1
|
Takeda K, Ning F, Domenico J, Okamoto M, Ashino S, Kim S, Jeong YY, Shiraishi Y, Terada N, Sutherland ER, Gelfand EW. Activation of p70S6 Kinase-1 in Mesenchymal Stem Cells Is Essential to Lung Tissue Repair. Stem Cells Transl Med 2018; 7:551-558. [PMID: 29730892 PMCID: PMC6052610 DOI: 10.1002/sctm.17-0200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/02/2018] [Indexed: 01/06/2023] Open
Abstract
All‐trans retinoic acid (ATRA) or mesenchymal stem cells (MSCs) have been shown to promote lung tissue regeneration in animal models of emphysema. However, the reparative effects of the combination of the two and the role of p70S6 kinase‐1 (p70S6k1) activation in the repair process have not been defined. Twenty‐one days after intratracheal instillation of porcine pancreatic elastase (PPE), MSC and/or 10 days of ATRA treatment was initiated. Thirty‐two days later, static lung compliance (Cst), mean linear intercepts (MLIs), and alveolar surface area (S) were measured. After PPE, mice demonstrated increased values of Cst and MLI, and decreased S values. Both ATRA and MSC transfer were individually effective in improving these outcomes while the combination of ATRA and MSCs was even more effective. The combination of p70S6k1−/− MSCs transfer followed by ATRA demonstrated only modest effects, and rapamycin treatment of recipients with wild‐type (WT) MSCs and ATRA failed to show any effect. However, transfer of p70S6k1 over‐expressing‐MSCs together with ATRA resulted in further improvements over those seen following WT MSCs together with ATRA. ATRA activated p70S6k1 in MSCs in vitro, which was completely inhibited by rapamycin. Tracking of transferred MSCs following ATRA revealed enhanced accumulation and extended survival of MSCs in recipient lungs following PPE but not vehicle instillation. These data suggest that in MSCs, p70S6k1 activation plays a critical role in ATRA‐enhanced lung tissue repair, mediated in part by prolonged survival of transferred MSCs. p70S6k1‐activated MSCs may represent a novel therapeutic approach to reverse the lung damage seen in emphysema. stemcellstranslationalmedicine2018;7:551–558
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| | - Fangkun Ning
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| | - Joanne Domenico
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| | - Masakazu Okamoto
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| | - Shigeru Ashino
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| | - Sang‐Ha Kim
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| | - Yi Yeong Jeong
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| | - Yoshiki Shiraishi
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| | - Naohiro Terada
- Department of Pathology, Immunology and Laboratory MedicineCollege of Medicine, University of FloridaGainesvilleFloridaUSA
| | | | - Erwin W. Gelfand
- Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverColoradoUSA
| |
Collapse
|
2
|
Ahmed E, Sansac C, Assou S, Gras D, Petit A, Vachier I, Chanez P, De Vos J, Bourdin A. Lung development, regeneration and plasticity: From disease physiopathology to drug design using induced pluripotent stem cells. Pharmacol Ther 2017; 183:58-77. [PMID: 28987320 DOI: 10.1016/j.pharmthera.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lungs have a complex structure composed of different cell types that form approximately 17 million airway branches of gas-delivering bronchioles connected to 500 million gas-exchanging alveoli. Airways and alveoli are lined by epithelial cells that display a low rate of turnover at steady-state, but can regenerate the epithelium in response to injuries. Here, we review the key points of lung development, homeostasis and epithelial cell plasticity in response to injury and disease, because this knowledge is required to develop new lung disease treatments. Of note, canonical signaling pathways that are essential for proper lung development during embryogenesis are also involved in the pathophysiology of most chronic airway diseases. Moreover, the perfect control of these interconnected pathways is needed for the successful differentiation of induced pluripotent stem cells (iPSC) into lung cells. Indeed, differentiation of iPSC into airway epithelium and alveoli is based on the use of biomimetics of normal embryonic and fetal lung development. In vitro iPSC-based models of lung diseases can help us to better understand the impaired lung repair capacity and to identify new therapeutic targets and new approaches, such as lung cell therapy.
