1
|
Jabbur ML, Dani C, Spoelstra K, Dodd AN, Johnson CH. Evaluating the Adaptive Fitness of Circadian Clocks and their Evolution. J Biol Rhythms 2024; 39:115-134. [PMID: 38185853 PMCID: PMC10994774 DOI: 10.1177/07487304231219206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Surely most chronobiologists believe circadian clocks are an adaptation of organisms that enhances fitness, but are we certain that this focus of our research effort really confers a fitness advantage? What is the evidence, and how do we evaluate it? What are the best criteria? These questions are the topic of this review. In addition, we will discuss selective pressures that might have led to the historical evolution of circadian systems while considering the intriguing question of whether the ongoing climate change is modulating these selective pressures so that the clock is still evolving.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Chitrang Dani
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
2
|
Perception of Daily Time: Insights from the Fruit Flies. INSECTS 2021; 13:insects13010003. [PMID: 35055846 PMCID: PMC8780729 DOI: 10.3390/insects13010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
We create mental maps of the space that surrounds us; our brains also compute time—in particular, the time of day. Visual, thermal, social, and other cues tune the clock-like timekeeper. Consequently, the internal clock synchronizes with the external day-night cycles. In fact, daylength itself varies, causing the change of seasons and forcing our brain clock to accommodate layers of plasticity. However, the core of the clock, i.e., its molecular underpinnings, are highly resistant to perturbations, while the way animals adapt to the daily and annual time shows tremendous biological diversity. How can this be achieved? In this review, we will focus on 75 pairs of clock neurons in the Drosophila brain to understand how a small neural network perceives and responds to the time of the day, and the time of the year.
Collapse
|
3
|
Hozer C, Pifferi F. Physiological and cognitive consequences of a daily 26 h photoperiod in a primate : exploring the underlying mechanisms of the circadian resonance theory. Proc Biol Sci 2020; 287:20201079. [PMID: 32693726 PMCID: PMC7423648 DOI: 10.1098/rspb.2020.1079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
The biological clock expresses circadian rhythms, whose endogenous period (tau) is close to 24 h. Daily resetting of the circadian clock to the 24 h natural photoperiod might induce marginal costs that would accumulate over time and forward affect fitness. It was proposed as the circadian resonance theory. For the first time, we aimed to evaluate these physiological and cognitive costs that would partially explain the mechanisms of the circadian resonance hypothesis. We evaluated the potential costs of imposing a 26 h photoperiodic regimen compared to the classical 24 h entrainment measuring several physiological and cognitive parameters (body temperature, energetic expenditure, oxidative stress, cognitive performances) in males of a non-human primate (Microcebus murinus), a nocturnal species whose endogenous period is about 23.5 h. We found significant higher resting body temperature and energy expenditure and lower cognitive performances when the photoperiodic cycle length was 26 h. Together these results suggest that a great deviation of external cycles from tau leads to daily greater energetic expenditure, and lower cognitive capacities. To our knowledge, this study is the first to highlight potential mechanisms of circadian resonance theory.
Collapse
Affiliation(s)
| | - Fabien Pifferi
- UMR CNRS MNHN 7179 MECADEV, 1 Avenue du Petit Château 91800 Brunoy, France
| |
Collapse
|
4
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
5
|
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pankaj Yadav
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
6
|
Beale AD, Whitmore D, Moran D. Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments. J Comp Physiol B 2016; 186:947-968. [PMID: 27263116 PMCID: PMC5090016 DOI: 10.1007/s00360-016-1000-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/05/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
Abstract
Most of the life with which humans interact is exposed to highly rhythmic and extremely predictable changes in illumination that occur with the daily events of sunrise and sunset. However, while the influence of the sun feels omnipotent to surface dwellers such as ourselves, life on earth is dominated, in terms of biomass, by organisms isolated from the direct effects of the sun. A limited understanding of what life is like away from the sun can be inferred from our knowledge of physiology and ecology in the light biosphere, but a full understanding can only be gained by studying animals from the dark biosphere, both in the laboratory and in their natural habitats. One of the least understood aspects of life in the dark biosphere is the rhythmicity of physiology and what it means to live in an environment of low or no rhythmicity. Here we describe methods that may be used to understand rhythmic physiology in the dark and summarise some of the studies of rhythmic physiology in "arrhythmic" environments, such as the poles, deep sea and caves. We review what can be understood about the adaptive value of rhythmic physiology on the Earth's surface from studies of animals from arrhythmic environments and what role a circadian clock may play in the dark.
