1
|
Krüerke D, Schenker M, Matter-Walstra K. Clinical characteristics and therapeutic behavior of breast cancer patients using mistletoe therapy consulting a clinic offering integrative oncology: a registry data analysis. BMC Complement Med Ther 2023; 23:395. [PMID: 37924102 PMCID: PMC10623842 DOI: 10.1186/s12906-023-04219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/13/2023] [Indexed: 11/06/2023] Open
Abstract
MOTIVATION Cancer patients often use complementary and/or alternative medicine, such as mistletoe therapy, alongside conventional cancer therapies. In Switzerland, so far not much is known about treatment patterns of breast cancer patients using integrative oncology. Solid knowledge on complementary care utilization may help to enhance integrative oncology care in Switzerland. METHODS In this exploratory, descriptive database study, we investigated the treatment pathways of a cohort of breast cancer patients who received mistletoe therapy and were documented in the cancer registry of an anthroposophic Swiss hospital offering integrative oncology treatments. RESULTS Patients treated with mistletoe in this cohort are in median 10 years younger than Swiss breast cancer patients as a whole. Only 5.8% of these patients were treated with mistletoe alone, while 60.5% of them supplemented chemotherapy and/or hormone therapy and/or surgery and/or radiation with mistletoe therapy. Nearly 80% of patients started conventional therapy followed by additional mistletoe therapy or started mono mistletoe therapy after completion of conventional therapies. The median time from initial diagnosis to hospital admission (inpatient and/or outpatient) was less than one year. Almost ¾ of the patients were treated in an outpatient setting only. CONCLUSION From our data, it appears that younger breast cancer patients are more likely to use mistletoe therapy simultaneously with or following their conventional medical therapies. The extent to which these patients discuss their mistletoe therapy and eventually other complementary and/or alternative therapies with their primary oncologists is not clear from the data. We therefore recommend that (Swiss) oncologists should openly discuss the desire for integrative oncology therapies, especially with their younger breast cancer patients, in order to find the best holistic care pattern for these patients.
Collapse
Affiliation(s)
- Daniel Krüerke
- Klinik Arlesheim AG, Pfeffingerweg 1, Arlesheim, CH-4144, Switzerland.
- Society for Cancer Research, Hiscia Institute, Kirschweg 9, Arlesheim, CH-4144, Switzerland.
| | - Marianne Schenker
- Klinik Arlesheim AG, Pfeffingerweg 1, Arlesheim, CH-4144, Switzerland
| | - Klazien Matter-Walstra
- European Center of Pharmaceutical Medicine, University of Basel, Klingelbergstrasse 61, Basel, CH-4056, Switzerland
| |
Collapse
|
2
|
Yousefi MH, Afkhami H, Akbari A, Honari H. Expression, purification, characterization, and cytotoxic evaluation of the ML1-STxB fusion protein. Arch Microbiol 2023; 205:220. [PMID: 37148384 DOI: 10.1007/s00203-023-03563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Targeted delivery of a toxin substance to cancer cells is one of the most recent cancer treatment options. Mistletoe Lectin-1 (ML1) in Viscum album L. is a Ribosome-inactivating proteins with anticancer properties. Therefore, it appears that a recombinant protein with selective permeability can be generated by fusing ML1 protein with Shiga toxin B, which can bind to Gb3 receptor that is abundantly expressed on cancer cells. In this study, we sought to produce and purify a fusion protein containing ML1 fused to STxB and evaluate its cytotoxic activities. The ML1-STxB fusion protein coding sequence was cloned into the pET28a plasmid, then was transformed into E. coli BL21-DE3 cells. Following induction of protein expression, Ni-NTA affinity chromatography was used to purify the protein. Using SDS-PAGE and western blotting, the expression and purification processes were validated. On the SkBr3 cell line, the cytotoxic effects of the recombinant proteins were evaluated. On SDS-PAGE and western blotting membrane, analysis of purified proteins revealed a band of approximately 41 kDa for rML1-STxB. Ultimately, statistical analysis demonstrated that rML1-STxB exerted significant cytotoxic effects on SkBr3 cells at 18.09 and 22.52 ng/L. The production, purification, and encapsulation of rML1-STxB fusion protein with potential cancer cell-specific toxicity were successful. However, additional research must be conducted on the cytotoxic effects of this fusion protein on other malignant cell lines and in vivo cancer models.
Collapse
Affiliation(s)
- Mohammad Hasan Yousefi
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Atefeh Akbari
- Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Honari
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran.
| |
Collapse
|
3
|
Rostock M. [Mistletoe in the treatment of cancer patients]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:535-540. [PMID: 32211937 DOI: 10.1007/s00103-020-03122-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mistletoe (Viscum album L.) continues to be the medical herb prescribed most frequently for cancer patients in German-speaking countries. Demand for this therapy often comes from patients themselves and requires careful consideration by the attending physician during consultation.In German-speaking countries, mistletoe extracts are available as approved drugs (based on monographs of the commissions C and E of the German Federal Institute for Drugs and Medical Devices). In Switzerland, treatment costs are generally covered by statutory health insurance. In Germany, coverage is limited to palliative care. In adjuvant cases, treating physicians can request coverage by the health insurance if patients suffer from side effects due to the antitumoral treatment.The spectrum of Viscum album extract includes mistletoe lectin I; II, and III, viscotoxins, flavonoids, amino acids, polysaccharides, and membrane lipids. Preclinical studies have demonstrated cytotoxic, apoptosis-inducing, and immunomodulatory effects.Many clinical studies indicate a supportive efficacy of mistletoe extracts in tumor patients, even though methodological quality is discussed controversially in many cases. Clinical data regarding effects on survival of patients is inconsistent; effects concerning quality of life as well as the tolerability of antitumoral treatments are evaluated more positively.In view of the high demand on the patient side and increasing scientific evidence, the general conditions for prescriptions should continue as well as the ongoing scientific evaluation.
Collapse
Affiliation(s)
- Matthias Rostock
- Hubertus Wald Tumorzentrum, Universitäres Cancer Center Hamburg (UCCH), Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.
| |
Collapse
|
4
|
Bayón C, He N, Deir-Kaspar M, Blasco P, André S, Gabius HJ, Rumbero Á, Jiménez-Barbero J, Fessner WD, Hernáiz MJ. Direct Enzymatic Branch-End Extension of Glycocluster-Presented Glycans: An Effective Strategy for Programming Glycan Bioactivity. Chemistry 2016; 23:1623-1633. [DOI: 10.1002/chem.201604550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Bayón
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| | - Ning He
- Department of Organic Chemistry and Biochemistry; Technische Universität Darmstadt, A; larich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Mario Deir-Kaspar
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| | - Pilar Blasco
- Departamento de Ciencia de Proteínas; CIB-CSIC; C/Ramiro denMaeztu 9 28040 Madrid Spain
| | - Sabine André
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Veterinärstrasse 13 80539 München Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Veterinärstrasse 13 80539 München Germany
| | - Ángel Rumbero
- Department of Organic Chemistry; Faculty of Science; Autonoma University of Madrid; Spain
| | - Jesús Jiménez-Barbero
- Departamento de Ciencia de Proteínas; CIB-CSIC; C/Ramiro denMaeztu 9 28040 Madrid Spain
- Ikerbasque; Basque Foundation for Science; Maria Diaz de Haro 13 48009 Bilbao Spain
- Department of Organic Chemistry II, Faculty of Science & Technology; University of the Basque Country; 48940 Leioa Bizkaia Spain
| | - Wolf-Dieter Fessner
- Department of Organic Chemistry and Biochemistry; Technische Universität Darmstadt, A; larich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - María J. Hernáiz
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| |
Collapse
|
5
|
Delbrouck C, Gabius HJ, Vandenhoven G, Kiss R, Hassid S. Budesonide-Dependent Modulation of Expression of Macrophage Migration Inhibitory Factor in a Polyposis Model: Evidence for Differential Regulation in Surface and Glandular Epithelia. Ann Otol Rhinol Laryngol 2016; 113:544-51. [PMID: 15274414 DOI: 10.1177/000348940411300706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a counterregulatory lymphokine for glucocorticoid action within the immune system. To provide further insights into the way expression of pleiotropically acting MIF is modulated by glucocorticoids, we investigated the influence of the glucocorticoid budesonide on the level of expression of MIF in a model of human nasal polyposis by quantitative immunohistochemical analysis. Ten nasal polyps obtained from surgical resection were maintained for 24 hours in the presence of 3 budesonide concentrations: 10, 50, and 250 ng/mL. As quantitatively demonstrated by computer-assisted microscopy, 50 ng/mL induced an increase in MIF expression in the surface epithelium and a decrease in MIF expression in the glandular epithelium. At the 250 ng/mL dose, the inverse effect was induced. Evidently, surface and glandular epithelia react nonuniformly to the glucocorticoid regarding MIF presence, adding dependence on the cell type to the regulatory network.
