1
|
Ferreira da Silva B, Gomes Pereira AM, Frota Araújo IM, Carvalho Aguiar FK, Mesquita Cajazeiras FF, Onassis Cardoso Viana Gomes A, Marinho MM, Rodrigues Teixeira AM, Marinho ES, Costa RA, Carneiro VA, Santos HSD. Structural characterization, cytotoxicity, antibiofilm activity, and synergistic potential with molecular docking analysis of ibuprofen-derived hydrazide against bacterial pathogens. Microb Pathog 2025; 199:107230. [PMID: 39689746 DOI: 10.1016/j.micpath.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The study investigates the synthesis, characterization, and antibacterial activity of an ibuprofen-derived hydrazide (HIDZ). It was synthesized and characterized using NMR spectroscopy, DFT Calculations, and ADMET studies. Furthermore, HIDZ cytotoxicity on L929 cells was evaluated using the MTT reduction assay. Antibacterial activity was assessed against Gram-positive and Gram-negative strains through the microdilution method. The combinatory potential of HIDZ was performed using the checkerboard test with β-lactam antibiotics, oxacillin (OXA), meropenem (MER), and cefepime (CPM). Antibiofilm activity was evaluated for biofilm inhibition and disruption, particularly in combination with OXA. Molecular docking analysis examined HIDZ interactions with Thymidylate kinase, DNA Gyrase B, and DNA Topoisomerase IV subunit B. The global chemical reactivity descriptors analysis revealed significant variations in the atomic centers' susceptibility, highlighting the environment's importance in determining the reactive behavior of HIDZ. Pharmacokinetic predictions indicated efficient permeability across biological membranes, suggesting favorable bioavailability. MTT experiment showed that HIDZ caused cytotoxicity on higher concentrations over L929 fibroblasts. HIDZ exhibited superior activity against Gram-positive strains compared to ibuprofen, with lower MIC and MBC values. Both compounds were ineffective against Gram-negative strains. However, HIDZ was able to inhibit the biofilm formation of the most tested strains. The combinatory effect shows an additive effect between HIDZ and β-lactams. However, the HIDZ/OXA combination improved biofilm disruption, achieving up to a 92 % reduction in residual biofilm and cell viability compared to the control. Molecular docking simulations showed that HIDZ may interact with bacterial enzymes, improving antibiotic efficiency. The study suggests that HIDZ has promising potential as an antibacterial and antibiofilm agent, particularly against Gram-positive bacteria and in combination with β-lactam antibiotics.
Collapse
Affiliation(s)
- Benise Ferreira da Silva
- State University of Ceará, Northeast Network of Biotechnology Program (RENORBIO), Campus Itaperi, Fortaleza, Brazil; University Center INTA - UNINTA, Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Sobral, Brazil
| | - Antonio Mateus Gomes Pereira
- State University of Ceará, Northeast Network of Biotechnology Program (RENORBIO), Campus Itaperi, Fortaleza, Brazil; University Center INTA - UNINTA, Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Sobral, Brazil
| | - Ingrid Maria Frota Araújo
- University Center INTA - UNINTA, Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Sobral, Brazil
| | - Francisco Kauê Carvalho Aguiar
- University Center INTA - UNINTA, Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Sobral, Brazil
| | | | | | | | - Alexandre Magno Rodrigues Teixeira
- State University of Ceará, Northeast Network of Biotechnology Program (RENORBIO), Campus Itaperi, Fortaleza, Brazil; Postgraduate in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
| | - Emmanuel Silva Marinho
- Postgraduate in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
| | - Renata Albuquerque Costa
- University Center INTA - UNINTA, Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Sobral, Brazil
| | - Victor Alves Carneiro
- University Center INTA - UNINTA, Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Sobral, Brazil
| | - Hélcio Silva Dos Santos
- State University of Ceará, Northeast Network of Biotechnology Program (RENORBIO), Campus Itaperi, Fortaleza, Brazil; Course of Chemistry, State University of Vale Acaraú, Sobral, Ceará, Brazil; Postgraduate in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
2
|
Lian Q, Chen J, Huang K, Hou K, Fang J, Wei W, Zhou J. Alkali-Driven Photoinduced N-Dealkylation of Aryl Tertiary Amines and Amides. Org Lett 2023; 25:8387-8392. [PMID: 37966124 DOI: 10.1021/acs.orglett.3c03519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
By extending the photoinduced oxidative mechanism of aryl tertiary amines proposed earlier to an alkaline environment based on the prediction of quantum mechanics computations and the validation of meticulous experiments, we discovered a photoinduced oxidative N-dealkylation method for both aryl tertiary amines and amides. The dealkylation was achieved in an alkaline environment under mild conditions accompanied by excellent functional group tolerance.