Collapse
Affiliation(s)
- Engi Ahmed
- Department of Respiratory Diseases, Hôpital Arnaud de Villeneuve, Montpellier F34000, France; CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France
| | - Caroline Sansac
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France
| | - Said Assou
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France
| | - Delphine Gras
- Dept of Respiratory Diseases APHM, INSERM CNRS U 1067, UMR7333, Aix-Marseille University, Marseille, France
| | - Aurélie Petit
- INSERM, U1046, PhyMedExp, Montpellier F34000, France
| | | | - Pascal Chanez
- Dept of Respiratory Diseases APHM, INSERM CNRS U 1067, UMR7333, Aix-Marseille University, Marseille, France
| | - John De Vos
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France; CHU Montpellier, Unit for Cellular Therapy, Hospital Saint-Eloi, Montpellier F 34000, France.
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Hôpital Arnaud de Villeneuve, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France; INSERM, U1046, PhyMedExp, Montpellier F34000, France.
| |
Collapse
|
3
|
Bowen TS, Aakerøy L, Eisenkolb S, Kunth P, Bakkerud F, Wohlwend M, Ormbostad AM, Fischer T, Wisloff U, Schuler G, Steinshamn S, Adams V, Bronstad E. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice. Med Sci Sports Exerc 2017; 49:879-887. [PMID: 28009790 DOI: 10.1249/mss.0000000000001195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. METHODS Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. RESULTS Smoking reduced body weight by 26% (P < 0.05) without overt airway destruction (P > 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). CONCLUSIONS Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.
Collapse
Affiliation(s)
- T Scott Bowen
- 1Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, GERMANY; 2Faculty of Medicine, Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, NORWAY; and 3Department of Thoracic Medicine, Clinic of Thoracic and Occupational Medicine, St. Olav's University Hospital, Trondheim, NORWAY
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Opitz L, Kling KM, Brandenberger C, Mühlfeld C. Lipid-body containing interstitial cells (lipofibroblasts) in the lungs of various mouse strains. J Anat 2017; 231:970-977. [PMID: 28786110 DOI: 10.1111/joa.12677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 11/26/2022] Open
Abstract
Pulmonary alveolar septa are thought to contain at least two types of fibroblasts that are termed myofibroblasts and lipofibroblasts based on their morphological characteristics. Lipofibroblasts possess cytoplasmic lipid inclusions (lipid bodies or droplets) and are involved in several important functions, such as surfactant synthesis, development, vitamin A storage and presumably regeneration. As vitamin A was shown to reduce pulmonary emphysema in several but not all mouse and rat strains, we hypothesized that these strain differences might be explained by a differential occurrence of lipofibroblasts and their lipid bodies in various mouse strains. Therefore, mouse lungs of six strains (NMRI, BALB/c, C3H/HeJ, C57BL/6J, C57BL/6N and FVB/N) were investigated by light and electron microscopic stereology to quantify the amount of lipid bodies and the composition of alveolar septa. Lipofibroblasts were observed qualitatively by transmission electron microscopy in every investigated mouse strain. The total volume and the volume-weighted mean volume of lipid bodies were similar in all mouse strains. The results on the composition of the interalveolar septa did not show major differences between the groups. The only mouse strain that differed significantly from the other strains was the NMRI strain because the lungs had a higher volume and consequently many of the morphological parameters were also larger than in the other groups. In conclusion, the present study showed that lipofibroblasts are a common cell type in the mouse lung across various strains. Therefore, the mere presence or absence of lipofibroblasts does not explain differences in the pulmonary regenerative potential among mouse strains.