Collapse
Affiliation(s)
- Carine Delbrouck
- Department of Otolaryngology-Head and Neck Surgery, Erasmus University Hospital, Brussels, Belgium
| | | | | | | | | |
Collapse
|
6
|
Zarogoulidis P, Tsakiridis K, Karapantzou C, Lampaki S, Kioumis I, Pitsiou G, Papaiwannou A, Hohenforst-Schmidt W, Huang H, Kesisis G, Karapantzos I, Chlapoutakis S, Korantzis I, Mpakas A, Karavasilis V, Mpoukovinas I, Li Q, Zarogoulidis K. Use of proteins as biomarkers and their role in carcinogenesis. J Cancer 2015; 6:9-18. [PMID: 25553084 PMCID: PMC4278910 DOI: 10.7150/jca.10560] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/15/2014] [Indexed: 01/11/2023] Open
Abstract
Summary: Improved diagnostic methods and medical therapies are necessary for early detection and treatment and an improved prognosis. It is thus vital to both examine and evaluate the role of the various existing proteins as biomarkers in carcinogenesis and to assess the contribution of these proteins in anti-cancer activity, for consideration in therapeutic strategies. It is essential to both examine and evaluate the role of the various existing proteins as biomarkers in carcinogenesis and to assess the contribution of these proteins in anti-cancer activity, for consideration in therapeutic strategies. The purpose of this review is twofold. Firstly, it is to evaluate recent data about which proteins can be utilized as biomarkers in carcinogenesis. The proteins reviewed include: CPTP, IL-6, CCN, and S100. Secondly, it is to evaluate the contribution of dietary proteins in cancer activity. Specifically, how whey protein, soy proteins and lectin, a phytochemical could be useful in cancer prevention and treatment. Recent Findings: Whey protein, present in dairy products, is an excellent source of the sulphur amino acid cysteine, the rate limiting substrate in glutathione synthesis. Notably, this protein survives digestion and has been shown to have anti-carcinogenic properties in animal studies. Lectins are phytochemicals present in plant foods, and have active components which alters cancer initiation, promotion and progression. Lectins have been characterized as a useful tool in biochemistry, cell biology, immunology and in diagnostic and therapeutic purposes in cancer research. Soy proteins contain various compounds, including isoflavones, protease inhibitors and protein kinase inhibitors, which have been proven effective in tumor growth inhibition. They have therefore, been greatly emphasized in cancer prevention and treatment. It has been proved that soy food consumption was associated with decreased risk of death and recurrence of breast cancer. CPTP is a recently discovered protein whose main role is to transport C1P, a pro-inflammatory molecule. The discovery of CPTP may shine a light on the mechanism of inflammatory diseases, and hopefully offer a potential target for therapeutic purposes in cancer research. Interleukin-6 is a multifunctional cytokine that affects the activity of cancer cells. It is involved in tumor growth, and elevated levels is associated with an increased risk of cancer. S100B is a well-established biomarker for malignant melanoma, and useful in assessing tumor load, stage and prognosis for patients with this disease. Other members of this family of proteins include S100A4, which has been associated with several malignancies and S100A2, which has been found to be decreased in some cancers. CCN are a group of regulatory proteins, located in the extracellular matrix (maricellular). They are involved in cellular adhesion, mitogenesis, chemotaxis, cell survival, and wound healing. CCN proteins are also able to modulate the signals of several proteins, which may also influence skeletal development and angiogenesis. Many of the functions of these proteins are thus also related to tumor growth. Furthermore, CCN interacts with estrogen in the development of cancer, and is implicated in some breast and ovarian cancers.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- 1. Pulmonary-Oncology, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kosmas Tsakiridis
- 2. Thoracic Surgery Department, ``Saint Luke`` Private Hospital, Thessaloniki, Greece
| | | | - Sofia Lampaki
- 1. Pulmonary-Oncology, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kioumis
- 1. Pulmonary-Oncology, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Pitsiou
- 1. Pulmonary-Oncology, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Papaiwannou
- 1. Pulmonary-Oncology, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Haidong Huang
- 5. Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China, China
| | - George Kesisis
- 6. Oncology Department, ``Saint Luke`` Private Hospital, Thessaloniki, Greece
| | - Ilias Karapantzos
- 3. ORL-Oncology Unit, ``Saint Luke`` Private Hospital, Thessaloniki, Greece
| | | | | | - Andreas Mpakas
- 2. Thoracic Surgery Department, ``Saint Luke`` Private Hospital, Thessaloniki, Greece
| | - Vasilis Karavasilis
- 7. Cardiothoracic Surgery Department, University hospital of Ioannina, Greece
| | - Ioannis Mpoukovinas
- 9. Oncology Department, ``BioMedicine`` Private Clinic, Thessaloniki, Greece
| | - Qiang Li
- 5. Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China, China
| | - Konstantinos Zarogoulidis
- 1. Pulmonary-Oncology, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Thio- and selenoglycosides as ligands for biomedically relevant lectins: valency-activity correlations for benzene-based dithiogalactoside clusters and first assessment for (di)selenodigalactosides. Bioorg Med Chem Lett 2014; 25:931-5. [PMID: 25599835 DOI: 10.1016/j.bmcl.2014.12.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/26/2023]
Abstract
Substitution of the oxygen atom in the glycosidic linkage by a disulfide bond or by selenium makes the resulting glycoside resistant to hydrolysis. To clarify the consequences for affinity to lectins we prepared benzene-based mono- to trivalent dithiogalactosides. Inhibitory capacity increased with valency for a plant toxin, the synthetic compounds potently blocking its binding to a lactose-presenting matrix and to cells. Human galectins were much less sensitive to the disulfides than the toxin. This differential response constitutes a beneficial effect to avoid cross-reactivity in vivo. Symmetrical selenodigalactoside and diselenodigalactoside were prepared and similarly tested. Both compounds proved rather equally bioactive for the toxin, graded activity was measured for human galectins. This result directs attention to further studies to relate Se-dependent alterations in bond angle and length as well as van der Waals radius to binding properties of selenoglycosides to biomedically relevant lectins.
Collapse
|
8
|
Rauthu SR, Shiao TC, André S, Miller MC, Madej É, Mayo KH, Gabius HJ, Roy R. Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Chembiochem 2014; 16:126-39. [DOI: 10.1002/cbic.201402474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 12/28/2022]
|
9
|
Khoo HE, Azlan A, Ismail A, Abas F, Hamid M. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays. PLoS One 2014; 9:e81447. [PMID: 24416130 PMCID: PMC3886967 DOI: 10.1371/journal.pone.0081447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/22/2013] [Indexed: 11/23/2022] Open
Abstract
Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.
Collapse
Affiliation(s)
- Hock Eng Khoo
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, Selangor, Malaysia
- * E-mail:
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
10
|
Toegel S, Bieder D, André S, Altmann F, Walzer SM, Kaltner H, Hofstaetter JG, Windhager R, Gabius HJ. Glycophenotyping of osteoarthritic cartilage and chondrocytes by RT-qPCR, mass spectrometry, histochemistry with plant/human lectins and lectin localization with a glycoprotein. Arthritis Res Ther 2013; 15:R147. [PMID: 24289744 PMCID: PMC3978707 DOI: 10.1186/ar4330] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION This study aimed to characterize the glycophenotype of osteoarthritic cartilage and human chondrocytes. METHODS Articular knee cartilage was obtained from nine osteoarthritis (OA) patients. mRNA levels for 27 glycosyltransferases were analyzed in OA chondrocytes using RT-qPCR. Additionally, N- and O-glycans were quantified using mass-spectrometry. Histologically, two cartilage areas with Mankin scores (MS) either ≤ 4 or ≥ 9 were selected from each patient representing areas of mild and severe OA, respectively. Tissue sections were stained with (1) a selected panel of plant lectins for probing into the OA glycophenotype, (2) the human lectins galectins-1 and -3, and (3) the glycoprotein asialofetuin (ASF) for visualizing β-galactoside-specific endogenous lectins. RESULTS We found that OA chondrocytes expressed oligomannosidic structures as well as non-, mono- and disialylated complex-type N-glycans, and core 2 O-glycans. Reflecting B4GALNT3 mRNA presence in OA chondrocytes, LacdiNAc-terminated structures were detected. Staining profiles for plant and human lectins were dependent on the grade of cartilage degeneration, and ASF-positive cells were observed in significantly higher rates in areas of severe degeneration. CONCLUSIONS In summary, distinct aspects of the glycome in OA cartilage are altered with progressing degeneration. In particular, the alterations measured by galectin-3 and the pan-galectin sensor ASF encourage detailed studies of galectin functionality in OA.
