1
|
Carpenter MA, Thyagarajan A, Owens M, Annamraju R, Borchers CB, Travers JB, Kemp MG. The acid sphingomyelinase inhibitor imipramine enhances the release of UV photoproduct-containing DNA in small extracellular vesicles in UVB-irradiated human skin. Photochem Photobiol 2024. [PMID: 38433456 DOI: 10.1111/php.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Nucleic acids, lipids, and other cell components can be found within different types of extracellular vesicles (EVs), which include apoptotic bodies (ABs), large extracellular vesicles (LEVs), and small extracellular vesicles (SEVs). Release of LEVs from cells can be reduced by genetic or pharmacological inhibition of the enzyme acid sphinogomyelinase (aSMase), and indeed several studies have demonstrated a role for the clinically approved aSMase inhibitor imipramine in blocking LEV release, including in response to UVB exposure. Given that exposure of keratinocytes to UVB radiation results in the generation of UVR photoproducts in DNA that can subsequently be found in association with ABs and SEVs, we examined how imipramine impacts the release of extracellular DNA containing UVR photoproducts at an early time point after UVR exposure. Using several different model systems, including cultured keratinocytes in vitro, discarded human surgical skin ex vivo, and skin biopsies obtained from treated human subjects, these pilot studies suggest that imipramine treatment stimulates the release of CPD-containing, SEV-associated DNA. These surprising findings indicate that LEV and SEV generation pathways could be linked in UVB-irradiated cells and that imipramine may exacerbate the systemic effects of extracellular UVR-damaged DNA throughout the body.
Collapse
Affiliation(s)
- M Alexandra Carpenter
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Madison Owens
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Risha Annamraju
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Christina B Borchers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Dayton VA Medical Center, Dayton, Ohio, USA
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Dayton VA Medical Center, Dayton, Ohio, USA
| |
Collapse
|
2
|
Xu H, Ding Y, Qi X, Zhang ZJ, Su J. Ameliorated Neurogenesis Deficits in Dentate Gyrus May Underly the Pronounced Antidepressant Effect of TREK-1 Potassium Channel Blockade in Rats with Depressive-like Behavior. ACS Chem Neurosci 2022; 13:3068-3077. [PMID: 36269040 DOI: 10.1021/acschemneuro.2c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Depression is considered to be the most common mental disorder and is probed by several studies that chronic mild stress contributes to depression, and fortunately, most antidepressants ameliorate depressive-like behavior accompanied with reversed hippocampal neurogenesis defects. In our present study, we confirmed that different antidepressants repaired the stress-induced neuronal and behavioral deficits by modulating adult hippocampal neurogenesis. Antidepressant treatment restored the adult hippocampal neurodegeneration, which was impaired by chronic unpredicted mild stress displaying decreased proliferation and neuronal differentiation but increased apoptosis of newly formed neurons in dentate gyrus. Notably, sucrose preference ratio significantly correlated with both neuronal differentiation proportion and newborn apoptosis proportion, suggesting a mechanistic relationship between neurogenesis and behavior. Indeed, the neotype TREK-1 potassium channel blocker expressed an earlier and pronounced antidepressant manifestation compared to the traditional selective serotonin-reuptake inhibitors fluoxetine. We therefore conclude that the administration of TREK-1 potassium channel antagonism can reverse the depressive deficits caused by chronic stress quickly via regulation of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou, Jiangsu 213200, China.,Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yingpeng Ding
- Department of Cardiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou 213200, Jiangsu, China
| | - Xinyang Qi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,The Brain Cognition and Brain Disease Institute (BCBDI), CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianhua Su
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou, Jiangsu 213200, China
| |
Collapse
|
3
|
Wnętrzak A, Kubisiak A, Filiczkowska A, Gonet-Surówka A, Chachaj-Brekiesz A, Targosz-Korecka M, Dynarowicz-Latka P. Can oxysterols work in anti-glioblastoma therapy? Model studies complemented with biological experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183773. [PMID: 34517001 DOI: 10.1016/j.bbamem.2021.183773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Despite the progress made in recent years in the field of oncology, the results of glioblastoma treatment remain unsatisfactory. In this paper, cholesterol derivatives - oxysterols - have been investigated in the context of their anti-cancer activity. First, the influence of three oxysterols (7-K, 7β-OH and 25-OH), differing in their chemical structure, on the properties of a model membrane imitating glioblastoma multiforme (GBM) cells was investigated. For this purpose, the Langmuir monolayer technique was applied. The obtained results clearly show that oxysterols modify the structure of the membrane by its stiffening, with the 7-K effect being the most pronounced. Next, the influence of 7-K on the nanomechanical properties of