Collapse
Affiliation(s)
- Luka Opitz
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Katharina Maria Kling
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
5
|
Tsuji H, Fujimoto H, Lee KM, Renne R, Iwanaga A, Okubo C, Onami S, Nomura AK, Nishino T, Yoshimura H. Characterization of biochemical, functional and structural changes in mice respiratory organs chronically exposed to cigarette smoke. Inhal Toxicol 2015; 27:342-53. [DOI: 10.3109/08958378.2015.1051248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Stinn W, Buettner A, Weiler H, Friedrichs B, Luetjen S, van Overveld F, Meurrens K, Janssens K, Gebel S, Stabbert R, Haussmann HJ. Lung inflammatory effects, tumorigenesis, and emphysema development in a long-term inhalation study with cigarette mainstream smoke in mice. Toxicol Sci 2013; 131:596-611. [PMID: 23104432 PMCID: PMC3551427 DOI: 10.1093/toxsci/kfs312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/17/2012] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoking is the leading cause of lung cancer and chronic obstructive pulmonary disease, yet there is little mechanistic information available in the literature. To improve this, laboratory models for cigarette mainstream smoke (MS) inhalation-induced chronic disease development are needed. The current study investigated the effects of exposing male A/J mice to MS (6h/day, 5 days/week at 150 and 300 mg total particulate matter per cubic meter) for 2.5, 5, 10, and 18 months in selected combinations with postinhalation periods of 0, 4, 8, and 13 months. Histopathological examination of step-serial sections of the lungs revealed nodular hyperplasia of the alveolar epithelium and bronchioloalveolar adenoma and adenocarcinoma. At 18 months, lung tumors were found to be enhanced concentration dependently (up to threefold beyond sham exposure), irrespective of whether MS inhalation had been performed for the complete study duration or was interrupted after 5 or 10 months and followed by postinhalation periods. Morphometric analysis revealed an increase in the extent of emphysematous changes after 5 months of MS inhalation, which did not significantly change over the following 13 months of study duration, irrespective of whether MS exposure was continued or not. These changes were found to be accompanied by a complex pattern of transient and sustained pulmonary inflammatory changes that may contribute to the observed pathogeneses. Data from this study suggest that the A/J mouse model holds considerable promise as a relevant model for investigating smoking-related emphysema and adenocarcinoma development.
Collapse
Affiliation(s)
- Walter Stinn
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | - Ansgar Buettner
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | - Horst Weiler
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | | | - Sonja Luetjen
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | | | - Kris Meurrens
- †Philip Morris Research Laboratories bvba, 3001 Leuven, Belgium
| | - Kris Janssens
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | - Stephan Gebel
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | - Regina Stabbert
- ‡Philip Morris International R&D, Neuchâtel, Switzerland; and
| | | |
Collapse
|
7
|
Iskandar AR, Liu C, Smith DE, Hu KQ, Choi SW, Ausman LM, Wang XD. β-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice. Cancer Prev Res (Phila) 2012; 6:309-20. [PMID: 23275008 DOI: 10.1158/1940-6207.capr-12-0368] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nicotine, a large constituent of cigarette smoke, is associated with an increased risk of lung cancer, but the data supporting this relationship are inconsistent. Here, we found that nicotine treatment not only induced emphysema but also increased both lung tumor multiplicity and volume in 4-nitrosamino-1-(3-pyridyl)-1-butanone (NNK)-initiated lung cancer in A/J mice. This tumor-promoting effect of nicotine was accompanied by significant reductions in survival probability and lung Sirtuin 1 (SIRT1) expression, which has been proposed as a tumor suppressor. The decreased level of SIRT1 was associated with increased levels of AKT phosphorylation and interleukin (il)-6 mRNA but decreased tumor suppressor p53 and retinoic acid receptor (RAR)-β mRNA levels in the lungs. Using this mouse model, we then determined whether β-cryptoxanthin (BCX), a xanthophyll that is strongly associated with a reduced risk of lung cancer in several cohort studies, can inhibit nicotine-induced emphysema and lung tumorigenesis. We found that BCX supplementation at two different doses was associated with reductions of the nicotine-promoted lung tumor multiplicity and volume, as well as emphysema in mice treated with both NNK and nicotine. Moreover, BCX supplementation restored the nicotine-suppressed expression of lung SIRT1, p53, and RAR-β to that of the control group, increased survival probability, and decreased the levels of lung il-6 mRNA and phosphorylation of AKT. The present study indicates that BCX is a preventive agent against emphysema and lung cancer with SIRT1 as a potential target. In addition, our study establishes a relevant animal lung cancer model for studying tumor growth within emphysematous microenvironments.