Collapse
Affiliation(s)
- Qi Lian
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| | - Jinke Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| | - Kaipeng Huang
- Phase I Clinical Trial Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, People's Republic of China
| | - Keqiang Hou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| | - Wentao Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| | - Jingwei Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| |
Collapse
|
3
|
Liu LL, Wang LX, Peng M, Xiang J, Yang H, Yiu SM, Lau TC. Ring Nitrogenation of Aromatic Amines by the Excited State of an Osmium(VI) Nitrido Complex. Inorg Chem 2023; 62:1447-1454. [PMID: 36633522 DOI: 10.1021/acs.inorgchem.2c03514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The reactivity of electrophilic OsVI and RuVI nitrides toward various aliphatic and aromatic amines have been previously reported; these reactions all go through an initial nucleophilic addition of the amine nitrogen to MVI≡N (M = Os, Ru) to generate a MIV hydrazido species. Herein, we report that the excited state of a luminescent osmium(VI) nitrido complex, [OsVI(N)(L)(CN)3]- (OsN, HL = 2-(2-hydroxy-5-nitrophenyl)benzoxazole), undergoes unprecedented ring nitrogenation of aromatic amines. Visible-light irradiation of OsN generates OsN*, which predominantly attacks the aromatic ring of 2,6-dimethylaniline (Me2PhNH2) to give an Os(II) benzoquinone diimine compound (PPh4)[OsII(L)(CN)3(p-NH═Me2Ph═NH2)] [(PPh4)2] in 60% yield, while nucleophilic addition of the amine N to OsN* also occurs to give the osmium(II) diazonium compound (PPh4)[OsII(L)(CN)3(N = N-Me2Ph)] [(PPh4)1] as a minor product (10% yield). On the other hand, OsN* undergoes exclusive ring nitrogenation of diphenylamine, indole, and carbazole to give the corresponding osmium(II) benzoquinone diimines. All products have been characterized by various spectroscopic techniques and by X-ray crystallography. The reaction between OsN* and Ar2N is proposed to proceed via an initial 1e- transfer (ET) followed by proton transfer (PT) to generate OsVNH and Ar2N• intermediates, which then further combine to give the product. The benzoquinone diimine ligands are susceptible to oxidation. Oxidation of 2 with H2O2 at ambient conditions affords [OsIV(L)(CN)3(N═PhMe2(O)═O)]-, which bears the previously unknown (epoxy)benzoquinone iminato ligand.
Collapse
Affiliation(s)
- Lu-Lu Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, China
| | - Li-Xin Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, China
| | - Min Peng
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, China
| | - Huan Yang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China
| |
Collapse
|
4
|
Zapiter J, Harmer JR, Struwe M, Scheidig A, Clement B, Bernhardt PV. Enzyme Electrode Biosensors for N-Hydroxylated Prodrugs Incorporating the Mitochondrial Amidoxime Reducing Component. Anal Chem 2022; 94:9208-9215. [PMID: 35700342 DOI: 10.1021/acs.analchem.2c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) were immobilised on glassy carbon electrodes using the crosslinker glutaraldehyde. Voltammetry was performed in the presence of the artificial electron transfer mediator methyl viologen, whose redox potential lies negative of the enzymes' MoVI/V and MoV/IV redox potentials which were determined from optical spectroelectrochemical and EPR measurements. Apparent Michaelis constants obtained from catalytic limiting currents at various substrate concentrations were comparable to those previously reported in the literature from enzymatic assays. Kinetic parameters for benzamidoxime reduction were determined from cyclic voltammograms simulated using Digisim. pH dependence and stability of the enzyme electrode with time were also determined from limiting catalytic currents in saturating concentrations of benzamidoxime. The same electrode remained active after at least 9 days. Fabrication of this versatile and cost-effective biosensor is effective in screening new pharmaceutically important substrates and mARC inhibitors.