glioblastoma cells (U-251 line) was verified with AFM. It has been shown that 7-K has a dose-dependent cytotoxic effect on glioblastoma cells leading to the induction of apoptosis as confirmed by viability tests. Interestingly, significant changes in membrane structure, characteristic for phospholipidosis, has also been observed. Based on our results we believe that oxysterol-induced apoptosis and phospholipidosis are related and may share common signaling pathways. Dysregulation of lipids in phospholipidosis inhibit cell proliferation and may play key roles in the induction of apoptosis by oxysterols. Moreover, anticancer activity of these compounds may be related to the immobilization of cancer cells as a result of stiffening effect caused by oxysterols. Therefore, we believe that oxysterols are good candidates as new therapeutic molecules as an alternative to the aggressive treatment of GBM currently in use.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Agata Kubisiak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anna Filiczkowska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | | | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marta Targosz-Korecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | | |
Collapse
|
4
|
Özkaya AK, Dilber E, Gürgen SG, Kutlu Ö, Cansu A, Gedik Y. Effects of chronic amiodarone treatment on rat testis. Acta Histochem 2016; 118:271-7. [PMID: 26947592 DOI: 10.1016/j.acthis.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Amiodarone is a potent agent used to treat tachyarrhythmias, which are especially refractory to other medications, in both adults and children. Although widely used as an antiarrhythmic drug, amiodarone causes many serious adverse effects that limit its use. This study investigated the possible morphological and apoptotic effects of amiodarone on rat testes. Amiodarone was administered to male Sprague-Dawley rats at doses of 20 or 200mg/kg/day for 14 days. A histopathological examination of testicular tissue revealed the presence of inflammatory cells in the seminiferous tubule lumen together with swelling and vacuolization in the cytoplasm of some spermatogonia; these effects occured in a dose-dependent manner. Immunohistochemical staining showed evidence of apoptosis, including caspase-3, caspase-9, Bax and increased DNA fragmentation was detected via a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. In conclusion, the results show that chronic amiodarone treatment causes dose-dependent degenerative and apoptotic effects on rat testes.
Collapse
|
5
|
Luchetti F, Canonico B, Cesarini E, Betti M, Galluzzi L, Galli L, Tippins J, Zerbinati C, Papa S, Iuliano L. 7-Ketocholesterol and 5,6-secosterol induce human endothelial cell dysfunction by differential mechanisms. Steroids 2015; 99:204-11. [PMID: 25697053 DOI: 10.1016/j.steroids.2015.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022]
Abstract
7-Ketocholesterol and 5,6-secosterol are cholesterol autoxidation products generated under oxidative stress by two distinct mechanisms. They are present in atherosclerotic plaques and are candidate players in the disease initiation and progression. While 7-ketocholesterol affects at cellular level, in particular apoptosis, are well known and reported on diverse cell lines, 5,6-secosterol is a recently discovered oxysterol with relatively few reports on the potential to affect endothelial cell functions. Endothelial cells have a central role in cardiovascular disease as they provide the barrier between blood and the vessel wall where atherosclerosis starts and progresses. Insults to endothelial cells provoke their dysfunction favoring pro-atherogenic and pro-thrombotic effects. In the present work, we tested 7-ketocholesterol and 5,6-secosterol on endothelial cells - focusing on apoptosis and the associated mitochondrial/lysosome alterations - and on endothelial function using the in vitro model of arterial relaxation of aortic rings. Our data provide evidence that 7-ketocholesterol and 5,6-secosterol are efficient instigators of apoptosis, which for 5,6-secosterol is associated to PKC and p53 up-regulation. In addition 5,6-secosterol is a potent inhibitor of endothelial-dependent arterial relaxation through PKC-dependent mechanisms. This may contribute to pro-atherogenic and pro-thrombotic mechanisms of 5,6-secosterol and highlights the role of cholesterol autoxidation in cardiovascular disease.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| | - Barbara Canonico
- Department of Earth, Life and Environmental Science, University of Urbino "Carlo Bo", Urbino, Italy
| | - Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Michele Betti
- Department of Earth, Life and Environmental Science, University of Urbino "Carlo Bo", Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Laura Galli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - John Tippins
- Division of Cell & Molecular Biology, Biochemistry Building, Imperial College, London, UK
| | - Chiara Zerbinati
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Luigi Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
6
|
