to (i) poor pathfinding of regrowing axons, (ii) excessive collateral axonal branching at the lesion site and (iii) polyneuronal innervation of the neuromuscular junctions (NMJ). The facial nerve transection model has been used initially to measure restoration of function after varying therapies and to examine the mechanisms underlying their effects. Since it is very difficult to control the navigation of several thousand axons, efforts concentrated on collateral branching and NMJ-polyinnervation. Treatment with antibodies against trophic factors to combat branching improved the precision of reinnervation, but had no positive effects on functional recovery. This suggested that polyneuronal reinnervation--rather than collateral branching--may be the critical limiting factor. The former could be reduced by pharmacological agents known to perturb microtubule assembly and was followed by recovery of function. Because muscle polyinnervation is activity-dependent and can be manipulated, attempts to design a clinically feasible therapy were performed by electrical stimulation or by soft tissue massage. Electrical stimulation applied to the transected facial nerve or to paralysed facial muscles did not improve vibrissal motor performance and failed to diminish polyinnervation. In contrast, gentle stroking of the paralysed muscles (vibrissal, orbicularis oculi, tongue musculature) resulted in full recovery of function. This manual stimulation was also effective after hypoglossal-facial nerve suture and after interpositional nerve grafting, but not after surgical reconstruction of the median nerve. All these findings raise hopes that clinically feasible and effective therapies could be soon designed and tested.
Collapse
Affiliation(s)
- Emmanouil Skouras
- Department of Orthopedics and Traumatology, University of Cologne, Joseph-Stelzmann-Strasse 9, Cologne, Germany
| | | | | | | |
Collapse
|
18
|
Efficacy of minimally invasive techniques for enhancement of fracture healing: evidence today. INTERNATIONAL ORTHOPAEDICS 2010; 34:3-12. [PMID: 19844709 DOI: 10.1007/s00264-009-0892-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 12/13/2022]
Abstract
The successful treatment of nonunions represents a major challenge for orthopaedic surgeons. Lately, ongoing advances made in the field of molecular medicine and molecular biology have increased our understanding of the pathways and involvement of mediators surrounding the bone healing process. As a result, the surgeon's armamentarium has been increased in terms of options for intervention. This article aims to provide an overview of minimally invasive techniques applicable in the treatment of nonunions of fractures.
Collapse
|
19
|
Abstract
OBJECTIVE The purpose of this review is to summarize the basic science literature related to chronic nerve injuries, and to then use this as the background to provide emerging insights into the promising role of cellular therapy for nerve injury repair. METHODS The literature pertinent to the experimental and clinical aspects of chronic nerve injury was reviewed, as was emerging literature and our own recent experience in using cellular therapy to repair injured nerves. RESULTS Peripheral nerves have the potential to regenerate axons and reinnervate end organs. Yet, outcome after peripheral nerve injury, even after nerve repair, remains relatively poor. The single most important quantitative contributor to poor motor recovery is chronic denervation of the distal nerve. Chronic denervation is common because of the often extensive injury zone that prevents any axonal outgrowth or (even if outgrowth occurs) the relatively slow rate of regeneration. As a consequence, the distal nerve remains chronically devoid of regrowing axons. In turn, prolonged denervation of Schwann cells (SCs) seems to be the critical factor that makes them unreceptive for axonal regeneration. Regenerative success was demonstrated when denervated SCs were replaced with healthy SCs cultured from a secondary nerve. This cell-replacement strategy is, however, limited in the clinical setting by the inability to obtain sufficient numbers of cells and the requirement for sacrifice of additional nerve tissue. We, along with several other groups, have therefore begun investigating stem cell therapies to improve the regenerative environment. CONCLUSION There are several avenues of stem cell-based approaches to peripheral nerve repair. One of these, skin-derived precursor cells, are easily accessible, autologous adult stem cells that can survive and myelinate in the peripheral nerve environment and become SC-like in their apparent differentiation.