Collapse
Affiliation(s)
- Joan Zapiter
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Michel Struwe
- Pharmazeutisches Institut, Universität Kiel, Gutenbergstraße 76, Kiel 24118, Germany.,Zoologisches Institut/Strukturbiologie, Am Botanischen Garten 11, Kiel 24118, Germany
| | - Axel Scheidig
- Zoologisches Institut/Strukturbiologie, Am Botanischen Garten 11, Kiel 24118, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Universität Kiel, Gutenbergstraße 76, Kiel 24118, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
5
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Electrochemically driven catalysis of the bacterial molybdenum enzyme YiiM. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148523. [PMID: 34921810 DOI: 10.1016/j.bbabio.2021.148523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022]
Abstract
The Mo-dependent enzyme YiiM enzyme from Escherichia coli is a member of the sulfite oxidase family and shares many similarities with the well-studied human mitochondrial amidoxime reducing component (mARC). We have investigated YiiM catalysis using electrochemical and spectroscopic methods. EPR monitored redox potentiometry found the active site redox potentials to be MoVI/V -0.02 V and MoV/IV -0.12 V vs NHE at pH 7.2. In the presence of methyl viologen as an electrochemically reduced electron donor, YiiM catalysis was studied with a range of potential substrates. YiiM preferentially reduces N-hydroxylated compounds such as hydroxylamines, amidoximes, N-hydroxypurines and N-hydroxyureas but shows little or no activity against amine-oxides or sulfoxides. The pH optimum for catalysis was 7.1 and a bell-shaped pH profile was found with pKa values of 6.2 and 8.1 either side of this optimum that are associated with protonation/deprotonations that modulate activity. Simulation of the experimental voltammetry elucidated kinetic parameters associated with YiiM catalysis with the substrates 6-hydroxyaminopurine and benzamidoxime.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
6
|
Wang S, Yang J, Li D, Yang J. Copper‐Catalyzed Cascade N‐Dealkylation/N‐Methyl Oxidation of Aromatic Amines by Using TEMPO and Oxygen as Oxidants. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shihaozhi Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Jiale Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Dianjun Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| |
Collapse
|
7
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Yi X, Lei S, Liu W, Che F, Yu C, Liu X, Wang Z, Zhou X, Zhang Y. Copper-Catalyzed Radical N-Demethylation of Amides Using N-Fluorobenzenesulfonimide as an Oxidant. Org Lett 2020; 22:4583-4587. [DOI: 10.1021/acs.orglett.0c00863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuewen Yi
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Siyu Lei
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Wangsheng Liu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Fengrui Che
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chunzheng Yu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xuesong Liu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuexia Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
9
|
Crystal structure of human mARC1 reveals its exceptional position among eukaryotic molybdenum enzymes. Proc Natl Acad Sci U S A 2018; 115:11958-11963. [PMID: 30397129 DOI: 10.1073/pnas.1808576115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biotransformation enzymes ensure a viable homeostasis by regulating reversible cycles of oxidative and reductive reactions. The metabolism of nitrogen-containing compounds is of high pharmaceutical and toxicological relevance because N-oxygenated metabolites derived from reactions mediated by cytochrome P450 enzymes or flavin-dependent monooxygenases are in some cases highly toxic or mutagenic. The molybdenum-dependent mitochondrial amidoxime-reducing component (mARC) was found to be an extremely efficient counterpart, which is able to reduce the full range of N-oxygenated compounds and thereby mediates detoxification reactions. However, the 3D structure of this enzyme was unknown. Here we present the high-resolution crystal structure of human mARC. We give detailed insight into the coordination of its molybdenum cofactor (Moco), the catalytic mechanism, and its ability to reduce a wide range of N-oxygenated compounds. The identification of two key residues will allow future discrimination between mARC paralogs and ensure correct annotation. Since our structural findings contradict in silico predictions that are currently made by online databases, we propose domain definitions for members of the superfamily of Moco sulfurase C-terminal (MOSC) domain-containing proteins. Furthermore, we present evidence for an evolutionary role of mARC for the emergence of the xanthine oxidase protein superfamily. We anticipate the hereby presented crystal structure to be a starting point for future descriptions of MOSC proteins, which are currently poorly structurally characterized.