Collapse
|
11
|
Percec V, Leowanawat P, Sun HJ, Kulikov O, Nusbaum CD, Tran TM, Bertin A, Wilson DA, Peterca M, Zhang S, Kamat NP, Vargo K, Moock D, Johnston ED, Hammer DA, Pochan DJ, Chen Y, Chabre YM, Shiao TC, Bergeron-Brlek M, André S, Roy R, Gabius HJ, Heiney PA. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J Am Chem Soc 2013; 135:9055-77. [PMID: 23692629 DOI: 10.1021/ja403323y] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modular synthesis of 7 libraries containing 51 self-assembling amphiphilic Janus dendrimers with the monosaccharides D-mannose and D-galactose and the disaccharide D-lactose in their hydrophilic part is reported. These unprecedented sugar-containing dendrimers are named amphiphilic Janus glycodendrimers. Their self-assembly by simple injection of THF or ethanol solution into water or buffer and by hydration was analyzed by a combination of methods including dynamic light scattering, confocal microscopy, cryogenic transmission electron microscopy, Fourier transform analysis, and micropipet-aspiration experiments to assess mechanical properties. These libraries revealed a diversity of hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles denoted glycodendrimersomes, aggregates of Janus glycodendrimers and rodlike micelles named glycodendrimer aggregates and glycodendrimermicelles, cubosomes denoted glycodendrimercubosomes, and solid lamellae. These assemblies are stable over time in water and in buffer, exhibit narrow molecular-weight distribution, and display dimensions that are programmable by the concentration of the solution from which they are injected. This study elaborated the molecular principles leading to single-type soft glycodendrimersomes assembled from amphiphilic Janus glycodendrimers. The multivalency of glycodendrimersomes with different sizes and their ligand bioactivity were demonstrated by selective agglutination with a diversity of sugar-binding protein receptors such as the plant lectins concanavalin A and the highly toxic mistletoe Viscum album L. agglutinin, the bacterial lectin PA-IL from Pseudomonas aeruginosa, and, of special biomedical relevance, human adhesion/growth-regulatory galectin-3 and galectin-4. These results demonstrated the candidacy of glycodendrimersomes as new mimics of biological membranes with programmable glycan ligand presentations, as supramolecular lectin blockers, vaccines, and targeted delivery devices.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bar-Sela G, Wollner M, Hammer L, Agbarya A, Dudnik E, Haim N. Mistletoe as complementary treatment in patients with advanced non-small-cell lung cancer treated with carboplatin-based combinations: A randomised phase II study. Eur J Cancer 2013; 49:1058-64. [PMID: 23218588 DOI: 10.1016/j.ejca.2012.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/14/2012] [Accepted: 11/02/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Gil Bar-Sela
- Division of Oncology, Rambam Health Care Campus, and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
13
|
Ardá A, Blasco P, Varón Silva D, Schubert V, André S, Bruix M, Cañada FJ, Gabius HJ, Unverzagt C, Jiménez-Barbero J. Molecular recognition of complex-type biantennary N-glycans by protein receptors: a three-dimensional view on epitope selection by NMR. J Am Chem Soc 2013; 135:2667-75. [PMID: 23360551 DOI: 10.1021/ja3104928] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current surge in defining glycobiomarkers by applying lectins rekindles interest in definition of the sugar-binding sites of lectins at high resolution. Natural complex-type N-glycans can present more than one potential binding motif, posing the question of the actual mode of interaction when interpreting, for example, lectin array data. By strategically combining N-glycan preparation with saturation-transfer difference NMR and modeling, we illustrate that epitope recognition depends on the structural context of both the sugar and the lectin (here, wheat germ agglutinin and a single hevein domain) and cannot always be predicted from simplified model systems studied in the solid state. We also monitor branch-end substitutions by this strategy and describe a three-dimensional structure that accounts for the accommodation of the α2,6-sialylated terminus of a biantennary N-glycan by viscumin. In addition, we provide a structural explanation for the role of terminal α2,6-sialylation in precluding the interaction of natural N-glycans with lectin from Maackia amurensis . The approach described is thus capable of pinpointing lectin-binding motifs in natural N-glycans and providing detailed structural explanations for lectin selectivity.
Collapse
Affiliation(s)
- Ana Ardá
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Choi JH, Lyu SY, Lee HJ, Jung J, Park WB, Kim GJ. Korean mistletoe lectin regulates self-renewal of placenta-derived mesenchymal stem cells via autophagic mechanisms. Cell Prolif 2012; 45:420-9. [PMID: 22925501 DOI: 10.1111/j.1365-2184.2012.00839.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES The balance between survival and death is a key point for regulation of physiology of stem cells. Recently, applications of natural products to enhance efficiencies in culturing and differentiation of stem cells are increasing. Korean mistletoe lectin (Viscum album L. var. coloratum agglutinin, VCA) has been known to be toxic to some cancer cells, but it is still unclear whether VCA has a cytotoxic or indeed a proliferative effect on mesenchymal stem cells (MSCs). Here, we have compared effects of VCA in naïve placenta-derived stem cells (PDSCs), immortalized PDSCs and cancer cells (HepG2), and analysed their mechanisms. MATERIALS AND METHODS MTT assay was performed to analyse effects of VCA on naïve PDSCs, immortalized PDSCs and HepG2. FACS, ROS, caspase-3 assay, western blotting and immunofluorescence were performed to detect signalling events involved in self-renewal of the above cell types. RESULTS VCA had cancer cell-specific toxicity to HepG2 cells even with low concentrations of VCA (1-5 pg/ml), toxicity was observed to immortalized PDSCs and HepG2s, while proliferation of naïve PDSCs was significantly increased (P < 0.05). ROS production by VCA treatment in naïve PDSCs was significantly lower compared to controls (P < 0.05). Furthermore, autophagy was activated in naïve PDSCs treated with VCA through increase in type II LC3 and decrease in phosphorylated mTOR. CONCLUSIONS VCA can promote MSC proliferation through an activated autophagic mechanism.
Collapse
Affiliation(s)
- J H Choi
- Department of Biomedical Science, CHA University, Kangnak-ku, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Wang GN, André S, Gabius HJ, Murphy PV. Bi- to tetravalent glycoclusters: synthesis, structure-activity profiles as lectin inhibitors and impact of combining both valency and headgroup tailoring on selectivity. Org Biomol Chem 2012; 10:6893-907. [PMID: 22842468 DOI: 10.1039/c2ob25870f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The emerging functional versatility of cellular glycans makes research on the design of synthetic inhibitors a timely topic. In detail, the combination of ligand (or headgroup or contact site) structure with spatial parameters that depend on topological and geometrical factors underlies the physiological selectivity of glycan-protein (lectin) recognition. We herein tested a panel of bi-, tri- and tetravalent compounds against two plant agglutinins and adhesion/growth-regulatory lectins (galectins). In addition, we examined the impact of headgroup tailoring (converting lactose to 2'-fucosyllactose) in combination with valency increase in two assay types of increasing biorelevance (from solid-phase binding to cell binding). Compounds were prepared using copper-catalysed azide alkyne cycloaddition from peracetylated lactosyl or 2'-fucosyllactosyl azides. Significant inhibition was achieved for the plant toxin with a tetravalent compound. Different levels of sensitivity were noted for the three groups of the galectin family. The headgroup extension to 2'-fucosyllactose led to a selectivity gain, especially for the chimera-type galectin-3. Valency increase established discrimination against the homodimeric proteins, whereas the combination of valency with the headgroup extension led to discrimination against the tandem-repeat-type galectin-8 for chicken galectins but not human galectins-3 and -4. Thus, detailed structure-activity profiling of glycoclusters combined with suitably modifying the contact site for the targeted lectin will help minimize cross-reactivity among this class of closely related proteins.