Tulathromycin exerts proresolving effects in bovine neutrophils by inhibiting phospholipases and altering leukotriene B4, prostaglandin E2, and lipoxin A4 production. Antimicrob Agents Chemother 2014; 58:4298-307. [PMID: 24820086 DOI: 10.1128/aac.02813-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The accumulation of neutrophils and proinflammatory mediators, such as leukotriene B4 (LTB4), is a classic marker of inflammatory disease. The clearance of apoptotic neutrophils, inhibition of proinflammatory signaling, and production of proresolving lipids (including lipoxins, such as lipoxin A4 [LXA4]) are imperative for resolving inflammation. Tulathromycin (TUL), a macrolide used to treat bovine respiratory disease, confers immunomodulatory benefits via mechanisms that remain unclear. We recently reported the anti-inflammatory properties of TUL in bovine phagocytes in vitro and in Mannheimia haemolytica-challenged calves. The findings demonstrated that this system offers a powerful model for investigating novel mechanisms of pharmacological immunomodulation. In the present study, we examined the effects of TUL in a nonbacterial model of pulmonary inflammation in vivo and characterized its effects on lipid signaling. In bronchoalveolar lavage (BAL) fluid samples from calves challenged with zymosan particles (50 mg), treatment with TUL (2.5 mg/kg of body weight) significantly reduced pulmonary levels of LTB4 and prostaglandin E2 (PGE2). In calcium ionophore (A23187)-stimulated bovine neutrophils, TUL inhibited phospholipase D (PLD), cytosolic phospholipase A2 (PLA2) activity, and the release of LTB4. In contrast, TUL promoted the secretion of LXA4 in resting and A23187-stimulated neutrophils, while levels of its precursor, 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE], were significantly lower. These findings indicate that TUL directly modulates lipid signaling by inhibiting the production of proinflammatory eicosanoids and promoting the production of proresolving lipoxins.
Collapse
|
7
|
Bielecka AM, Obuchowicz E. Antidepressant drugs as a complementary therapeutic strategy in cancer. Exp Biol Med (Maywood) 2014; 238:849-58. [PMID: 23970405 DOI: 10.1177/1535370213493721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the last decade, it has been increasingly recognized that antidepressant drugs may exert a range of effects, in addition to their well-documented ability to modulate neurotransmission. Although as a group they act on monoaminergic systems and receptors in different ways, a number of studies have demonstrated that at least some antidepressants might have other properties in common, including immunomodulatory, cyto/neuroprotective, analgesic and anti-inflammatory activities. These properties are partly related to the influence of antidepressants on glial cell function. Recently, emerging information about the possible anticancer properties of antidepressants has sparked increased interest within scientific community, and there is now evidence that these drugs affect the key cellular mechanisms of carcinogenesis. This review examines the putative cellular targets for the anticancer action of antidepressant drugs, and presents examples of the interaction between antidepressants and anticancer drugs. By reviewing the current state of research in this area, we hope to focus the attention of oncologists and researchers engaged in the study of cancer on the role that antidepressant drugs could play in the complementary therapy of cancer.
Collapse
Affiliation(s)
- Anna M Bielecka
- Medical University of Silesia, Department of Pharmacology, Medyków 18, 40-752 Katowice, Poland.
| | | |
Collapse
|
8
|
Bright SA, Brinkø A, Larsen MT, Sinning S, Williams DC, Jensen HH. Basic N-interlinked imipramines show apoptotic activity against malignant cells including Burkitt’s lymphoma. Bioorg Med Chem Lett 2013; 23:1220-4. [DOI: 10.1016/j.bmcl.2013.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/01/2013] [Accepted: 01/04/2013] [Indexed: 11/15/2022]
|
9
|
Muehlbacher M, Tripal P, Roas F, Kornhuber J. Identification of drugs inducing phospholipidosis by novel in vitro data. ChemMedChem 2012; 7:1925-34. [PMID: 22945602 PMCID: PMC3533795 DOI: 10.1002/cmdc.201200306] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 11/15/2022]
Abstract
Drug-induced phospholipidosis (PLD) is a lysosomal storage disorder characterized by the accumulation of phospholipids within the lysosome. This adverse drug effect can occur in various tissues and is suspected to impact cellular viability. Therefore, it is important to test chemical compounds for their potential to induce PLD during the drug design process. PLD has been reported to be a side effect of many commonly used drugs, especially those with cationic amphiphilic properties. To predict drug-induced PLD in silico, we established a high-throughput cell-culture-based method to quantitatively determine the induction of PLD by chemical compounds. Using this assay, we tested 297 drug-like compounds at two different concentrations (2.5 μM and 5.0 μM). We were able to identify 28 previously unknown PLD-inducing agents. Furthermore, our experimental results enabled the development of a binary classification model to predict PLD-inducing agents based on their molecular properties. This random forest prediction system yields a bootstrapped validated accuracy of 86 %. PLD-inducing agents overlap with those that target similar biological processes; a high degree of concordance with PLD-inducing agents was identified for cationic amphiphilic compounds, small molecules that inhibit acid sphingomyelinase, compounds that cross the blood-brain barrier, and compounds that violate Lipinski's rule of five. Furthermore, we were able to show that PLD-inducing compounds applied in combination additively induce PLD.