Collapse
|
10
|
Ray R, Hazari AS, Chandra S, Maiti D, Lahiri GK. Highly Selective Ruthenium-Catalyzed Direct Oxygenation of Amines to Amides. Chemistry 2017; 24:1067-1071. [DOI: 10.1002/chem.201705601] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Ritwika Ray
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400076 India
| | - Arijit Singha Hazari
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400076 India
| | - Shubhadeep Chandra
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400076 India
| | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400076 India
| |
Collapse
|
11
|
Wu G, Li Y, Yu X, Gao Y, Chen H. Acetic Acid Accelerated Visible-Light Photoredox CatalyzedN-Demethylation ofN,N-Dimethylaminophenyl Derivatives. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201601108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guolin Wu
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| | - Yazhen Li
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| | - Xuemei Yu
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| | - Yu Gao
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| | - Haijun Chen
- College of Chemistry; Fuzhou University; Fuzhou Fujian 350116 China
| |
Collapse
|
12
|
Seger ST, Rydberg P, Olsen L. Mechanism of the N-hydroxylation of primary and secondary amines by cytochrome P450. Chem Res Toxicol 2015; 28:597-603. [PMID: 25651340 DOI: 10.1021/tx500371a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cytochrome P450 enzymes (CYPs) metabolize alkyl- and arylamines, generating several different products. For the primary and secondary amines, some of these reactions result in hydroxylated amines, which may be toxic. Thus, when designing new drugs containing amine groups, it is important to be able to predict if a given compound will be a substrate for CYPs, in order to avoid toxic metabolites, and hence to understand the mechanism that is utilized by CYPs. Two possible mechanisms, for the N-hydroxylation of primary and secondary amines mediated by CYPs, are studied by density functional theory (DFT) for four different amines (aniline, N-methylaniline, propan-2-amine, and dimethylamine). The hydrogen abstraction and rebound mechanism is found to be preferred over a direct oxygen transfer mechanism for all four amines. However, in contrast to the same mechanism for the hydroxylation of aliphatic carbon atoms, the rebound step is shown to be rate-limiting in most cases.
Collapse
Affiliation(s)
- Signe T Seger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Patrik Rydberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Ji L, Schüürmann G. Modell und Mechanismus: N-Hydroxylierung primärer aromatischer Amine durch Cytochrom P450. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Ji L, Schüürmann G. Model and Mechanism: N-Hydroxylation of Primary Aromatic Amines by Cytochrome P450. Angew Chem Int Ed Engl 2012; 52:744-8. [DOI: 10.1002/anie.201204116] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/04/2012] [Indexed: 12/22/2022]
|
15
|
Rydberg P, Olsen L. Do Two Different Reaction Mechanisms Contribute to the Hydroxylation of Primary Amines by Cytochrome P450? J Chem Theory Comput 2011; 7:3399-404. [DOI: 10.1021/ct200422p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrik Rydberg
- Department of Medicinal Chemistry, Copenhagen University, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- Department of Medicinal Chemistry, Copenhagen University, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Segall Y. Biomimetic chemistry as a useful tool for studying reactive metabolites of pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2845-2856. [PMID: 20886899 DOI: 10.1021/jf102262p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Most organophosphate (OP) pesticides require metabolic activation before attacking the target site, as opposed to chemical nerve agents, such as VX and sarin, which inhibit the enzyme directly. The majority of OP pesticides exhibit weak anticholinesterase activity in vitro compared to their In Vivo activity. Biooxidation is probably the principal route by which these pesticides are activated or detoxified. The oxidized product, usually a short-lived intermediate, may either hit the target directly or hydrolyze rapidly or, following a rearrangement reaction, convert to another species with enhanced reactivity (metaphosphate) or lose its phosphorylation or carbamoylation properties. Biomimetic studies of these processes, using various model systems, have important advantages: in some cases they allow for identifying short-lived intermediates, formed metabolically, and direct monitoring of the systems' properties by NMR. Once identified, they may be synthesized in large amount to investigate their adverse effects, if any. Biomimetic studies allow for monitoring reactions at low temperature seeking transient intermediates and evaluation of activation and detoxification mechanisms as well as mode of action based on chiral isomers. This, in turn, allows for determination of whether certain compounds act directly, on preactivation, or both, and the possible design of safer pesticides. This paper covers over three decades of extensive fundamental and applied research that has been carried out at the Environmental Chemistry and Toxicology Laboratory (ECTL) at the University of California at Berkeley under the supervision of Prof. John E. Casida.