Collapse
Affiliation(s)
- Guan-Nan Wang
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | |
Collapse
|
16
|
André S, Cañada FJ, Shiao TC, Largartera L, Diercks T, Bergeron-Brlek M, el Biari K, Papadopoulos A, Ribeiro JP, Touaibia M, Solís D, Menéndez M, Jiménez-Barbero J, Roy R, Gabius HJ. Fluorinated Carbohydrates as Lectin Ligands: Biorelevant Sensors with Capacity to Monitor Anomer Affinity in 19F-NMR-Based Inhibitor Screening. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Marcelo F, Cañada FJ, André S, Colombo C, Doro F, Gabius HJ, Bernardi A, Jiménez-Barbero J. α-N-Linked glycopeptides: conformational analysis and bioactivity as lectin ligands. Org Biomol Chem 2012; 10:5916-23. [DOI: 10.1039/c2ob07135e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
André S, Jarikote DV, Yan D, Vincenz L, Wang GN, Kaltner H, Murphy PV, Gabius HJ. Synthesis of bivalent lactosides and their activity as sensors for differences between lectins in inter- and intrafamily comparisons. Bioorg Med Chem Lett 2012; 22:313-8. [DOI: 10.1016/j.bmcl.2011.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 02/02/2023]
|
19
|
Miller MC, Ribeiro JP, Roldós V, Martín-Santamaría S, Cañada FJ, Nesmelova IA, André S, Pang M, Klyosov AA, Baum LG, Jiménez-Barbero J, Gabius HJ, Mayo KH. Structural aspects of binding of α-linked digalactosides to human galectin-1. Glycobiology 2011; 21:1627-41. [PMID: 21712397 DOI: 10.1093/glycob/cwr083] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
By definition, adhesion/growth-regulatory galectins are known for their ability to bind β-galactosides such as Galβ(1 → 4)Glc (lactose). Indications for affinity of human galectin-1 to α-linked digalactosides pose questions on the interaction profile with such bound ligands and selection of the galactose moiety for CH-π stacking. These issues are resolved by a combination of (15)N-(1)H heteronuclear single quantum coherence (HSQC) chemical shift and saturation transfer difference nuclear magnetic resonance (STD NMR) epitope mappings with docking analysis, using the α(1 → 3/4)-linked digalactosides and also Galα(1 → 6)Glc (melibiose) as test compounds. The experimental part revealed interaction with the canonical lectin site, and this preferentially via the non-reducing-end galactose moiety. Low-energy conformers appear to be selected without notable distortion, as shown by molecular dynamics simulations. With the α(1 → 4) disaccharide, however, the typical CH-π interaction is significantly diminished, yet binding appears to be partially compensated for by hydrogen bonding. Overall, these findings reveal that the type of α-linkage in digalactosides has an impact on maintaining CH-π interactions and the pattern of hydrogen bonding, explaining preference for the α(1 → 3) linkage. Thus, this lectin is able to accommodate both α- and β-linked galactosides at the same site, with major contacts to the non-reducing-end sugar unit.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Martín-Santamaría S, André S, Buzamet E, Caraballo R, Fernández-Cureses G, Morando M, Ribeiro JP, Ramírez-Gualito K, de Pascual-Teresa B, Cañada FJ, Menéndez M, Ramström O, Jiménez-Barbero J, Solís D, Gabius HJ. Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins. Org Biomol Chem 2011; 9:5445-55. [PMID: 21660340 DOI: 10.1039/c0ob01235a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thioglycosides offer the advantage over O-glycosides to be resistant to hydrolysis. Based on initial evidence of this recognition ability for glycosyldisulfides by screening dynamic combinatorial libraries, we have now systematically studied dithiodigalactoside on a plant toxin (Viscum album agglutinin) and five human lectins (adhesion/growth-regulatory galectins with medical relevance e.g. in tumor progression and spread). Inhibition assays with surface-presented neoglycoprotein and in solution monitored by saturation transfer difference NMR spectroscopy, flanked by epitope mapping, as well as isothermal titration calorimetry revealed binding properties to VAA (K(a): 1560 ± 20 M(-1)). They were reflected by the structural model and the affinity on the level of toxin-exposed cells. In comparison, galectins were considerably less reactive, with intrafamily grading down to very minor reactivity for tandem-repeat-type galectins, as quantitated by radioassays for both domains of galectin-4. Model building indicated contact formation to be restricted to only one galactose moiety, in contrast to thiodigalactoside. The tested glycosyldisulfide exhibits selectivity between the plant toxin and the tested human lectins, and also between these proteins. Therefore, glycosyldisulfides have potential as chemical platform for inhibitor design.
Collapse
Affiliation(s)
- Sonsoles Martín-Santamaría
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo CEU, Boadilla del Monte, 28668, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bar-Sela G. White-Berry Mistletoe (Viscum album L.) as complementary treatment in cancer: Does it help? Eur J Integr Med 2011. [DOI: 10.1016/j.eujim.2011.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Giguère D, André S, Bonin MA, Bellefleur MA, Provencal A, Cloutier P, Pucci B, Roy R, Gabius HJ. Inhibitory potential of chemical substitutions at bioinspired sites of β-D-galactopyranose on neoglycoprotein/cell surface binding of two classes of medically relevant lectins. Bioorg Med Chem 2011; 19:3280-7. [PMID: 21524586 DOI: 10.1016/j.bmc.2011.03.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 12/16/2022]
Abstract
Galactose is the key contact site for plant AB-toxins and the human adhesion/growth-regulatory galectins. Natural anomeric extensions and 3'-substitutions enhance its reactivity, thus prompting us to test the potential of respective chemical substitutions of galactose in the quest to develop potent inhibitors. Biochemical screening of a respective glycoside library with 60 substances in a solid-phase assay was followed by examining the compounds' activity to protect cells from lectin binding. By testing 32 anomeric extensions, 18 compounds with additional 3'-substitution, three lactosides and two Lewis-type trisaccharides rather mild effects compared to the common haptenic inhibitor lactose were detected in both assays. When using trivalent glycoclusters marked enhancements with 6- to 8-fold increases were revealed for the toxin and three of four tested galectins. Since the most potent compound and also 3'-substituted thiogalactosides reduced cell growth of a human tumor line at millimolar concentrations, biocompatible substitutions and scaffolds will be required for further developments. The synthesis of suitable glycoclusters, presenting headgroups which exploit differences in ligand selection in interlectin comparison to reduce cross-reactivity, and the documented strategic combination of initial biochemical screening with cell assays are considered instrumental to advance inhibitor design.
Collapse
Affiliation(s)
- Denis Giguère
- PharmaQAM, Department of Chemistry, Université du Québec à Montréal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Freudlsperger C, Dahl A, Hoffmann J, Reinert S, Schumacher U. Mistletoe lectin-I augments antiproliferative effects of the PPARgamma agonist rosiglitazone on human malignant melanoma cells. Phytother Res 2011; 24:1354-8. [PMID: 20812278 DOI: 10.1002/ptr.3122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As malignant melanoma cells are highly resistant to conventional chemotherapy, survival rates after tumor spread remain poor and hence there is an urgent need for new therapeutic options. For both mistletoe lectin-I (ML-I) and the thiazolidinediones as synthetic ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma) an antiproliferative effect on malignant melanoma cells has previously been shown. Hence, the aim of this study was to investigate whether the combination of ML-I and the PPARgamma ligand rosiglitazone is more efficacious in the treatment of malignant melanoma cells than either agent alone. Proliferation of three human melanoma cell lines treated with ML-I, rosiglitazone and the combination of both was measured in a broad concentration range (0.0001-100 microg/mL) using the XTT cell proliferation assay. Combined application tremendously increased the antiproliferative effect on all three melanoma cell lines compared with single agent treatment. In comparison with the single use of rosiglitazone, the combination with ML-I significantly increased the inhibition of cell growth by 51-79% and in comparison with the single use of ML-I by 9-32%, respectively. In conclusion, this study shows that the combination of ML-I with rosiglitazone significantly augments their antiproliferative effect on malignant melanoma cells in comparison with their single agent application, which might be a promising tool for further therapeutic studies.