Collapse
Affiliation(s)
- Anita R Iskandar
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Chand HS, Harris JF, Mebratu Y, Chen Y, Wright PS, Randell SH, Tesfaigzi Y. Intracellular insulin-like growth factor-1 induces Bcl-2 expression in airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:4581-9. [PMID: 22461702 DOI: 10.4049/jimmunol.1102673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and it can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and insulin-like growth factor-1 (IGF-1) coincided with induced Bcl-2 expression compared with controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using short hairpin RNA showed that intracellular IGF-1 (IC-IGF-1) was increasing Bcl-2 expression. Blocking epidermal growth factor receptor or IGF-1R activation also suppressed IC-IGF-1 and abolished the Bcl-2 induction. Induced expression and colocalization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and epidermal growth factor receptor pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases.
Collapse
Affiliation(s)
- Hitendra S Chand
- Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang W, Nguyen NM, Agapov E, Holtzman MJ, Woods JC. Monitoring in vivo changes in lung microstructure with ³He MRI in Sendai virus-infected mice. J Appl Physiol (1985) 2012; 112:1593-9. [PMID: 22383505 DOI: 10.1152/japplphysiol.01165.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, a Sendai virus (SeV) model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human chronic obstructive pulmonary disease (COPD) and asthma, but the effect on distal lung parenchyma has not been investigated. The aim of our study is to image the time course and regional distribution of mouse lung microstructural changes in vivo after SeV infection. (1)H and (3)He diffusion magnetic resonance imaging (MRI) were successfully performed on five groups of C57BL/6J mice. (1)H MR images provided precise anatomical localization and lung volume measurements. (3)He lung morphometry was implemented to image and quantify mouse lung geometric microstructural parameters at different time points after SeV infection. (1)H MR images detected the SeV-induced pulmonary inflammation in vivo; spatially resolved maps of acinar airway radius R, alveolar depth h, and mean linear intercept Lm were generated from (3)He diffusion images. The morphometric parameters R and Lm in the infected group were indistinguishable from PBS-treated mice at day 21, increased slightly at day 49, and were increased with statistical significance at day 77 (p = 0.02). Increases in R and Lm of infected mice imply that there is a modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Our results indicate that (3)He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and that the Sendai mouse model has the potential to be a valid murine model of COPD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physics, Washington Univ. Box 8131, Dept. of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
10
|
Levy M, Khan E, Careaga M, Goldkorn T. Neutral sphingomyelinase 2 is activated by cigarette smoke to augment ceramide-induced apoptosis in lung cell death. Am J Physiol Lung Cell Mol Physiol 2009; 297:L125-33. [PMID: 19395669 PMCID: PMC2711801 DOI: 10.1152/ajplung.00031.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/22/2009] [Indexed: 01/22/2023] Open
Abstract
Cigarette smoke (CS) induces a rapid, sustained upregulation of ceramide production in human bronchial epithelial cells, leading to increased apoptosis. Using loss-of-function and overexpression analyses, we show that neutral sphingomyelinase 2 (nSMase2) is required for CS-mediated ceramide generation and apoptosis. Glutathione (GSH), a crucial antioxidant in lung defense, blocks nSMase2 activity and thus inhibits apoptosis triggered by CS. We found that the exposure to CS, as with exposure to H(2)O(2), results in increased nSMase2 activation leading to ceramide generation and therefore increased apoptosis. Interestingly, exposure of cells to GSH abolishes nSMase2 activation caused by CS and leads to a decrease in CS-induced apoptosis. This suggests that the effects of CS oxidants on nSMase2 are counteracted by GSH. Our data support a model where CS induces nSMase2 activation thereby increasing membrane-sphingomyelin hydrolysis to ceramide. In turn, elevated ceramide enhances airway epithelial cell death, which causes bronchial and alveolar destruction and lung injury in pulmonary diseases.