Collapse
Affiliation(s)
- Markus Muehlbacher
- Department for Psychiatry and Psychotherapy, University Hospital, Friedrich Alexander University Erlangen Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Computer Chemistry Center, Friedrich Alexander University Erlangen Nuremberg, Nägelsbachstr. 25, 91052 Erlangen (Germany)
| | | | | | | |
Collapse
|
10
|
Djordjevic A, Djordjevic J, Elaković I, Adzic M, Matić G, Radojcic MB. Effects of fluoxetine on plasticity and apoptosis evoked by chronic stress in rat prefrontal cortex. Eur J Pharmacol 2012; 693:37-44. [DOI: 10.1016/j.ejphar.2012.07.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/10/2012] [Accepted: 07/27/2012] [Indexed: 02/01/2023]
|
11
|
Djordjevic A, Djordjevic J, Elaković I, Adzic M, Matić G, Radojcic MB. Fluoxetine affects hippocampal plasticity, apoptosis and depressive-like behavior of chronically isolated rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:92-100. [PMID: 22019604 DOI: 10.1016/j.pnpbp.2011.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/20/2011] [Accepted: 10/07/2011] [Indexed: 12/29/2022]
Abstract
Plastic response and successful adaptation to stress are of particular importance in the hippocampus, where chronic stress may cause cell death instead of neural remodeling. Structural modifications that occur both in the brain of depressed patients and animal stress models may be reversed by antidepressants. Since morphological changes induced by stress and/or antidepressants could be mediated by presynaptically located proteins, determining the levels of these proteins may be a useful way to identify molecular changes associated with synaptic plasticity. In this study we analyzed the effects of chronic (six-week) social isolation and long-term (three-week) fluoxetine treatment on molecular markers of plasticity and apoptosis in the hippocampus of Wistar rats. Compartmental redistribution of NFκB transcription factor involved in the regulation of plasticity and apoptosis was also examined. To establish whether social isolation is able to evoke behavioral-like effects, which might be related to the observed molecular changes, we performed the forced swimming test. The results show that synaptosomal polysialic neural cell adhesion molecule (PSA-NCAM), a molecular plasticity marker, was increased in the hippocampus of chronically isolated rats, while subsequent treatment with fluoxetine set it at the control level. In addition, analysis of cytoplasm/mitochondria redistribution of apoptotic proteins Bax and Bcl-2 after exposure to chronic isolation stress, revealed an increase in Bcl-2 protein expression in both compartments, while fluoxetine enhanced the effect of stress only in the mitochondria. The observed alterations at the molecular level were accompanied by normalization of stress-induced behavioral changes by fluoxetine.
Collapse
Affiliation(s)
- Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
12
|
Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hipppocampus. PLoS One 2011; 6:e27290. [PMID: 22076148 PMCID: PMC3208633 DOI: 10.1371/journal.pone.0027290] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
The relationships among hippocampal neurogenesis, depression and the mechanism of action of antidepressant drugs have generated a considerable amount of controversy. The cyclin-dependent kinase (Cdk) inhibitor p21Cip1 (p21) plays a crucial role in restraining cellular proliferation and maintaining cellular quiescence. Using in vivo and in vitro approaches the present study shows that p21 is expressed in the subgranular zone of the dentate gyrus of the hippocampus in early neuronal progenitors and in immature neurons, but not in mature neurons or astroglia. In vitro, proliferation is higher in neuronal progenitor cells derived from p21-/- mice compared to cells derived from wild-type mice. Proliferation is increased in neuronal progenitor cells after suppression of p21 using lentivirus expressing short hairpin RNA against p21. In vivo, chronic treatment with the non-selective antidepressant imipramine as well as the norepinephrine-selective reuptake inhibitor desipramine or the serotonin-selective reuptake inhibitor fluoxetine all decrease p21 expression, and this was associated with increased neurogenesis. Chronic antidepressant treatment did not affect the expression of other Cdk inhibitors. Untreated p21-/- mice exhibit a higher degree of baseline neurogenesis and decreased immobility in the forced swim test. Although chronic imipramine treatment increased neurogenesis and reduced immobility in the forced swim test in wild-type mice, it reduced neurogenesis and increased immobility in p21-/- mice. These results demonstrate the unique role of p21 in the control of neurogenesis, and support the hypothesis that different classes of reuptake inhibitor-type antidepressant drugs all stimulate hippocampal neurogenesis by inhibiting p21 expression.