Collapse
Affiliation(s)
- Christian Freudlsperger
- Institute of Anatomy II, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Ribeiro JP, Carvalho DT, André S, Cañada FJ, Alves RJ, Gabius HJ, Jiménez-Barbero J. Towards sugar derivatives as toxin-blocking pharmaceuticals: STD NMR spectroscopy as versatile tool for affinity assessment in drug development. CR CHIM 2011. [DOI: 10.1016/j.crci.2010.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Van de Wouwer M, André S, Gabius HJ, Villalobo A. Nitric oxide changes distinct aspects of the glycophenotype of human neuroblastoma NB69 cells. Nitric Oxide 2010; 24:91-101. [PMID: 21182976 DOI: 10.1016/j.niox.2010.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 12/10/2010] [Accepted: 12/16/2010] [Indexed: 11/25/2022]
Abstract
It is an open question whether the presence of nitric oxide (NO) affects the cell glycophenotype. A panel of six plant lectins was used in this study to monitor distinct aspects of cell surface glycosylation under nitrosative stress. We determined that treating human neuroblastoma NB69 cells with the long-lived NO donor 2,2'-(hydroxynitrosohydrazono)bis-ethanimine (DETA/NO) and monitoring the non-apoptotic adherent cell population significantly increases the presentation of N-glycans as detected by concanavalin A. Examining fine-structural features, bisected N-glycans and branch-end tailoring including α2,6-sialylation were found to be enhanced. Confocal fluorescence microscopy and cell permeabilization experiments pointed to a major effect of NO on the extent of cell surface N-glycan presentation. We also show that NO increases the level of protein O-GlcNAcylation, a multifunctional post-translational modification. Our results thus establish the first evidence for NO as modulator of distinct aspects of cell glycosylation.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | | | | | | |
Collapse
|
26
|
André S, Lahmann M, Gabius HJ, Oscarson S. Glycocluster design for improved avidity and selectivity in blocking human lectin/plant toxin binding to glycoproteins and cells. Mol Pharm 2010; 7:2270-9. [PMID: 21028902 DOI: 10.1021/mp1002416] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Blocking lectin/toxin binding to human cells by suitable inhibitors can therapeutically protect them from harmful effects. Clustered design of ligand presentation holds the promise of affinity increase relative to the free sugar and inherent selectivity among lectin targets. Using first a solid-phase assay with a glycoprotein presenting N-glycans as lectin-reactive probe, we assessed the inhibitory potency of bi- to tetravalent clusters on a plant toxin and three human adhesion/growth-regulatory lectins. Enhanced avidity relative to the free sugar was detected together with lectin-type selectivity. These effects were confirmed on the level of cells in vitro, also for two leguminous lectins. The lack of toxicity in cell proliferation assays excluded concerns to further work on these compounds. The given cluster design and the strategic combination of the two assay systems of increasing biorelevance will thus be helpful to take the next steps in drug development, e.g. tailoring the sugar headgroup.
Collapse
Affiliation(s)
- Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 München, Germany
| | | | | | | |
Collapse
|
27
|
Ribeiro J, André S, Cañada FJ, Gabius HJ, Butera AP, Alves RJ, Jiménez-Barbero J. Lectin-Based Drug Design: Combined Strategy to Identify Lead Compounds using STD NMR Spectroscopy, Solid-Phase Assays and Cell Binding for a Plant Toxin Model. ChemMedChem 2010; 5:415-9, 314. [DOI: 10.1002/cmdc.200900476] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
André S, Specker D, Bovin NV, Lensch M, Kaltner H, Gabius HJ, Wittmann V. Carbamate-linked lactose: design of clusters and evidence for selectivity to block binding of human lectins to (neo)glycoproteins with increasing degree of branching and to tumor cells. Bioconjug Chem 2009; 20:1716-28. [PMID: 19715307 DOI: 10.1021/bc900152w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various pathogenic processes are driven by protein(lectin)-glycan interactions, especially involving beta-galactosides at branch ends of cellular glycans. These emerging insights fuel the interest to design potent inhibitors to block lectins. As a step toward this aim, we prepared a series of ten mono- to tetravalent glycocompounds with lactose as a common headgroup. To obtain activated carbonate for ensuing carbamate formation, conditions for the facile synthesis of pure isomers from anomerically unprotected lactose were identified. To probe for the often encountered intrafamily diversity of human lectins, we selected representative members from the three subgroups of adhesion/growth-regulatory galectins as receptors. Diversity of the glycan display was accounted for by using four (neo)glycoproteins with different degrees of glycan branching as matrices in solid-phase assays. Cases of increased inhibitory potency of lactose clusters compared to free lactose were revealed. Extent of relative inhibition was not directly associated with valency in the glycocompound and depended on the lectin type. Of note for screening protocols, efficacy of blocking appeared to decrease with increased degree of glycan branching in matrix glycoproteins. Binding to tumor cells was impaired with selectivity for galectins-3 and -4. Representative compounds did not impair growth of carcinoma cells up to a concentration of 5 mM of lactose moieties (valence-corrected value) per assay. The reported bioactivity and the delineation of its modulation by structural parameters of lectins and glycans set instructive examples for the further design of selective inhibitors and assay procedures.
Collapse
Affiliation(s)
- Sabine André
- Institut fur Physiologische Chemie, Tierarztliche Fakultat, Ludwig-Maximilians-Universitat, Veterinärstrasse 13, 80539 Munchen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Jiménez-Barbero J, Dragoni E, Venturi C, Nannucci F, Ardá A, Fontanella M, André S, Cañada FJ, Gabius HJ, Nativi C. Alpha-O-linked glycopeptide mimetics: synthesis, conformation analysis, and interactions with viscumin, a galactoside-binding model lectin. Chemistry 2009; 15:10423-31. [PMID: 19746469 DOI: 10.1002/chem.200901077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Efficient cycloaddition of a silylidene-protected galactal with a suitable heterodiene yielded the basis for a facile diastereoselective route to a glycopeptide-mimetic scaffold. Its carbohydrate part was further extended by beta1-3-linked galactosylation. The pyranose rings retain their (4)C(1) chair conformation, as shown by molecular modeling and NMR spectroscopy, and the typical exo-anomeric geometry was observed for the disaccharide. The expected bioactivity was ascertained by saturation-transfer-difference NMR spectroscopy by using the galactoside-specific plant toxin viscumin as a model lectin. The experimental part was complemented by molecular docking. The described synthetic route and the strategic combination of computational and experimental techniques to reveal conformational properties and bioactivity establish the prepared alpha-O-linked glycopeptide mimetics as promising candidates for further exploitation of this scaffold to give O-glycans for lectin blocking and vaccination.