Collapse
Affiliation(s)
- Michal Levy
- Internal Medicine Respiratory Signal Transduction, University of California, School of Medicine, Davis, California 95616, USA
| | | | | | | |
Collapse
|
11
|
Perl AKT, Gale E. FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol 2009; 297:L299-308. [PMID: 19502291 DOI: 10.1152/ajplung.00008.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Normal alveolarization has been studied in rodents using detailed morphometric techniques and loss of function approaches for growth factors and their receptors. However, it remains unclear how these growth factors direct the formation of secondary septae. We have previously developed a transgenic mouse model in which expression of a soluble dominant-negative FGF receptor (dnFGFR) in the prenatal period results in reduced alveolar septae formation and subsequent alveolar simplification. Retinoic acid (RA), a biologically active derivative of vitamin A, can induce regeneration of alveoli in adult rodents. In this study, we demonstrate that RA induces alveolar reseptation in this transgenic mouse model and that realveolarization in adult mice is FGF dependent. Proliferation in the lung parenchyma, an essential prerequisite for lung regrowth was enhanced after 14 days of RA treatment and was not influenced by dnFGFR expression. During normal lung development, formation of secondary septae is associated with the transient presence of alpha-smooth muscle actin (alphaSMA)-positive interstitial myofibroblasts. One week after completion of RA treatment, alphaSMA expression was detected in interstitial fibroblasts, supporting the concept that RA-initiated realveolarization recapitulates aspects of septation that occur during normal lung development. Expression of dnFGFR blocked realveolarization with increased PDGF receptor-alpha (PDGFRalpha)-positive cells and decreased alphaSMA-positive cells. Taken together, our data demonstrate that FGF signaling is required for the induction of alphaSMA in the PDGFRalpha-positive myofibroblast progenitor and the progression of alveolar regeneration.
Collapse
Affiliation(s)
- Anne-Karina T Perl
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Ohio, USA.
| | | |
Collapse
|
12
|
Seifart C, Vogelmeier C. Emerging drugs in chronic obstructive pulmonary disease. Expert Opin Emerg Drugs 2009; 14:181-94. [DOI: 10.1517/14728210902798055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Carola Seifart
- University Hospital Giessen and Marburg GmbH, Division of Respiratory Medicine, Department of Internal Medicine, Location Marburg, Baldingerstraße, 35043 Marburg, Germany ;
| | - Claus Vogelmeier
- University Hospital Giessen and Marburg GmbH, Division of Respiratory Medicine, Department of Internal Medicine, Location Marburg, Baldingerstraße, 35043 Marburg, Germany ;
| |
Collapse
|
13
|
Chen CY, Chow D, Chiamvimonvat N, Glatter KA, Li N, He Y, Pinkerton KE, Bonham AC. Short-term secondhand smoke exposure decreases heart rate variability and increases arrhythmia susceptibility in mice. Am J Physiol Heart Circ Physiol 2008; 295:H632-9. [PMID: 18552155 DOI: 10.1152/ajpheart.91535.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to secondhand smoke (SHS), a major indoor air pollutant, is linked to increased cardiovascular morbidity and mortality, including cardiac arrhythmias. However, the mechanisms underlying the epidemiological findings are not well understood. Impaired cardiac autonomic function, indexed by reduced heart rate variability (HRV), may represent an underlying cause. The present study takes advantage of well-defined short-term SHS exposure (3 days, 6 h/day) on HRV and the susceptibility to arrhythmia in mice. With the use of electrocardiograph telemetry recordings in conscious mice, HRV parameters in the time domain were measured during the night after each day of exposure and 24 h after 3 days of exposure to either SHS or filtered air. The susceptibility to arrhythmia was determined after 3 days of exposure. Exposure to a low concentration of SHS [total suspended particle (TSP), 2.4 +/- 3.2; and nicotine, 0.3 +/- 0.1 mg/m(3)] had no significant effect on HRV parameters. In contrast, the exposure to a higher but still environmentally relevant concentration of SHS (TSP, 30 +/- 1; and nicotine, 5 +/- 1 mg/m(3)) significantly reduced HRV starting after the first day of exposure and continuing 24 h after the last day of exposure. Moreover, the exposed mice showed a significant increase in ventricular arrhythmia susceptibility and atrioventricular block. The data suggest that SHS exposure decreased HRV beyond the exposure period and was associated with an increase in arrhythmia susceptibility. The data provide insights into possible mechanisms underlying documented increases in cardiovascular morbidity and mortality in humans exposed to SHS.