Collapse
Affiliation(s)
- Andrew David Beale
- Department of Cell and Developmental Biology, Centre for Cell and Molecular Dynamics, University College London, 21 University Street, London, WC1E 6BT, UK.
| | - David Whitmore
- Department of Cell and Developmental Biology, Centre for Cell and Molecular Dynamics, University College London, 21 University Street, London, WC1E 6BT, UK
| | - Damian Moran
- Plant and Food Research, Seafood Technologies Group, Nelson, New Zealand.
| |
Collapse
|
7
|
Yadav P, Choudhury D, Sadanandappa MK, Sharma VK. Extent of mismatch between the period of circadian clocks and light/dark cycles determines time-to-emergence in fruit flies. INSECT SCIENCE 2015; 22:569-577. [PMID: 24668961 DOI: 10.1111/1744-7917.12126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
Circadian clocks time developmental stages of fruit flies Drosophila melanogaster, while light/dark (LD) cycles delimit emergence of adults, conceding only during the "allowed gate." Previous studies have revealed that time-to-emergence can be altered by mutations in the core clock gene period (per), or by altering the length of LD cycles. Since this evidence came from studies on genetically manipulated flies, or on flies maintained under LD cycles with limited range of periods, inferences that can be drawn are limited. Moreover, the extent of shortening or lengthening of time-to-emergence remains yet unknown. In order to pursue this further, we assayed time-to-emergence of D. melanogaster under 12 different LD cycles as well as in constant light (LL) and constant dark conditions (DD). Time-to-emergence in flies occurred earlier under LL than in LD cycles and DD. Among the LD cycles, time-to-emergence occurred earlier under T4-T8, followed by T36-T48, and then T12-T32, suggesting that egg-to-emergence duration in flies becomes shorter when the length of LD cycles deviates from 24 h, bearing a strong positive and a marginally negative correlation with day length, for values shorter and longer than 24 h, respectively. These results suggest that the extent of mismatch between the period of circadian clocks and environmental cycles determines the time-to-emergence in Drosophila.
Collapse
Affiliation(s)
- Pankaj Yadav
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Deepak Choudhury
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Madhumala K Sadanandappa
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| |
Collapse
|
8
|
Abstract
Coordinated daily rhythms are evident in most aspects of our physiology, driven by internal timing systems known as circadian clocks. Our understanding of how biological clocks are built and function has grown exponentially over the past 20 years. With this has come an appreciation that disruption of the clock contributes to the pathophysiology of numerous diseases, from metabolic disease to neurological disorders to cancer. However, it remains to be determined whether it is the disruption of our rhythmic physiology per se (loss of timing itself), or altered functioning of individual clock components that drive pathology. Here, we review the importance of circadian rhythms in terms of how we (and other organisms) relate to the external environment, but also in relation to how internal physiological processes are coordinated and synchronized. These issues are of increasing importance as many aspects of modern life put us in conflict with our internal clockwork.
Collapse
Affiliation(s)
- Alexander C West
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - David A Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Kouser S, Venkat S, Hegde S. Effect of different light regimes on fitness of two species of Drosophila montiumsubgroup. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1015233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Palaksha, Shakunthala V. Effect of different light regimes on eclosion rhythm of Drosophila agumbensisand Drosophila nagarholensis. BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2013.797161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Kouser S, Palaksha, Shakunthala V. Study on fitness ofDrosophila melanogasterin different light regimes. BIOL RHYTHM RES 2013. [DOI: 10.1080/09291016.2013.817138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Abstract
Circadian (approximately 24 h) clock regulated biological rhythms have been identified in a wide range of organisms from prokaryotic unicellular cyanobacteria to higher mammals. These rhythms regulate an enormous variety of processes including gene expression, metabolic processes, activity and reproduction. Given the widespread occurrence of circadian systems it is not surprising that extensive efforts have been directed at understanding the adaptive significance of circadian rhythms. In this review we discuss the approaches and findings that have resulted. In studies on organisms in their natural environments, some species show adaptations in their circadian systems that correlate with living at different latitudes, such as clines in circadian clock properties. Additionally, some species show plasticity in their circadian systems suggested to match the demands of their physical and social environment. A number of experiments, both in the field and in the laboratory, have examined the effects of having a circadian system that does not resonate with the organism's environment. We conclude that the results of these studies suggest that having a circadian system that matches the oscillating environment is adaptive.