Collapse
Affiliation(s)
- Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Leyden R, Velasco-Torrijos T, André S, Gouin S, Gabius HJ, Murphy PV. Synthesis of Bivalent Lactosides Based on Terephthalamide, N,N′-Diglucosylterephthalamide, and Glycophane Scaffolds and Assessment of Their Inhibitory Capacity on Medically Relevant Lectins. J Org Chem 2009; 74:9010-26. [DOI: 10.1021/jo901667r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rosaria Leyden
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trinidad Velasco-Torrijos
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Sebastien Gouin
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Paul V. Murphy
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
- School of Chemistry, National University of Ireland, Galway
| |
Collapse
|
31
|
Kienle GS, Glockmann A, Schink M, Kiene H. Viscum album L. extracts in breast and gynaecological cancers: a systematic review of clinical and preclinical research. J Exp Clin Cancer Res 2009; 28:79. [PMID: 19519890 PMCID: PMC2711058 DOI: 10.1186/1756-9966-28-79] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 06/11/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Viscum album L. extracts (VAE, European mistletoe) are a widely used medicinal plant extract in gynaecological and breast-cancer treatment. METHODS Systematic review to evaluate clinical studies and preclinical research on the therapeutic effectiveness and biological effects of VAE on gynaecological and breast cancer. Search of databases, reference lists and expert consultations. Criteria-based assessment of methodological study quality. RESULTS 19 randomized (RCT), 16 non-randomized (non-RCT) controlled studies, and 11 single-arm cohort studies were identified that investigated VAE treatment of breast or gynaecological cancer. They included 2420, 6399 and 1130 patients respectively. 8 RCTs and 8 non-RCTs were embedded in the same large epidemiological cohort study. 9 RCTs and 13 non-RCTs assessed survival; 12 reported a statistically significant benefit, the others either a trend or no difference. 3 RCTs and 6 non-RCTs assessed tumour behaviour (remission or time to relapse); 3 reported statistically significant benefit, the others either a trend, no difference or mixed results. Quality of life (QoL) and tolerability of chemotherapy, radiotherapy or surgery was assessed in 15 RCTs and 9 non-RCTs. 21 reported a statistically significant positive result, the others either a trend, no difference, or mixed results. Methodological quality of the studies differed substantially; some had major limitations, especially RCTs on survival and tumour behaviour had very small sample sizes. Some recent studies, however, especially on QoL were reasonably well conducted. Single-arm cohort studies investigated tumour behaviour, QoL, pharmacokinetics and safety of VAE. Tumour remission was observed after high dosage and local application. VAE application was well tolerated. 34 animal experiments investigated VAE and isolated or recombinant compounds in various breast and gynaecological cancer models in mice and rats. VAE showed increase of survival and tumour remission especially in mice, while application in rats as well as application of VAE compounds had mixed results. In vitro VAE and its compounds have strong cytotoxic effects on cancer cells. CONCLUSION VAE shows some positive effects in breast and gynaecological cancer. More research into clinical efficacy is warranted.
Collapse
Affiliation(s)
- Gunver S Kienle
- Institute for Applied Epistemology and Medical Methodology, Zechenweg 6, D-79111 Freiburg, Germany
| | - Anja Glockmann
- Institute for Applied Epistemology and Medical Methodology, Zechenweg 6, D-79111 Freiburg, Germany
| | - Michael Schink
- Verein Filderklinik e.V, Research Department, Im Haberschlai 7, D-70794 Filderstadt, Germany
| | - Helmut Kiene
- Institute for Applied Epistemology and Medical Methodology, Zechenweg 6, D-79111 Freiburg, Germany
| |
Collapse
|
32
|
Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz J, Gabius HJ. Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): a gene-dependent effect on the cell surface glycan profile. Glycobiology 2009; 19:726-34. [PMID: 19293232 DOI: 10.1093/glycob/cwp040] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tumors that display a high level of microsatellite instability (MSI-H) accumulate somatic frameshift mutations in several genes. The compensation of this loss of function by transfection represents a suitable approach to tie respective gene deficiency to alterations in cellular characteristics. In view of the emerging significance of cell surface glycans as biochemical signals for presentation/activity of various receptors/integrins and for susceptibility to adhesion/growth-regulatory tissue lectins, we examined the glycophenotype in the MSI-H colon cancer cell line HCT116 for activin type 2 receptor (ACVR2), absent in melanoma 2 (AIM2), and transforming growth factor beta-type 2 receptor (TGFBR2) known to be associated with MSI colorectal carcinogenesis. A panel of probes specific for functional carbohydrate epitopes including human lectins was used to trace changes in cell surface levels, thereby initiating glycan analysis related to MSI. In particular, the presence of core substitutions and branching in N-glycans, the sialylation status of N- and O-glycans, and the presence of Le(a/x)-epitopes were profiled. Transient transfection affected the glycophenotype, depending on the nature of the gene and the probe. The TGFBR2 presence reduced binding of probes specific for a core substitution and increased branch length in N-glycosylation, even reaching a P-value of 0.0016. ACVR2/AIM2 influenced core 1 mucin-type O-glycosylation differentially, upregulation by ACVR2, and downregulation by AIM2. These alterations of cell surface glycosylation by gene products that are not directly associated with the machinery for glycan generation direct attention to pursue analysis of glycosylation in MSI tumor cells on the level of target glycoproteins and open the way for functional studies.
Collapse
Affiliation(s)
- Georgios Patsos
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Kolympadi M, Fontanella M, Venturi C, André S, Gabius HJ, Jiménez-Barbero J, Vogel P. Synthesis and Conformational Analysis of (α-D-Galactosyl)phenylmethane and α-,β-Difluoromethane Analogues: Interactions with the Plant Lectin Viscumin. Chemistry 2009; 15:2861-73. [DOI: 10.1002/chem.200801394] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Muñoz FJ, Pérez J, Rumbero Á, Santos JI, Cañada FJ, André S, Gabius HJ, Jiménez-Barbero J, Sinisterra JV, Hernáiz MJ. Glycan Tagging to Produce Bioactive Ligands for a Surface Plasmon Resonance (SPR) Study via Immobilization on Different Surfaces. Bioconjug Chem 2009; 20:673-82. [DOI: 10.1021/bc800350q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F. Javier Muñoz
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - José Pérez
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - Ángel Rumbero
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - J. Ignacio Santos
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - F. Javier Cañada
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - Sabine André
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - Hans-Joachim Gabius
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - Jesús Jiménez-Barbero
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - José V. Sinisterra
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| | - María J. Hernáiz
- Departamento de Química Orgánica y Farmacéutica, Universidad Complutense de Madrid, Pz/ Ramón y Cajal s/n. 28040 Madrid, Spain, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Ciencia de Proteínas, CIB-CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain, Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstr 13, 80539 München, Germany, Servicio de Biotransformaciones
| |
Collapse
|
35
|
He L, André S, Garamus VM, Siebert HC, Chi C, Niemeyer B, Gabius HJ. Small angle neutron scattering as sensitive tool to detect ligand-dependent shape changes in a plant lectin with β-trefoil folding and their dependence on the nature of the solvent. Glycoconj J 2008; 26:111-6. [DOI: 10.1007/s10719-008-9164-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 05/06/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
|
36
|
|
37
|
Kelter G, Fiebig HH, Schierholz JM, Fischer IU. Methodological artifacts in the assessment for (anti-) proliferative activities of mistletoe extracts. Pediatr Blood Cancer 2007; 49:105; author reply 106. [PMID: 16830332 DOI: 10.1002/pbc.20954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, Böck C, Deguchi K, Detjen KM, Wiedenmann B, von Knebel Doeberitz M, Gress TM, Nishimura SI, Rosewicz S, Gabius HJ. Tumor suppressor p16INK4a--modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 2007; 274:3233-56. [PMID: 17535296 DOI: 10.1111/j.1742-4658.2007.05851.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Expression of the tumor suppressor p16(INK4a) after stable transfection can restore the susceptibility of epithelial tumor cells to anoikis. This property is linked to increases in the expression and cell-surface presence of the fibronectin receptor. Considering its glycan chains as pivotal signals, we assumed an effect of p16(INK4a) on glycosylation. To test this hypothesis for human Capan-1 pancreatic carcinoma cells, we combined microarray for selected glycosyltransferase genes with 2D chromatographic glycan profiling and plant lectin binding. Major differences between p16-positive and control cells were detected. They concerned expression of beta1,4-galactosyltransferases (down-regulation of beta1,4-galactosyltransferases-I/V and up-regulation of beta1,4-galactosyltransferase-IV) as well as decreased alpha2,3-sialylation of O-glycans and alpha2,6-sialylation of N-glycans. The changes are compatible with increased beta(1)-integrin maturation, subunit assembly and binding activity of the alpha(5)beta(1)-integrin. Of further functional relevance in line with our hypothesis, we revealed differential reactivity towards endogenous lectins, especially galectin-1. As a result of reduced sialylation, the cells' capacity to bind galectin-1 was enhanced. In parallel, the level of transcription of the galectin-1 gene increased conspicuously in p16(INK4a)-positive cells, and even figured prominently in a microarray on 1996 tumor-associated genes and in proteomic analysis. The cells therefore gain optimal responsiveness. The correlation between genetically modulated galectin-1 levels and anoikis rates in engineered transfectants inferred functional significance. To connect these findings to the fibronectin receptor, galectin-1 was shown to be co-immunoprecipitated. We conclude that p16(INK4a) orchestrates distinct aspects of glycosylation that are relevant for integrin maturation and reactivity to an endogenous effector as well as the effector's expression. This mechanism establishes a new aspect of p16(INK4a) functionality.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
García-Aparicio V, Sollogoub M, Blériot Y, Colliou V, André S, Asensio JL, Cañada FJ, Gabius HJ, Sinaÿ P, Jiménez-Barbero J. The conformation of the C-glycosyl analogue of N-acetyl-lactosamine in the free state and bound to a toxic plant agglutinin and human adhesion/growth-regulatory galectin-1. Carbohydr Res 2007; 342:1918-28. [PMID: 17408600 DOI: 10.1016/j.carres.2007.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 11/21/2022]
Abstract
The conformational behavior of the C-glycoside analogue of N-acetyl-lactosamine, beta-C-Gal-(1-->4)-beta-GlcNAc-OMe, 1, has been studied using a combination of molecular mechanics calculations and NMR spectroscopy (J and NOE data). It is shown that the C-disaccharide populates three distinctive conformational families in solution, the major one being the anti-psi conformation. Of note, this conformation is only marginally populated for the O-disaccharide. Due to its conspicuous role in the regulation of adhesion, growth and tissue invasion of tumors and its avid binding to N-acetyl-lactosamine human, galectin-1 was tested as a receptor. This endogenous lectin recognizes a local minimum of 1, the syn-PhiPsi conformer, and thus a conformational selection process is correlated with the molecular recognition event.