Collapse
Affiliation(s)
- Chao-Yin Chen
- Dept. of Pharmacology, Univ. of California, Davis, GBSF 3510C, 1 Shields Ave., Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu J, Xu F, Barrett E. Metalloelastase in lungs and alveolar macrophages is modulated by extracellular substance P in mice. Am J Physiol Lung Cell Mol Physiol 2008; 295:L162-70. [PMID: 18441096 DOI: 10.1152/ajplung.00282.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metalloelastase (MMP-12), mainly produced by macrophages, has been shown to play a key role in the pathogenesis of emphysema in animal models. Chronic cigarette smoke increases pulmonary MMP-12, which is closely correlated with an elevation of pulmonary substance P (SP). Because alveolar macrophages (AMs) contain the neurokinin-1 receptor (NK1R), we tested whether SP was able to trigger the upregulation of MMP-12 synthesis in AMs by acting on the NK1R. AMs isolated from bronchoalveolar lavage cells in C3H/HeN mice were cultured with control medium or SP that was coupled without or with NK1R antagonists (CP-99,994 or aprepitant) for 24 h. We found that SP significantly increased the mRNA of MMP-12 and NK1R by 11-fold and 82%, respectively, in AMs (P<0.05), and these responses were abolished by NK1R antagonists with little change in the cells' viability. Because pulmonary SP is primarily released by bronchopulmonary C-fibers (PCFs), we further asked whether destruction of PCFs would reduce SP and MMP-12. Two groups of mice were pretreated with vehicle and neonatal capsaicin (NCAP) to degenerate PCFs, respectively. Our results show that NCAP treatment significantly decreased mRNA and protein levels of SP associated with a reduction NK1R and MMP-12 in the lungs and AMs. These findings suggest that SP has a modulatory effect on pulmonary MMP-12 by acting on NK1R to trigger MMP-12 syntheses in the AMs.
Collapse
Affiliation(s)
- J Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | |
Collapse
|
15
|
Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol 2008; 294:L612-31. [PMID: 18223159 DOI: 10.1152/ajplung.00390.2007] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoke-induced animal models of chronic obstructive pulmonary disease support the protease-antiprotease hypothesis of emphysema, although which cells and proteases are the crucial actors remains controversial. Inhibition of either serine or metalloproteases produces significant protection against emphysema, but inhibition is invariably accompanied by decreases in the inflammatory response to cigarette smoke, suggesting that these inhibitors do more than just prevent matrix degradation. Direct anti-inflammatory interventions are also effective against the development of emphysema, as are antioxidant strategies; the latter again decrease smoke-induced inflammation. There is increasing evidence for autoimmunity, perhaps directed against matrix components, as a driving force in emphysema. There is intriguing but controversial animal model evidence that failure to repair/failure of lung maintenance also plays a role in the pathogenesis of emphysema. Cigarette smoke produces small airway remodeling in laboratory animals, possibly by direct induction of fibrogenic growth factors in the airway wall, and also produces pulmonary hypertension, at least in part through direct upregulation of vasoactive mediators in the intrapulmonary arteries. Smoke exposure causes goblet cell metaplasia and excess mucus production in the small airways and proximal trachea, but these changes are not good models of either chronic bronchitis or acute exacerbations. Emphysema, small airway remodeling, pulmonary hypertension, and mucus production appear to be at least partially independent processes that may require different therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Churg
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
16
|