Collapse
Affiliation(s)
- Sarah Walsh
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | | |
Collapse
|
20
|
Walsh S, Midha R. Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus 2009; 26:E2. [PMID: 19435443 DOI: 10.3171/foc.2009.26.2.e2] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review the authors intend to demonstrate the need for supplementing conventional repair of the injured nerve with alternative therapies, namely transplantation of stem or progenitor cells. Although peripheral nerves do exhibit the potential to regenerate axons and reinnervate the end organ, outcome following severe nerve injury, even after repair, remains relatively poor. This is likely because of the extensive injury zone that prevents axon outgrowth. Even if outgrowth does occur, a relatively slow growth rate of regeneration results in prolonged denervation of the distal nerve. Whereas denervated Schwann cells (SCs) are key players in the early regenerative success of peripheral nerves, protracted loss of axonal contact renders Schwann cells unreceptive for axonal regeneration. Given that denervated Schwann cells appear to become effete, one logical approach is to support the distal denervated nerve environment by replacing host cells with those derived exogenously. A number of different sources of stem/precursor cells are being explored for their potential application in the scenario of peripheral nerve injury. The most promising candidate, transplant cells are derived from easily accessible sources such as the skin, bone marrow, or adipose tissue, all of which have demonstrated the capacity to differentiate into Schwann cell-like cells. Although recent studies have shown that stem cells can act as promising and beneficial adjuncts to nerve repair, considerable optimization of these therapies will be required for their potential to be realized in a clinical setting. The authors investigate the relevance of the delivery method (both the number and differentiation state of cells) on experimental outcomes, and seek to clarify whether stem cells must survive and differentiate in the injured nerve to convey a therapeutic effect. As our laboratory uses skin-derived precursor cells (SKPCs) in various nerve injury paradigms, we relate our findings on cell fate to other published studies to demonstrate the need to quantify stem cell survival and differentiation for future studies.
Collapse
Affiliation(s)
- Sarah Walsh
- Hotchkiss Brain Institute, University of Calgary, Alberta
| | | |
Collapse
|
21
|
Zhang P, Xu H, Zhang D, Fu Z, Zhang H, Jiang B. The Biocompatibility Research of Functional Schwann Cells Induced from Bone Mesenchymal Cells with Chitosan Conduit Membrane. ACTA ACUST UNITED AC 2009; 34:89-97. [PMID: 16519406 DOI: 10.1080/10731190500430198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To explore the adhesion and proliferation characteristics of bone marrow mesenchymal cells (MSCs) to chitosan conduit membrane, MSCs were induced by a sequential composition Beta-mercaptoethanol, retinoic acid, forskolin, basic-FGF, PDGF and heregulin. Schwann Cell markers, namely S-100 and GFAP, were used to discriminate the induced MSCs' properties by immunofluorescent staining. These results suggested that MSCs can take on Schwann cell's phenotype in vitro and the induce MSCs were gifted with good biocompatibility to biogradable chitosan conduit membrane. The results provided the possibilities to using the induced MSCs with chitosan conduit membrane in artificial peripherial nerve fields to promote nerve regeneration.
Collapse
Affiliation(s)
- Peixun Zhang
- People's Hospital, Peking University, Beijing, People's Repubic of China
| | | | | | | | | | | |
Collapse
|
22
|
Jiang B, Zhang P, Zhang D, Fu Z, Yin X, Zhang H. Study on Small Gap Sleeve Bridging Peripheral Nerve Injury. ACTA ACUST UNITED AC 2009; 34:55-74. [PMID: 16519404 DOI: 10.1080/10731190500430149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Epineurium or perineurium neurorrhaphy to recover the nerve continuity was the choice of peripheral nerve mutilation. The nerve selective regeneration theory was put forth by Cajal et al. As this theory was gradually accepted, many researchers had focused on it and its possible application. Our labs had centered on the small gap sleeve bridging fields for about 30 years, using autogeneic vein, artery and biogradable chitin conduits. Our goal was to improve the nerve regeneration effect by means of nerve selective regeneration theory and degradable biomaterials. This serial experiment was to confirm the possibilities of using conduit small gap sleeve bridging to substitute the traditional epineurium neurorrhaphy.
Collapse
Affiliation(s)
- Baoguo Jiang
- Department of Trauma and Orthopeadics, People's Hospital, Peking University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
23
|
Chapter 21: Use of stem cells for improving nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:393-403. [PMID: 19682650 DOI: 10.1016/s0074-7742(09)87021-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A clear need exists for new surgical approaches to enhance the recuperation of functions after peripheral nerve injury and repair. At present, advances in the regenerative medicine fields of biomaterials, cellular engineering, and molecular biology are all contributing to the development of a bioengineered nerve implant, which could be used clinically as an alternative to nerve autograft. In this review we examine the recent progress in this field, looking in particular at the applicability of Schwann cells and stem cell transplantation to enhance nerve regeneration.