Collapse
Affiliation(s)
- Víctor García-Aparicio
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24, rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pérez-Castells J, Hernández-Gay JJ, Denton RW, Tony KA, Mootoo DR, Jiménez-Barbero J. The conformational behaviour and P-selectin inhibition of fluorine-containing sialyl LeX glycomimetics. Org Biomol Chem 2007; 5:1087-92. [PMID: 17377662 DOI: 10.1039/b615752a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of experimental J/NOE NMR data with molecular mechanics and dynamics calculations has been used to examine the conformational behaviour and assign the configuration of synthetically prepared epimeric 3-carboxymethyl-O-Gal-(1-->1)-alpha-Man-fluoro-C-glycosides. It is shown that the population distributions around the glycosidic linkages strongly depend on the configuration at the fluorinated carbon of the pseudoacetal residue. It is also shown that these compounds resemble the inhibition ability of sialyl LeX towards P-selectin.
Collapse
Affiliation(s)
- Javier Pérez-Castells
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain. .
| | | | | | | | | | | |
Collapse
|
42
|
Jiménez M, André S, Siebert HC, Gabius HJ, Solís D. AB-type lectin (toxin/agglutinin) from mistletoe: differences in affinity of the two galactoside-binding Trp/Tyr-sites and regulation of their functionality by monomer/dimer equilibrium. Glycobiology 2006; 16:926-37. [PMID: 16774910 DOI: 10.1093/glycob/cwl017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viscumin of mistletoe (Viscum album L.) has a concentration-dependent activity profile unique to plant AB-toxins. It starts with lectin-dependent mitogenicity and then covers toxicity and cell agglutination, associated with shifts in the monomer/dimer equilibrium. Each lectin subunit harbors two sections for ligand contact. In the dimer, the B-chain sites in subdomain 2 gamma (designated as the Tyr-sites) appear fully accessible, whereas Trp-sites in subdomain 1 alpha are close to the dimer interface. It is unclear whether both types of sites operate similarly in binding glycoligands in solution. By systematically covering a broad range of lactose/lectin ratio in isothermal titration calorimetry, we obtained evidence for two sites showing dissimilar binding affinity. Intriguingly, the site with higher affinity was only partially occupied. To assign the observed properties to the Trp/Tyr-sites, we next performed chemically induced dynamic nuclear polarization measurements of Trp and Tyr accessibility. A Tyr signal, but not distinct Trp peaks, was recorded when testing the dimer. Lactose-quenchable Trp peaks became visible on the destabilization of the dimer by citraconylation, intimating Trp involvement in ligand contact in the monomer. Fittingly, Tyr acetylation but not mild Trp oxidation reduced the dimer hemagglutination activity and the extent of binding to asialofetuin-Sepharose 4B. Altogether, the results attribute lectin activity in the dimer primarily to Tyr-sites. Full access to Trp-sites is gained on dimer dissociation. Thus, the monomer/dimer equilibrium of viscumin regulates the operativity of these sites. Their structural divergence affords the possibility for differences in ligand selection when comparing monomers (Tyr- and Trp-sites) with dimers (primarily Tyr-sites).
Collapse
Affiliation(s)
- Marta Jiménez
- Instituto de Química Física Rocasolano, CSIC, Serrano, Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Calabrese EJ. Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol 2006; 35:463-582. [PMID: 16422392 DOI: 10.1080/10408440591034502] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article assesses the nature of the dose-response relationship of human tumor cell lines with a wide range of agents including antineoplastics, toxic substances (i.e., environmental pollutants), nonneoplastic drugs, endogenous agonists, and phyto-compounds. Hormetic-like biphasic dose responses were commonly reported and demonstrated in 136 tumor cell lines from over 30 tissue types for over 120 different agents. Quantitative features of these hormetic dose responses were similar, regardless of tumor cell line or agent tested. That is, the magnitude of the responses was generally modest, with maximum stimulatory responses typically not greater than twice the control, while the width of the stimulatory concentration range was usually less than 100-fold. Particular attention was directed to possible molecular mechanisms of the biphasic nature of the dose response, as well as clinical implications in which a low concentration of chemotherapeutic agent may stimulate tumor cell proliferation. Finally, these findings further support the conclusion that hormetic dose responses are broadly generalizable, being independent of biological model, endpoint measured, and stressor agent, and represent a basic feature of biological responsiveness to chemical and physical stressors.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
44
|
De Mejía EG, Prisecaru VI. Lectins as Bioactive Plant Proteins: A Potential in Cancer Treatment. Crit Rev Food Sci Nutr 2005; 45:425-45. [PMID: 16183566 DOI: 10.1080/10408390591034445] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Plant lectins, a unique group of proteins and glycoproteins with potent biological activity, occur in foods like wheat, corn, tomato, peanut, kidney bean, banana, pea, lentil, soybean, mushroom, rice, and potato. Thus, dietary intakes by humans can be significant. Many lectins resist digestion, survive gut passage, and bind to gastrointestinal cells and/or enter the circulation intact, maintaining full biological activity. Several lectins have been found to possess anticancer properties in vitro, in vivo, and in human case studies; they are used as therapeutic agents, preferentially binding to cancer cell membranes or their receptors, causing cytotoxicity, apoptosis, and inhibition of tumor growth. These compounds can become internalized into cells, causing cancer cell agglutination and/or aggregation. Ingestion of lectins also sequesters the available body pool of polyamines, thereby thwarting cancer cell growth. They also affect the immune system by altering the production of various interleukins, or by activating certain protein kinases. Lectins can bind to ribosomes and inhibit protein synthesis. They also modify the cell cycle by inducing non-apoptotic G1-phase accumulation mechanisms, G2/M phase cell cycle arrest and apoptosis, and can activate the caspase cascade. Lectins can also downregulate telomerase activity and inhibit angiogenesis. Although lectins seem to have great potential as anticancer agents, further research is still needed and should include a genomic and proteomic approach.
Collapse
Affiliation(s)
- Elvira González De Mejía
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Chicago, IL, USA.
| | | |
Collapse
|
45
|
Jiménez M, Sáiz JL, André S, Gabius HJ, Solís D. Monomer/dimer equilibrium of the AB-type lectin from mistletoe enables combination of toxin/agglutinin activities in one protein: analysis of native and citraconylated proteins by ultracentrifugation/gel filtration and cell biological consequences of dimer destabilization. Glycobiology 2005; 15:1386-95. [PMID: 16037489 DOI: 10.1093/glycob/cwj020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biological activity of a lectin is influenced by its quaternary structure. Viscumin is special among the family members of toxic AB-type plant lectins, because it triggers mitogenicity, toxicity, and agglutination. Its activity profile is dependent on the concentration, motivating a thorough inspection of the status of quaternary structure. Over a broad range of protein concentrations (0.01-25 mg/mL), viscumin occurs as a dimer. At high concentrations, the solutions exhibited nonideality, self-association, and polydispersity in sedimentation equilibrium and velocity experiments caused by irreversible aggregation. Calculation of viscumin's overall shape based on sedimentation velocity data resulted in an elongated dimer form resembling that of crystallized agglutinin. Appearance of monomers was restricted to concentrations in the submicrogram/mL level, as demonstrated by fast protein liquid chromatography gel-filtration analysis. To shift the equilibrium to the monomer for comparative cell biological assays, we performed chemical modification under conditions protecting the lectin activity. Citraconylation was effective to destabilize the dimer. Binding studies by fluorescence-activated cell scan analysis revealed a reduction in cell association upon modification and a tendency for increased sensitivity towards haptenic inhibitors at microg/mL concentrations. Nonetheless, growth inhibition continued to be potent for the ricin-like monomer despite reduced extent of binding. Occurrence of a concentration-dependent monomer/dimer equilibrium appears to achieve the same objectives as the development of two separate protein entities in Ricinus communis, an alternative strategy to emergence of a monomeric toxin, and cell cross-linking dimeric agglutinin.