Stinchcombe SV, Maden M. Retinoic acid induced alveolar regeneration: critical differences in strain sensitivity. Am J Respir Cell Mol Biol 2007; 38:185-91. [PMID: 17717321 DOI: 10.1165/rcmb.2007-0252oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In emphysema, the lung cannot spontaneously regenerate lost alveolar tissue. Treatment with retinoic acid (RA) in rodent models of emphysema induces alveolar regeneration. However, some animal studies have failed to show regeneration when using different species and strains. We have previously shown that dexamethasone (Dex) treatment of newborn TO outbred strain mice permanently disrupts alveolar development. Later RA treatment restores alveolar architecture to normal. To determine whether this model of alveolar regeneration is strain specific, our protocol was repeated with two new outbred mouse strains. ICR and NIHS mice received Dex from Postnatal Days 4 to P15 (P4- P15). From P46 to P57, mice received RA (2 mg/kg) or vehicle. An additional ICR group received 5x RA (10 mg/kg) from P46 to P57. Control groups received vehicle at both treatment points. All mice were killed at P90 and lung morphology analyzed. Dex-treated ICR and NIHS mice showed increased mean alveolar chord length (Lm) and reduced alveolar surface area (SA) and SA/lung volume (SA/LV) compared with controls. RA-treated NIHS mice showed return of Lm, SA, and SA/LV toward control values, indicating alveolar regeneration. ICR RA group mice did not regenerate, but 5x RA mice showed Lm, SA, and SA/LV values consistent with alveolar regeneration. In conclusion, the Dex-treated mouse model of emphysema is robust and repeatable in different strains. RA-induced alveolar regeneration is not a strain-specific phenomenon. RA dose threshold for inducing alveolar regeneration is higher in ICR mice, suggesting a difference in retinoid pharmacokinetics between strains. These results provide a possible explanation for previous failed studies of RA-induced alveolar regeneration.
Collapse
Affiliation(s)
- Siân V Stinchcombe
- Centre for Developmental Neurobiology, 4th Floor, New, Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK.
| | | |
Collapse
|
17
|
Lu B, Kerepesi L, Wisse L, Hitchman K, Meng QR. Cytotoxicity and gene expression profiles in cell cultures exposed to whole smoke from three types of cigarettes. Toxicol Sci 2007; 98:469-78. [PMID: 17494027 DOI: 10.1093/toxsci/kfm112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The purpose of this study was to evaluate and compare the cytotoxicity and gene expression profiles in cell cultures exposed to whole smoke generated from a full flavor cigarette (Test 1), a low tar cigarette (Test 2), and an ultra-low tar cigarette (Test 3). In addition, a reference cigarette 2R4F was evaluated for cytotoxicity. Neutral red (NR) cytotoxicity assay was performed to determine relative cell death at each exposure concentration (n = 6). LC(50) was generated using wet total particular matter (WTPM), cigarette number, or nicotine concentrations. The overall order of cytotoxicity was Test 1 >> 2R4F approximately Test 2 > Test 3. Cell culture samples were collected for RNA extraction at WTPM concentrations of each cigarette that gave similar nicotine concentrations. Affymetrix mouse whole genome 430 2.0 array was used to characterize the gene expression profiles for each cigarette. A total of 598 genes in Test 1, 176 genes in Test 2, and 234 genes in Test 3 samples were differentially expressed compared to the concurrent sham controls. The major biological processes associated with the changed genes in Test 1 samples were down-regulated DNA replication and cell proliferation; the same biological processes were much less affected in Test 2 and Test 3 samples. The common findings in all three cigarettes types were increased glutathione biosynthesis/consumption and inflammatory response, which are known biological effects caused by smoke exposure. The most significantly up-regulated genes were CYP1A1, GSTs, Hmox1, and Procr in smoke-exposed samples, which are either related to well-studied mechanisms of smoke exposure-related diseases or potential new biomarkers for assessing and monitoring biological effects of cigarette smoke exposure in vivo and in smokers. In summary, both the NR cytotoxicity assay and gene expression profiling were able to differentiate the three types of test cigarettes, and the results demonstrated reduced biological effects for the Test 2 and Test 3 cigarettes compared to the Test 1 cigarette in BALB/c-3T3 Cells.