Collapse
|
13
|
Abstract
AbstractAlthough, the antiarrhythmic effect of amiodarone (AMD) is well characterized, the mechanism of its toxicity on extracardiac tissues is still poorly understood. Several antioxidants have been shown to prevent AMD-induced toxicity by antioxidant and/or non-antioxidant mechanisms. In the current study, we evaluated the possible protective effect, in vitro, of vitamin C on AMD-induced toxicity in rat thymocytes. Rat thymocytes were cultured with increasing AMD concentrations (1–20 μM) with or without vitamin C (1000 μg/ml), for 24 hours. Cells treatment with AMD resulted in a concentration-dependent increase of hypodiploid cells and a significant decrease in cellular glutathione content. Vitamin C combined with AMD significantly decreased the proportion of hypodiploid cells and markedly increased the cellular glutathione content, compared with AMD treatment alone. These results suggest that treatment with vitamin C may prevent AMD-induced toxicity in rat thymocytes by restoring cellular glutathione content.
Collapse
|
14
|
Sun XS, Bandura-Morgan L, Zacharias W. Induction of Apoptosis in Lung Cancer Cells by TRAIL and L-leucyl-L-leucine Methyl Ester. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jct.2011.23057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
FP-CIT SPECT in clinically inconclusive Parkinsonian syndrome during amiodarone treatment: a study with follow-up. Nucl Med Commun 2010. [DOI: 10.1097/mnm.0b013e328338456e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Chatman LA, Morton D, Johnson TO, Anway SD. A strategy for risk management of drug-induced phospholipidosis. Toxicol Pathol 2010; 37:997-1005. [PMID: 20008549 DOI: 10.1177/0192623309352496] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Drug-induced phospholipidosis (PL) is an excessive accumulation of phospholipids and drug in lysosomes. Phospholipidosis signals a change in cell membrane integrity and accumulation of intracellular drug or metabolite in tissues. The sensitivity and susceptibility of preclinical models to detect PL vary with therapeutic agents, and PL is expected to be reversible after discontinuation of drug treatment. The prevailing scientific opinion is that PL by itself is not adverse; however, some regulatory authorities consider PL to be adverse because a small number of chemicals are able to cause PL and concurrent organ toxicity. Until a greater understanding of PL emerges, a well-thought-out risk management strategy for PL will increase confidence in safety and improve selection and development of new drugs. This paper provides a tiered approach to risk management of drug-induced PL. It begins with use of in silico and in vitro tools to design and select compounds with reduced potential to produce PL. Early in vivo studies in two species are used to better characterize potential for toxicity and PL. Finally, routine risk management tools (i.e., translational biomarkers, assessment of reversibility) are used to support confidence in safety of compounds that induce PL in animals.
Collapse
Affiliation(s)
- Linda A Chatman
- Pathology Department, Drug Safety Research and Development, Pfizer, Inc., Groton, CT, USA.
| | | | | | | |
Collapse
|
17
|
Garenc C, Julien P, Levy E. Oxysterols in biological systems: The gastrointestinal tract, liver, vascular wall and central nervous system. Free Radic Res 2009; 44:47-73. [DOI: 10.3109/10715760903321804] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res Bull 2009; 79:248-57. [PMID: 19480984 DOI: 10.1016/j.brainresbull.2009.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 03/16/2009] [Accepted: 03/26/2009] [Indexed: 11/21/2022]
Abstract
Recent studies have strengthened the role of the abnormalities in neurotrophic pathways in the pathophysiology of depression. It has been shown that the depletion of growth factors, particularly brain-derived neurotrophic factor, may result in depression-like behavior in animals and may induce cellular changes that are reminiscent of those observed in depressed patients. Some authors even suggested that increased neuronal cell loss may contribute to the pathogenesis of depression. Hence, appreciable interest has been focused on the trophic and antiapoptotic effects of antidepressant drugs. In this paper, we put emphasis on the contribution of hippocampal atrophy, increased cell death and alterations in trophic factors to the pathogenesis of depression and their relationship to the potential of antidepressants to reverse these changes by modulating trophic factor cascades and preventing apoptosis. First, evidences for increased hippocampal atrophy and cell death in depression are discussed, followed by a review of selected studies of special interest that concern antiapoptotic action of antidepressant drugs. Next, depression-related neurotrophic abnormalities and their reversal by antidepressants are depicted. Finally, relationships among neurotrophins, antiapoptotic proteins and antioxidant enzymes in the pathology and treatment of depression are pointed out.