Collapse
|
24
|
Functional recovery of chronic paraplegic pigs after autologous transplantation of bone marrow stromal cells. Transplantation 2008; 86:845-53. [PMID: 18813110 DOI: 10.1097/tp.0b013e318186198f] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bone marrow stromal cells (BMSC) transplantation offers promise in the treatment of chronic paraplegia in rodents. Here, we report the effect of this cell therapy in adult pigs suffering chronic paraplegia. METHODS Three months after spinal cord injury, autologous BMSC in autologous plasma was injected into lesion zone and adjacent subarachnoid space in seven paraplegic pigs. On the contrary, three paraplegic pigs only received autologous plasma. Functional outcome was measured weekly until the end of the follow-up, 3 months later. RESULTS Our present study showed progressive functional recovery in transplanted pigs. At this time, intramedullary posttraumatic cavities were filled by a neoformed tissue containing several axons, together with BMSC that expressed neuronal or glial markers. Furthermore, in the treated animals, electrophysiological studies showed recovery of the previously abolished somatosensory-evoked potentials. CONCLUSIONS These findings confirm previous observations in rodents and support the possible utility of BMSC transplantation in humans suffering chronic paraplegia.
Collapse
|
25
|
Grosheva M, Guntinas-Lichius O, Arnhold S, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats. Biol Chem 2008; 389:873-88. [DOI: 10.1515/bc.2008.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractRecently, we devised and validated a novel strategy in rats to improve the outcome of facial nerve reconstruction by daily manual stimulation of the target muscles. The treatment resulted in full recovery of facial movements (whisking), which was achieved by reducing the proportion of pathologically polyinnervated motor endplates. Here, we posed whether manual stimulation could also be beneficial after a surgical procedure potentially useful for treatment of large peripheral nerve defects, i.e., entubulation of the transected facial nerve in a conduit filled with suspension of isogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) in collagen. Compared to control treatment with collagen only, entubulation with BM-MSCs failed to decrease the extent of collateral axonal branching at the lesion site and did not improve functional recovery. Post-operative manual stimulation of vibrissal muscles also failed to promote a better recovery following entubulation with BM-MSCs. We suggest that BM-MSCs promote excessive trophic support for regenerating axons which, in turn, results in excessive collateral branching at the lesion site and extensive polyinnervation of the motor endplates. Furthermore, such deleterious effects cannot be overridden by manual stimulation. We conclude that entubulation with BM-MSCs is not beneficial for facial nerve repair.
Collapse
|
26
|
Immune effects of mesenchymal stem cells: Implications for Charcot–Marie–Tooth disease. Cell Immunol 2008; 253:11-5. [DOI: 10.1016/j.cellimm.2008.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 12/12/2022]
|
27
|
Musolino PL, Coronel MF, Hökfelt T, Villar MJ. Bone marrow stromal cells induce changes in pain behavior after sciatic nerve constriction. Neurosci Lett 2007; 418:97-101. [PMID: 17379405 DOI: 10.1016/j.neulet.2007.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/14/2007] [Accepted: 03/01/2007] [Indexed: 11/22/2022]
Abstract
Peripheral nerve injury, i.e. a single ligature nerve constriction (SLNC), triggers neuropathic pain. Bone marrow stromal cells (MSCs) have been observed to migrate to the injured tissues and mediate functional recovery following brain, spinal cord and peripheral nerve lesions. We have recently shown MSC selective migration to the ipsilateral lumbar (L3-6) dorsal root ganglia (DRGs) after a sciatic nerve SLNC. In this study, we have analyzed the thermal and mechanical sensitivities of animals subjected to a SLNC of the sciatic nerve and an ipsilateral intraganglionic MSC injection, using the von Frey and Choi tests. Control animals were subjected to the nerve lesion either alone or followed by the administration of phosphate-buffered saline (PBS) or bone marrow non-adherent mononuclear cells (BNMCs). All the animals were tested both before surgery and after 1, 3, 7, 14, 21, 28 and 56 days. Animals subjected to the sciatic nerve constriction developed ipsilateral mechanical and thermal allodynia already 3 days after the lesion. The allodynic responses were maintained even after 56 days. MSC administration prevented the generation of mechanical allodynia and reduced the number of allodynic responses to cold stimuli. On the contrary, the injection of either PBS or BNMCs could not counteract allodynia. These results suggest that MSCs may modulate pain generation after sciatic nerve constriction. The underlying mechanisms by which MSCs exert their actions on pain behavior need to be clarified.