Collapse
Affiliation(s)
- Shai Yerushalmi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
13
|
Paranjpe DA, Sharma VK. Evolution of temporal order in living organisms. J Circadian Rhythms 2005; 3:7. [PMID: 15869714 PMCID: PMC1142335 DOI: 10.1186/1740-3391-3-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/04/2005] [Indexed: 11/10/2022] Open
Abstract
Circadian clocks are believed to have evolved in parallel with the geological history of the earth, and have since been fine-tuned under selection pressures imposed by cyclic factors in the environment. These clocks regulate a wide variety of behavioral and metabolic processes in many life forms. They enhance the fitness of organisms by improving their ability to efficiently anticipate periodic events in their external environments, especially periodic changes in light, temperature and humidity. Circadian clocks provide fitness advantage even to organisms living under constant conditions, such as those prevailing in the depth of oceans or in subterranean caves, perhaps by coordinating several metabolic processes in the internal milieu. Although the issue of adaptive significance of circadian rhythms has always remained central to circadian biology research, it has never been subjected to systematic and rigorous empirical validation. A few studies carried out on free-living animals under field conditions and simulated periodic and aperiodic conditions of the laboratory suggest that circadian rhythms are of adaptive value to their owners. However, most of these studies suffer from a number of drawbacks such as lack of population-level replication, lack of true controls and lack of adequate control on the genetic composition of the populations, which in many ways limits the potential insights gained from the studies. The present review is an effort to critically discuss studies that directly or indirectly touch upon the issue of adaptive significance of circadian rhythms and highlight some shortcomings that should be avoided while designing future experiments.
Collapse
Affiliation(s)
- Dhanashree A Paranjpe
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, PO Box 6436, Bangalore 560 064, Karnataka, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, PO Box 6436, Bangalore 560 064, Karnataka, India
| |
Collapse
|
14
|
Possible role of eclosion rhythm in mediating the effects of light-dark environments on pre-adult development in Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2005; 5:5. [PMID: 15725348 PMCID: PMC554107 DOI: 10.1186/1471-213x-5-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 02/22/2005] [Indexed: 12/01/2022]
Abstract
Background In insects, circadian clocks have been implicated in affecting life history traits such as pre-adult development time and adult lifespan. Studies on the period (per) mutants of Drosophila melanogaster, and laboratory-selected lines of Bactrocera cucurbitae suggested a close link between circadian clocks and development time. There is a possibility of clock genes having pleiotropic effects on clock period and pre-adult development time. In order to avoid such pleiotropic effects we have used wild type flies of same genotype under environments of different periodicities, which phenotypically either speeded up or slowed down the eclosion clock of D. melanogaster. Results We assayed pre-adult development time and pre-adult survivorship of four laboratory populations of D. melanogaster, under five different light regimes, continuous light (LL), continuous darkness (DD), and light-dark (LD) cycles of 10:10 h (T20), 12:12 h (T24), and 14:14 h (T28). Although the development time was significantly different in most light regimes, except for females under T24 &T28, pre-adult survivorship remained largely unaffected. The development time was shortest under LL, followed by T20, DD, T24 and T28 regimes, in that order. Interestingly the development time showed a positive correlation with the period of eclosion rhythm, i.e., faster oscillations were associated with faster development, and slower oscillations with slower development. Conclusion Based on these results we conclude that periodicity of imposed LD cycles, and/or of eclosion rhythm plays a key role in regulating the duration of pre-adult development in D. melanogaster in a manner that does not involve direct pleiotropic effects of clock genes on both clock period and development time.
Collapse
|
15
|
Abstract
Circadian clocks are thought to enhance reproductive fitness. However, most of the evidence that supports the adaptiveness of clocks is not rigorous and falls into the category of "adaptive storytelling." Approaches that an evolutionary biologist would consider appropriate to address this issue are described along with an analysis of the evidence-past and present-that has been evoked to demonstrate the adaptive value of circadian systems.