Collapse
|
19
|
Nioi P, Pardo IDR, Snyder RD. Monitoring the accumulation of fluorescently labeled phospholipids in cell cultures provides an accurate screen for drugs that induce phospholipidosis. Drug Chem Toxicol 2009; 31:515-28. [PMID: 18850360 DOI: 10.1080/01480540802391229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A large number of cationic amphiphilic drugs (CADs) are known to cause phospholipidosis (PLD) in vivo. In the present study, we have built upon our previous findings to further qualify the use of a fluorescently labeled phospholipid-based cell-culture assay to detect PLD-inducing drugs. In this paper, we demonstrate that 12 PLD-negative compounds and 11 drugs known to cause PLD in vivo are all correctly identified by using this assay. Interestingly, we found that in cells treated with certain CADs, the fluorescent phospholipid was sequestered in a very specific punctate pattern, which overlapped strongly with the staining pattern seen with a lysosomal marker protein. Our data also show that false positives can be generated with the fluorescence assay when compounds are used at concentrations that cause a >30% decrease in cell number in this assay. Confocal microscopy demonstrated that the staining pattern of fluorescent phospholipids in these cases may be differentiated from those of true positives by the fact that diffuse, rather than punctuate, fluorescence is observed. These studies confirm and expand our previous results showing that the fluorescent phospholipid assay is a highly sensitive, specific tool for detecting PLD-inducing drugs, if care is taken to rule out cytotoxicity-related artifact.
Collapse
Affiliation(s)
- Paul Nioi
- The Schering-Plough Research Institute, Summit, New Jersey 07901, USA.
| | | | | |
Collapse
|
20
|
Vejux A, Guyot S, Montange T, Riedinger JM, Kahn E, Lizard G. Phospholipidosis and down-regulation of the PI3-K/PDK-1/Akt signalling pathway are vitamin E inhibitable events associated with 7-ketocholesterol-induced apoptosis. J Nutr Biochem 2009; 20:45-61. [DOI: 10.1016/j.jnutbio.2007.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 01/16/2023]
|
21
|
Perico ME, Crivellente F, Faustinelli I, Suozzi A, Cristofori P. Flow cytometry, with double staining with Nile red and anti-CD3 antibody, to detect phospholipidosis in peripheral blood lymphocytes of rats treated with amiodarone. Cell Biol Toxicol 2008; 25:587-98. [PMID: 19105033 DOI: 10.1007/s10565-008-9114-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/06/2008] [Indexed: 10/21/2022]
Abstract
A flow cytometry method, to monitor peripheral lymphocytes phospholipidosis, has been set up using a single staining with Nile red and double staining with Nile red and anti-CD3 monoclonal antibody. Blood has been collected from rats treated with amiodarone (phospholipidogenic antiarrhythmic drug). By flow cytometer, it is possible to detect phospholipids, using Nile red, a probe for intracellular lipids staining, changing its fluorescence on the stained lipid basis. CD3 antigen has been selected to focus on T cells, to evaluate whether these cells are the target of phospholipidosis amiodarone-dependent. In the study A, Sprague-Dawley rats were treated with three different doses (75, 150, and 300 mg kg(-1) day(-1)) of amiodarone or vehicle alone, for 14 days, followed by 14 days of recovery: Data obtained show that by flow cytometry, with Nile red alone, it is possible to detect a dose- and time-related response of phospholipidosis-positive lymphocytes; a partial recovery is also assessed. In the study B, Sprague-Dawley rats were treated with a single dose (300 mg kg(-1) day(-1)) of amiodarone, for 14 days: Data obtained show that animals treated with amiodarone have a significant increase of phospholipidosis-positive lymphocytes (p = 0.008), in particular of CD3+ cells (p = 0.0056). Transmission electron microscopy analysis confirmed data obtained by flow cytometry. This work shows that flow cytometry with Nile red could be a good tool to monitor ex vivo phospholipidosis in lymphocyte cells of animals treated with amiodarone: The phospholipidogenic effect is more evident focusing on CD3+ T lymphocytes, thus suggesting that these cells are probably the target of phospholipidosis.