Collapse
Affiliation(s)
- Marta Jiménez
- Instituto de Química Fisica Rocasolano, CSIC, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
André S, Kojima S, Prahl I, Lensch M, Unverzagt C, Gabius HJ. Introduction of extended LEC14-type branching into core-fucosylated biantennary N-glycan. FEBS J 2005; 272:1986-98. [PMID: 15819890 DOI: 10.1111/j.1742-4658.2005.04637.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of enzymatic substitutions modifies the basic structure of complex-type biantennary N-glycans. Among them, a beta1,2-linked N-acetylglucosamine residue is introduced to the central mannose moiety of the core-fucosylated oligosaccharide by N-acetylglucosaminyltransferase VII. This so-called LEC14 epitope can undergo galactosylation at the beta1,2-linked N-acetylglucosamine residue. Guided by the hypothesis that structural modifications in the N-glycan alter its capacity to serve as ligand for lectins, we prepared a neoglycoprotein with the extended LEC14 N-glycan and tested its properties in three different assays. In order to allow comparison to previous results on other types of biantennary N-glycans the functionalization of the glycans for coupling and assay conditions were deliberately kept constant. Compared to the core-fucosylated N-glycan no significant change in affinity was seen when testing three galactoside-specific proteins. However, cell positivity in flow cytofluorimetry was enhanced in six of eight human tumor lines. Analysis of biodistribution in tumor-bearing mice revealed an increase of blood clearance by about 40%, yielding a favorable tumor/blood ratio. Thus, the extended LEC14 motif affects binding properties to cellular lectins on cell surfaces and organs when compared to the core-fucosylated biantennary N-glycan. The results argue in favor of the concept of viewing substitutions as molecular switches for lectin-binding affinity. Moreover, they have potential relevance for glycoengineering of reagents in tumor imaging.
Collapse
Affiliation(s)
- Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Thies A, Nugel D, Pfüller U, Moll I, Schumacher U. Influence of mistletoe lectins and cytokines induced by them on cell proliferation of human melanoma cells in vitro. Toxicology 2005; 207:105-16. [PMID: 15590126 DOI: 10.1016/j.tox.2004.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 09/03/2004] [Accepted: 09/03/2004] [Indexed: 11/18/2022]
Abstract
Although aqueous mistletoe extracts are widely used in complementary cancer therapy, the precise mode of action of their main therapeutic agents, the three mistletoe lectins (MLs), is poorly understood as they act both as cytotoxic agents and as immunomodulators due to their cytokine release by mononuclear cells. Thus, this study aims to investigate both the direct and the indirect effects of MLs on the growth of human melanoma cells in vitro. Proliferation of six human melanoma cell lines under ML treatment and additionally under the influence of cytokines induced by them (TNF-alpha, IL-1, IL-6) was assessed by means of the tetrazolium derived reduction (XTT) assay. Furthermore, ML binding patterns were analysed and correlated with the biological effects. All three MLs inhibited melanoma cell proliferation in a dose-dependent manner starting at very low ML concentrations (0.001-100 ng/ml) with ML-I being the most cytotoxic lectin (significant inhibition of ultra-sensitive cell line MV3 at 1 x 10(-13) ng ML-I/ml). Even if applied in a broad concentration range (0.0001-100 ng/ml) cytokines had no influence on cell proliferation at all. For ML-I, no association between binding intensity and cytotoxicity was observed, while for ML-II and -III an association between binding and toxicity was established. In conclusion, this study emphasises the direct anti-proliferative effect of the mistletoe lectins on melanoma cells with ML-I being superior to MLs-II and -III. The observation of an ultra-sensitivity of one cell line towards ML-I toxicity may serve as an explanation for the therapeutic success in anecdotal case reports and needs further investigations.
Collapse
Affiliation(s)
- Anka Thies
- Zentrum für Experimentelle Medizin, Institut für Anatomie II, Experimentelle Morphologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
48
|
Abstract
A high-density coding system is essential to allow cells to communicate efficiently and swiftly through complex surface interactions. All the structural requirements for forming a wide array of signals with a system of minimal size are met by oligomers of carbohydrates. These molecules surpass amino acids and nucleotides by far in information-storing capacity and serve as ligands in biorecognition processes for the transfer of information. The results of work aiming to reveal the intricate ways in which oligosaccharide determinants of cellular glycoconjugates interact with tissue lectins and thereby trigger multifarious cellular responses (e.g. in adhesion or growth regulation) are teaching amazing lessons about the range of finely tuned activities involved. The ability of enzymes to generate an enormous diversity of biochemical signals is matched by receptor proteins (lectins), which are equally elaborate. The multiformity of lectins ensures accurate signal decoding and transmission. The exquisite refinement of both sides of the protein-carbohydrate recognition system turns the structural complexity of glycans--a demanding but essentially mastered problem for analytical chemistry--into a biochemical virtue. The emerging medical importance of protein-carbohydrate recognition, for example in combating infection and the spread of tumors or in targeting drugs, also explains why this interaction system is no longer below industrial radarscopes. Our review sketches the concept of the sugar code, with a solid description of the historical background. We also place emphasis on a distinctive feature of the code, that is, the potential of a carbohydrate ligand to adopt various defined shapes, each with its own particular ligand properties (differential conformer selection). Proper consideration of the structure and shape of the ligand enables us to envision the chemical design of potent binding partners for a target (in lectin-mediated drug delivery) or ways to block lectins of medical importance (in infection, tumor spread, or inflammation).
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 Munich, Germany.
| | | | | | | | | |
Collapse
|
49
|
The conformational behaviour of α,β-trehalose-like disaccharides and their C-glycosyl, imino-C-glycosyl and carbagalactose analogues depends on the chemical nature of the modification: an NMR investigation. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2004.11.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Varela BG, Fernández T, Ricco RA, Zolezzi PC, Hajos SE, Gurni AA, Alvarez E, Wagner ML. Phoradendron liga (Gill. ex H. et A.) Eichl. (Viscaceae) used in folk medicine: anatomical, phytochemical, and immunochemical studies. JOURNAL OF ETHNOPHARMACOLOGY 2004; 94:109-116. [PMID: 15261970 DOI: 10.1016/j.jep.2004.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 03/16/2004] [Accepted: 04/26/2004] [Indexed: 05/24/2023]
Abstract
Phoradendron liga (Gill. ex H. et A.) Eichl. is a Viscaceae widely distributed in Argentina. It has been commonly used in folk medicine as a substitute of the European mistletoe (Viscum album L.) to decrease high blood pressure due to their external similarity. In this study, the anatomical features as well as micromolecular and macromolecular analysis of this species are reported. Anatomical study has shown that Phoradendron liga presents as anatomic features: papillous cuticle, clusters in leaves and stems, and isodiametric stone cells only in stems. The analysis of flavonoids showed that this species produces C-glycosylflavones and 3-desoxyproanthocyanidins. Protein study showed a protein pattern with components ranging from 14 to 90 kDa and the presence of related epitopes between the species was demonstrated by cross recognition using anti-Phoradendron and anti-Viscum antisera of both species by Western blot assay. In addition, a galactose specific lectin (L-Phl) was isolated form Phoradendron liga extracts. These results are part of a comprehensive project on Argentine hemiparasite species destinated to be applied to quality control of commercial samples and disclosed their potential use as a potential source for immunomodulatory compounds.
Collapse
Affiliation(s)
- Beatriz G Varela
- Cátedra de Farmacobotánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 Piso 4to. (1113), Argentina
| | | | | | | | | | | | | | | |
Collapse
|