1
|
Immobilization of lipase on spent coffee grounds by physical and covalent methods: a comparison study. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
2
|
Gamboa-Velázquez G, Juaristi E. Mechanoenzymology in the Kinetic Resolution of β-Blockers: Propranolol as a Case Study. ACS ORGANIC & INORGANIC AU 2022; 2:343-350. [PMID: 36855594 PMCID: PMC9955203 DOI: 10.1021/acsorginorgau.1c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in biotechnology, protein engineering, and enzymatic immobilization have made it possible to carry out biocatalytic transformations through alternative non-conventional activation strategies. In particular, mechanoenzymology (i.e., the use of the mechanical force produced by milling or grinding to activate a biotransformation) has become a new area in so-called "green chemistry", reshaping key fundaments of biocatalysis and leading to the exploration of enzymatic transformations under more sustainable conditions. Significantly, numerous chiral active pharmaceutical ingredients have been synthesized via mechanoenzymatic methods, boosting the use of biocatalysis in the synthesis of chiral drugs. In this regard and aiming to widen the scope of the young field of mechanoenzymology, a dual kinetic resolution of propranolol precursors was explored. The biocatalytic methodology mediated by Candida antarctica Lipase B (CALB) and activated by mechanical force allowed the isolation of both enantiomeric precursors of propranolol with high enantiomeric excess (up to 99% ee), complete conversion (c = 50%), and excellent enantiodifferentiation (E > 300). Moreover, the enantiomerically pure products were used to synthesize both enantiomers of the β-blocker propranolol with high enantiopurity.
Collapse
Affiliation(s)
- Gonzalo Gamboa-Velázquez
- Departamento
de Química, Centro de Investigación
y de Estudios Avanzados, 07360 Ciudad de México, Mexico
| | - Eusebio Juaristi
- Departamento
de Química, Centro de Investigación
y de Estudios Avanzados, 07360 Ciudad de México, Mexico,El
Colegio Nacional, Luis
González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico,
| |
Collapse
|
3
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Zappaterra F, Rodriguez MEM, Summa D, Semeraro B, Costa S, Tamburini E. Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media. Int J Mol Sci 2021; 22:3066. [PMID: 33802769 PMCID: PMC8002397 DOI: 10.3390/ijms22063066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) introduced in the 1960s and widely used as an analgesic, anti-inflammatory, and antipyretic. In its acid form, the solubility of 21 mg/L greatly limits its bioavailability. Since the bioavailability of a drug product plays a critical role in the design of oral administration dosage, this study investigated the enzymatic esterification of ibuprofen as a strategy for hydrophilization. This work proposes an enzymatic strategy for the covalent attack of highly hydrophilic molecules using acidic functions of commercially available bioactive compounds. The poorly water-soluble drug ibuprofen was esterified in a hexane/water biphasic system by direct esterification with sorbitol using the cheap biocatalyst porcine pancreas lipase (PPL), which demonstrated itself to be a suitable enzyme for the effective production of the IBU-sorbitol ester. This work reports the optimization of the esterification reaction.
Collapse
Affiliation(s)
- Federico Zappaterra
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (E.T.)
| | - Maria Elena Maldonado Rodriguez
- Department of Biotechnology Engineering of the RRNN, Salesian Polytechnic University, Av. 12 de Octubre y Wilson, Quito 170109, Ecuador;
| | - Daniela Summa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (E.T.)
| | | | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (E.T.)
| | - Elena Tamburini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (E.T.)
| |
Collapse
|
5
|
Ghofrani S, Allameh A, Yaghmaei P, Norouzian D. Immobilization of Candida rugosa lipase for resolution of racimic ibuprofen. ACTA ACUST UNITED AC 2021; 29:117-123. [PMID: 33528796 DOI: 10.1007/s40199-021-00388-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
AIM Due to lipases' regio-selectivity and ability to catalyze different reactions such as hydrolysis, esterification, and transesterification, the enzyme is attractive in biotransformation technology. Besides, another technology, namely enzyme immobilization, has attracted scientists/technologists' attention to employ immobilized lipase in such a field. Thus lipase of Candida rugosa was immobilized onto silica nanoparticles through adsorption. Furthermore, the immobilized biocatalyst was characterized and used to esterify ibuprofen enantioselectively. METHODS To characterize immobilized lipase onto silica nanoparticles scanning electron microscopy (SEM) and dynamic light scattering (DLS) were used. RESULTS The catalytic properties of both immobilized and free lipases such as optima pH and temperature were not different. According to the results, the immobilized lipase on silica nanoparticles showed 45% and 96% conversion (C) and enantioselectivity (ees), respectively. In comparison to free lipase, the immobilized enzyme came with better catalytic activity. CONCLUSION Silica nanoparticles as one of the most promising materials for the immobilization of lipase in enantioselective esterification of ibuprofen, were introduced in this work.