Collapse
Affiliation(s)
- Maria Elisa Perico
- Department of Pathology, Safety Assessment, GlaxoSmithKline, Via Fleming 4, 37135, Verona, Italy.
| | | | | | | | | |
Collapse
|
22
|
Vejux A, Malvitte L, Lizard G. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 2008; 41:545-56. [DOI: 10.1590/s0100-879x2008000700001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/04/2008] [Indexed: 02/01/2023] Open
Affiliation(s)
- A. Vejux
- Université de Nice Sophia Antipolis, France
| | - L. Malvitte
- Hôpital Général, France; Faculté des Sciences Gabriel, France
| | - G. Lizard
- Faculté des Sciences Gabriel, France
| |
Collapse
|
23
|
Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization. Toxicol Appl Pharmacol 2008; 228:364-77. [DOI: 10.1016/j.taap.2007.12.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/24/2022]
|
24
|
Nonoyama T, Fukuda R. Drug-induced Phospholipidosis -Pathological Aspects and Its Prediction. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.9] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Ryo Fukuda
- Development Research Center, Takeda Pharmaceutical Company Limited
| |
Collapse
|
25
|
Nicolay JP, Bentzen PJ, Ghashghaeinia M, Wieder T, Lang F. Stimulation of erythrocyte cell membrane scrambling by amiodarone. Cell Physiol Biochem 2007; 20:1043-50. [PMID: 17975306 DOI: 10.1159/000110713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Side effects of amiodarone, an effective antiarrhythmic drug, include anemia, which may be caused by decreased formation or accelerated death of erythrocytes. Suicidal erythrocyte death (eryptosis) is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Stimulators of erythrocyte membrane scrambling include increase of cytosolic Ca2+ concentration ([Ca2+]i) following activation of Ca2+-permeable cation channels. Moreover, eryptosis is triggered by ceramide. The present study has been performed to test for an effect of amiodarone on eryptosis. Erythrocytes from healthy volunteers were exposed to amiodarone and phosphatidylserine exposure (annexin V binding), cell volume (forward scatter), [Ca2+]i (Fluo3-dependent fluorescence), and ceramide formation (anti-ceramide-FITC antibody and radioactive labelling) determined by flow cytometry. Exposure of erythrocytes to amiodarone (1 microM) increased [Ca2+]i and triggered annexin V binding, but did not significantly decrease forward scatter and did not significantly influence ceramide formation. Amiodarone augmented the increase of annexin binding following hypertonic shock (addition of 550 mM sucrose) but did not significantly alter the enhanced annexin binding following Cl- removal (replacement with gluconate). Amiodarone did not significantly modify the decrease of forward scatter following hypertonic shock or Cl- removal. The present observations disclose a novel action of amiodarone which may contribute to the side effects of the drug.
Collapse
Affiliation(s)
- Jan P Nicolay
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
26
|
Schumacher JA, Crockett DK, Elenitoba-Johnson KSJ, Lim MS. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 2007; 7:2603-16. [PMID: 17610208 DOI: 10.1002/pmic.200700108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) affects the function of many oncogenic signaling proteins including nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressed in anaplastic large cell lymphoma (ALCL). While ALK-positive ALCL cells are sensitive to the Hsp90 inhibitor and the geldanamycin (GA) analog, 17-allylamino-17-demethoxygeldanamycin (17-AAG), the proteomic effects of these drugs on ALK-positive ALCL cells are unpublished. In this study, we investigated the cellular, biologic, and proteomic changes occurring in ALK-positive ALCL cells in response to GA treatment. GA induced G2/M cell cycle arrest and caspase-3-mediated apoptosis. Furthermore, quantitative proteomic changes analyzed by cleavable isotope-coded affinity tag-LC-MS/MS (cICAT-LC-MS/MS) identified 176 differentially expressed proteins. Out of these, 49 were upregulated 1.5-fold or greater and 70 were downregulated 1.5-fold or greater in GA-treated cells. Analysis of biological functions of differentially expressed proteins revealed diverse changes, including induction of proteins involved in the 26S proteasome as well as downregulation of proteins involved in signal transduction and protein and nucleic acid metabolism. Pathway analysis revealed changes in MAPK, WNT, NF-kappaB, TGFbeta, PPAR, and integrin signaling components. Our studies reveal some of the molecular and proteomic consequences of Hsp90 inhibition in ALK-positive ALCL cells and provide novel insights into the mechanisms of its diverse cellular effects.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Benzoquinones/pharmacology
- Caspase 3/metabolism
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA, Neoplasm/analysis
- Enzyme Inhibitors/pharmacology
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/physiology
- Humans
- Lactams, Macrocyclic/pharmacology
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Models, Biological
- Proteome/analysis
- Reproducibility of Results
Collapse
Affiliation(s)
- Jonathan A Schumacher
- Associated and Regional University Pathologists (ARUP), Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
27
|
Anderson N, Borlak J. Drug-induced phospholipidosis. FEBS Lett 2006; 580:5533-40. [PMID: 16979167 DOI: 10.1016/j.febslet.2006.08.061] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/03/2006] [Accepted: 08/25/2006] [Indexed: 11/30/2022]
Abstract
Drug-induced phospholipidosis is characterized by intracellular accumulation of phospholipids with lamellar bodies, most likely from an impaired phospholipid metabolism of the lysosome. Organs affected by phospholipidosis exhibit inflammatory reactions and histopathological changes. Despite significant advances in the understanding of drug-altered lipid metabolism, the relationship between impaired phospholipid metabolism and drug-induced toxicity remains enigmatic. Here we review molecular features of inheritable lysosomal storage disorders as a molecular mimicry of drug-induced phospholipidosis for an improved understanding of adverse drug reaction.