Collapse
Affiliation(s)
- Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
16
|
Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 2004; 14:1481-6. [PMID: 15324665 DOI: 10.1016/j.cub.2004.08.023] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 06/21/2004] [Accepted: 06/22/2004] [Indexed: 11/24/2022]
Abstract
Circadian clocks are thought to enhance the fitness of organisms by improving their ability to adapt to extrinsic influences, specifically daily changes in environmental factors such as light, temperature, and humidity. Some investigators have proposed that circadian clocks provide an additional "intrinsic adaptive value," that is, the circadian clock that regulates the timing of internal events has evolved to be such an integral part of the temporal regulation that it is useful in all conditions, even in constant environments. There have been practically no rigorous tests of either of these propositions. Using cyanobacterial strains with different clock properties growing in competition with each other, we found that strains with a functioning biological clock defeat clock-disrupted strains in rhythmic environments. In contrast to the expectations of the "intrinsic value model," this competitive advantage disappears in constant environments. In addition, competition experiments using strains with different circadian periods showed that cyanobacterial strains compete most effectively in a rhythmic environment when the frequency of their internal biological oscillator and that of the environmental cycle are similar. Together, these studies demonstrate the adaptive value of circadian temporal programming in cyanobacteria but indicate that this adaptive value is only fulfilled in cyclic environments.
Collapse
Affiliation(s)
- Mark A Woelfle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
17
|
Paranjpe DA, Anitha D, Sharma VK, Joshi A. Circadian clocks and life-history related traits: is pupation height affected by circadian organization in Drosophila melanogaster? J Genet 2004; 83:73-7. [PMID: 15240911 DOI: 10.1007/bf02715831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In D. melanogaster, the observation of greater pupation height under constant darkness than under constant light has been explained by the hypothesis that light has an inhibitory effect on larval wandering behaviour, preventing larvae from crawling higher up the walls of culture vials prior to pupation. If this is the only role of light in affecting pupation height, then various light : dark regimes would be predicted to yield pupation heights intermediate between those seen in constant light and constant darkness. We tested this hypothesis by measuring pupation height under various light : dark regimes in four laboratory populations of Drosophila melanogaster. Pupation height was the greatest in constant darkness, intermediate in constant light, and the least in a light/dark regime of LD 14:14 h. The results clearly suggest that there is more to light regime effects on pupation height than mere behavioural inhibition of wandering larvae, and that circadian organization may play some role in determining pupation height, although the details of this role are not yet clear. We briefly discuss these results in the context of the possible involvement of circadian clocks in life-history evolution.
Collapse
Affiliation(s)
- Dhanashree A Paranjpe
- Chronobiology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, P.O. Box 6436, Jakkur, Bangalore 560 064, India
| | | | | | | |
Collapse
|
18
|
Prasad NG, Joshi A. What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J Genet 2004; 82:45-76. [PMID: 14631102 DOI: 10.1007/bf02715881] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of laboratory selection experiments on Drosophila melanogaster over the past two decades has provided insights into the specifics of life-history tradeoffs in the species and greatly refined our understanding of how ecology and genetics interact in life-history evolution. Much of what has been learnt from these studies about the subtlety of the microevolutionary process also has significant implications for experimental design and inference in organismal biology beyond life-history evolution, as well as for studies of evolution in the wild. Here we review work on the ecology and evolution of life-histories in laboratory populations of D. melanogaster, emphasizing how environmental effects on life-history-related traits can influence evolutionary change. We discuss life-history tradeoffs - many unexpected - revealed by selection experiments, and also highlight recent work that underscores the importance to life-history evolution of cross-generation and cross-life-stage effects and interactions, sexual antagonism and sexual dimorphism, population dynamics, and the possible role of biological clocks in timing life-history events. Finally, we discuss some of the limitations of typical selection experiments, and how these limitations might be transcended in the future by a combination of more elaborate and realistic selection experiments, developmental evolutionary biology, and the emerging discipline of phenomics.
Collapse
Affiliation(s)
- N G Prasad
- Evolutionary Biology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, P.O. Box 6436, Jakkur, Bangalore 560 064, India
| | | |
Collapse
|