Collapse
Affiliation(s)
- Saeid Ghofrani
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Dariush Norouzian
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Kim S, Joo KI, Jo BH, Cha HJ. Stability-Controllable Self-Immobilization of Carbonic Anhydrase Fused with a Silica-Binding Tag onto Diatom Biosilica for Enzymatic CO 2 Capture and Utilization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27055-27063. [PMID: 32460480 DOI: 10.1021/acsami.0c03804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exploiting carbonic anhydrase (CA), an enzyme that catalyzes the hydration of CO2, is a powerful route for eco-friendly and cost-effective carbon capture and utilization. For successful industrial applications, the stability and reusability of CA should be improved, which necessitates enzyme immobilization. Herein, the ribosomal protein L2 (Si-tag) from Escherichia coli was utilized for the immobilization of CA onto diatom biosilica, a promising renewable support material. The Si-tag was redesigned (L2NC) and genetically fused to CA from the marine bacterium Hydrogenovibrio marinus (hmCA). One-step self-immobilization of hmCA-L2NC onto diatom biosilica by simple mixing was successfully achieved via Si-tag-mediated strong binding, showing multilayer adsorption with a maximal loading of 1.4 wt %. The immobilized enzyme showed high reusability and no enzyme leakage even under high temperature conditions. The activity of hmCA-L2NC was inversely proportional to the enzyme loading, while the stability was directly proportional to the enzyme loading. This discovered activity-stability trade-off phenomenon could be attributed to macromolecular crowding on the highly dense surface of the enzyme-immobilized biosilica. Collectively, our system not only facilitates the stability-controllable self-immobilization of enzyme via Si-tag on a diatom biosilica support for the robust, facile, and green construction of stable biocatalysts, but is also a unique model for studying the macromolecular crowding effect on surface-immobilized enzymes.
Collapse
Affiliation(s)
- Suhyeok Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Byung Hoon Jo
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
7
|
Characterization of lipase produced by Bacillus sp. FH5 in immobilized and free state. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-009-0012-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Evaluation of diatomaceous earth as a support for sol–gel immobilized lipase for transesterification. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Sagiroglu A. Conversion of Sunflower Oil to Biodiesel by Alcoholysis using Immobilized Lipase. ACTA ACUST UNITED AC 2009; 36:138-49. [DOI: 10.1080/10731190801932124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Ozmen EY, Yilmaz M. Pretreatment of Candida rugosa lipase with soybean oil before immobilization on β-cyclodextrin-based polymer. Colloids Surf B Biointerfaces 2009; 69:58-62. [DOI: 10.1016/j.colsurfb.2008.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/21/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
|
11
|
Kilinç A, Teke M, Onal S, Telefoncu A. Immobilization of Pancreatic Lipase on Chitin and Chitosan. Prep Biochem Biotechnol 2006; 36:153-63. [PMID: 16513559 DOI: 10.1080/10826060500533976] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, porcine pancreatic lipase (EC 3.1.1.3) was immobilized on chitin and chitosan by adsorption and subsequent crosslinking with glutaraldehyde, which was added before (conjugation) or after (crosslinking) washing unbound proteins. Conjugation proved to be the better method for both supports. The properties of free and immobilized enzymes were also investigated and compared. The results showed that the pH optimum was shifted from 8.5 to 9.0 for both the immobilized enzymes. Also, the optimum temperature was shifted from 30 to 40 degrees C for chitin-enzyme and to 45 degrees C for chitosan-enzyme conjugates. The immobilization efficiency is low, but the immobilized enzymes have good reusability and stability (storage and operational). Besides these properties, the immobilized lipases were also suitable for catalyzing esterification reactions of fatty acids and fatty alcohols, both with a medium chain length. According to our results, esterification activities of immobilized lipases were two- and four-fold higher for chitosan- and chitin-enzyme, than for the free enzyme, respectively. The immobilization procedure shows a great potential for commercial applications of the immobilized lipase, a relatively low cost commercial enzyme.
Collapse
Affiliation(s)
- Ali Kilinç
- Department of Biochemistry, Faculty of Science, Ege University, Bornova-Izmir, Turkey.
| | | | | | | |
Collapse
|
12
|
Kim MI, Ham HO, Oh SD, Park HG, Chang HN, Choi SH. Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.01.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Şekeroğlu G, Fadıloğlu S, Göğüş F. Immobilization and characterization of naringinase for the hydrolysis of naringin. Eur Food Res Technol 2006. [DOI: 10.1007/s00217-006-0288-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|