Collapse
Affiliation(s)
- Binbin Lu
- Batttelle Toxicology Northwest, 902 Battelle Boulevard, PO Box 999, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
18
|
Dunnick JK, Thayer KA, Travlos GS. Inclusion of biomarkers for detecting perturbations in the heart and lung and lipid/carbohydrate metabolism in National Toxicology Program studies. Toxicol Sci 2007; 100:29-35. [PMID: 17490986 PMCID: PMC2080693 DOI: 10.1093/toxsci/kfm113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Environmental factors and exposures may contribute to many serious diseases afflicting humans. Biomarkers are useful to understand disease processes and identify early events leading to disease. The National Toxicology Program (NTP) convened a workshop in September 2006 to help identify biomarkers that could be used in toxicology studies with rodents to predict disease outcome and detect early events in disease processes. Expert scientists reviewed biomarkers for disease/injury related to the heart, lung, and/or changes in lipid/carbohydrate metabolism and made recommendations for those that could be incorporated into NTP studies on a routine or selective basis. Although numerous biomarkers were discussed, only a few were considered amenable for routine use. This article summarizes recommendations for the most promising biomarkers and presents the NTP perspective on those that will be included in the bioassay program on a routine or special study basis. Breakout group reports and additional information on the workshop, including participants, presentations, and background materials, are posted on the NTP Web site http://ntp.niehs.nih.gov/go/20940.
Collapse
Affiliation(s)
- June K Dunnick
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
19
|
March TH, Wilder JA, Esparza DC, Cossey PY, Blair LF, Herrera LK, McDonald JD, Campen MJ, Mauderly JL, Seagrave J. Modulators of cigarette smoke-induced pulmonary emphysema in A/J mice. Toxicol Sci 2006; 92:545-59. [PMID: 16699168 DOI: 10.1093/toxsci/kfl016] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mice develop pulmonary emphysema after chronic exposure to cigarette smoke (CS). In this study, the influence of gender, exposure duration, and concentration of CS on emphysema, pulmonary function, inflammation, markers of toxicity, and matrix metalloproteinase (MMP) activity was examined in A/J mice. Mice were exposed to CS at either 100 or 250 mg total particulate material/m(3) (CS-100 or CS-250, respectively) for 10, 16, or 22 weeks. Evidence of emphysema was first seen in female mice after 10 weeks of exposure to CS-250, while male mice did not develop emphysema until 16 weeks. Female mice exposed to CS-100 did not have emphysema until 16 weeks, suggesting that disease development depends on the concentration and duration of exposure. Airflow obstruction and increased pulmonary compliance were observed in mice exposed to CS-250 for 22 weeks. Decreased elasticity was likely the major contributor to airflow obstruction because substantial remodeling of the conducting airways, beyond mild mucous cell hyperplasia, was lacking. Exposure to CS increased the number of macrophages, neutrophils, lymphocytes (B cells and activated CD4- and CD8-positive T cells), and activity of MMP-2 and -9 in the bronchoalveolar lavage fluid (BALF). Treatment with antioxidants N-acetylcysteine or epigallocatechin gallate (EGCG) did not decrease emphysema severity, but EGCG slightly decreased BALF inflammatory cell numbers and lactate dehydrogenase activity. Inflammation and emphysema persisted after a 17-week recovery period following exposure to CS-250 for 22 weeks. The similarities of this model to the human disease make it promising for studying disease pathogenesis and assessing new therapeutic interventions.
Collapse
Affiliation(s)
- Thomas H March
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|