Collapse
Affiliation(s)
- Patricia Leonor Musolino
- School of Biomedical Sciences, Austral University, Av. Pte. Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
28
|
Setton-Avruj CP, Musolino PL, Salis C, Alló M, Bizzozero O, Villar MJ, Soto EF, Pasquini JM. Presence of alpha-globin mRNA and migration of bone marrow cells after sciatic nerve injury suggests their participation in the degeneration/regeneration process. Exp Neurol 2006; 203:568-78. [PMID: 17126834 DOI: 10.1016/j.expneurol.2006.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/29/2006] [Accepted: 09/18/2006] [Indexed: 11/18/2022]
Abstract
We have previously reported that in the distal stump of ligated sciatic nerves, there is a change in the distribution of myelin basic protein (MBP) and P0 protein immunoreactivities. These results agreed with the studies of myelin isolated from the distal stump of animals submitted to ligation of the sciatic nerve, showing a gradual increase in a 14 kDa band with an electrophoretic mobility similar to that of an MBP isoform, among other changes. This band, which was resolved into two bands of 14 and 15 kDa using a 16% gel, was found to contain a mixture of MBP fragments and peptides with great homology with alpha- and beta-globins. In agreement with these results, we have demonstrated that the mRNA of alpha-globin is present in the proximal and distal stumps of the ligated nerve. It is also detected at very low levels in Schwann cells isolated from normal nerves. These results could be due to the presence of alpha- and/or beta-globin arising from immature cells of the erythroid series. Also, they could be present in macrophages, which spontaneously migrate to the injured nerve to promote the degradation of myelin proteins. Cells isolated from normal adult rat bone marrow which were injected intraortically were found to migrate to the injured area. These cells could contribute to the remyelination of the damaged area participating in the removal of myelin debris, through their transdifferentiation into Schwann cells or through their fusion with preexisting Schwann cells in the distal stump of the injured sciatic nerve.
Collapse
Affiliation(s)
- C P Setton-Avruj
- Department of Biological Chemistry and Institute of Biological and Physical Chemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Junin 956, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Coronel MF, Musolino PL, Villar MJ. Selective migration and engraftment of bone marrow mesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerve constriction. Neurosci Lett 2006; 405:5-9. [PMID: 16806704 DOI: 10.1016/j.neulet.2006.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 05/22/2006] [Accepted: 06/07/2006] [Indexed: 01/19/2023]
Abstract
Bone marrow mesenchymal stem cells (MSCs) preferentially migrate to the injured hemisphere when administered intravenously to rats with traumatic or ischemic brain injuries. In this study, we have investigated the localization of MSCs injected into the lumbar-4 dorsal root ganglion (L4-DRG) of rats with a sciatic nerve single ligature nerve constriction (SLNC). MSCs were isolated by their adherence to plastic, cultured until confluence and labelled with Hoechst. Animals with a unilateral injection of MSCs were subjected to an ipsilateral, bilateral or contralateral SLNC. After 9 days, they were perfused and the lumbar DRGs were dissected out, cut in a cryostat and observed with a fluorescence microscope. Large numbers of Hoechst-positive cells were observed in the injected L4-DRG, distributed around primary afferent neurons, resembling the anatomical localization of glial cells. In animals with an ipsilateral SLNC, some cells were detected in the ipsilateral L3, L5 or L6-DRGs but not in the contralateral ganglia. In animals with a bilateral lesion, MSCs migrated to both the ipsilateral and contralateral DRGs whereas in animals with a contralateral ligature, MSCs migrated to the contralateral DRGs. These results suggest that MSCs preferentially engraft in DRGs hosting primary sensory neurons affected by a lesion of their peripheral branches. Further studies should be carried out in order to elucidate the molecular mechanisms involved in this migration and homing, in order to evaluate the possible use of MSCs as a new therapeutic strategy for the treatment of peripheral nerve neuropathies.
Collapse
Affiliation(s)
- María Florencia Coronel
- School of Biomedical Sciences, Austral University, Av. Pte. Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | | | | |
Collapse
|