Collapse
Affiliation(s)
- Nora Anderson
- Medical School of Hannover, Center for Pharmacology and Toxicology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
28
|
Reasor MJ, Hastings KL, Ulrich RG. Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 2006; 5:567-83. [PMID: 16774494 DOI: 10.1517/14740338.5.4.567] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Numerous drugs containing a cationic amphiphilic structure are capable of inducing phospholipidosis in cells under conditions of in vivo administration or ex vivo incubation. The principal characteristics of this condition include the reversible accumulation of polar phospholipids in association with the development of unicentric or multicentric lamellated bodies within cells. There is an abundance of data providing an understanding of potential mechanisms for the induction of phospholipidosis; however, the process is likely to be complex and may differ from one drug to another. The functional consequences of the presence of this condition on cellular or tissue function are not well understood. The general consensus is that the condition is an adaptive response rather than a toxicological manifestation; however, additional studies to examine this question are needed. Until this issue is resolved, concerns about phospholipidosis will continue to exist at regulatory agencies. Procedures for the screening of potential phospholipogenic candidate compounds are available. In contrast, a clear need exists for the identification of valid biomarkers to assess the development of phospholipidosis in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mark J Reasor
- Robert C Byrd Health Sciences Center of West Virginia University, Department of Physiology and Pharmacology, P.O. Box 9229, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
29
|
Piccotti JR, Knight SA, Gillhouse K, Lagattuta MS, Bleavins MR. Evaluation of anex vivo murine local lymph node assay: multiple endpoint comparison. J Appl Toxicol 2006; 26:333-40. [PMID: 16705757 DOI: 10.1002/jat.1145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The local lymph node assay (LLNA) is used to assess the skin sensitization potential of chemicals. In the standard assay, mice are treated topically on the dorsum of both ears with test substance for 3 days. Following 2 days of rest, the initiation of the hypersensitivity response is evaluated by injecting (3)H-thymidine into a tail vein, and then measuring the levels of radioisotope incorporated into the DNA of lymph node cells draining the ears. In the current study, BALB/c mice were treated with the contact sensitizers hexylcinnamic aldehyde (HCA) and oxazolone, and the nonsensitizer methyl salicylate. The proliferative response of lymph node cells was evaluated in an ex vivo assay, in which isolated cells were cultured in vitro with (3)H-thymidine. Treatment of mice with HCA at 5-50% resulted in concentration-related increases in (3)H-thymidine incorporation, with stimulation indices ranging from 3 to 14. Low animal-to-animal variability was seen in three replicate assays testing HCA at 25%. As anticipated, the proliferative response induced by the potent sensitizer oxazolone at 0.25% was greater than HCA at all concentrations tested. Stimulation indices of 1.5 and 3 were seen in two independent experiments with methyl salicylate. These equivocal findings were likely due to the irritancy properties of the compound. Importantly, measuring ex vivo (3)H-thymidine incorporation was more sensitive than evaluating lymph node weight and cellularity, and in vitro bromodeoxyuridine incorporation. Furthermore, the results of the ex vivo LLNA were comparable to the standard assay. This study provided evidence that supports the use of an ex vivo LLNA for hazard assessment of contact hypersensitivity.
Collapse
Affiliation(s)
- Joseph R Piccotti
- Worldwide Safety Sciences, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|