Collapse
Affiliation(s)
- Yoffi Segall
- Department of Organic Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| |
Collapse
|
17
|
Cryle MJ, Bell SG, Schlichting I. Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase. Biochemistry 2010; 49:7282-96. [PMID: 20690619 DOI: 10.1021/bi100910y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 CypX (CYP134A1), isolated from Bacillus subtilis, has previously been implicated in the three-step oxidative transformation of the diketopiperazine cyclo-l-leucyl-l-leucyl into pulcherriminic acid, a precursor of the extracellular iron chelate pulcherrimin. In this study, we present the first experimental data relating to CYP134A1, where we show that CYP134A1 binds cyclo-l-leucyl-l-leucyl with an affinity of 24.5 +/- 0.5 muM. Structurally related diketopiperazines sharing similar alkyl side chains to cyclo-l-leucyl-l-leucyl also bind to CYP134A1 with comparable affinity. CYP134A1 is capable of catalyzing the in vitro oxidation of diketopiperazine substrates when supported with several alternate electron transfer partner systems. Products containing one additional oxygen atom and which are intermediate products of the expected pulcherriminic acid were identified by GCMS. The oxidation of related diketopiperazines reveals that different oxidative pathways exist for CYP134A1-catalyzed diketopiperazine oxidation. The crystal structure of CYP134A1 has been determined to 2.7 A resolution in the absence of substrate and in the presence of bound phenylimidazole ligands to 3.1 and 3.2 A resolution. The active site is dominated by hydrophobic residues and contains an unusual proline residue in place of the normally conserved alcohol residue that typically plays an important role in oxygen activation. The B-B(2) substrate recognition loop, which forms part of the active site, shows considerable flexibility and was found in both open and closed conformations in different structures. These results represent the first insights into the structural and biochemical basis underlying the multistep oxidation catalyzed by CYP134A1.
Collapse
Affiliation(s)
- Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
18
|
Ullrich R, Dolge C, Kluge M, Hofrichter M. Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase fromAgrocybe aegerita. FEBS Lett 2008; 582:4100-6. [DOI: 10.1016/j.febslet.2008.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 10/29/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
19
|
Dumasia MC. Identification of someN-hydroxylated metabolites of (±)-3,4-methylenedioxymethamphetamine in horse urine by gas chromatography-mass spectrometry. Xenobiotica 2008; 33:1013-25. [PMID: 14555338 DOI: 10.1080/00498250310001602766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The in vivo biotransformation of (+/-)-3,4-methylenedioxymethamphetamine [(+/-)-MDMA] in the thoroughbred horse was determined after oral administration. 2. Unconjugated compounds and aglycones were isolated from enzyme-hydrolysed urine by solid-phase extraction using mixed-mode cartridges. The basic isolates were derivatized (trimethylsilylether, TMS) and analysed by positive-ion electron ionization/gas chromatography-mass spectrometry (EI+/GC-MS). MDMA and 10 Phase I metabolites containing the arylisopropylamine substructure were detected. 3. N-Hydroxy amphetamine and N-hydroxymethamphetamine were synthesized. The EI + mass spectra of their O-TMS derivatives showed characteristic alpha-cleavage ions at m/z 132 and 146, respectively, as base peaks. Based upon these data, five putative N-hydroxylated metabolites of MDMA were detected. 4. In the horse, (+/-)-MDMA is metabolized by oxidative N-demethylation to form the primary amine methylenedioxyamphetamine (MDA). Both MDMA and MDA are further metabolized by oxidative demethylenation (cleavage and O-demethylation of the benzodioxole moiety) to form the corresponding catechols, 3-O-methylation to form the guaiacols and N-oxidation of the secondary and primary amine metabolites to form the hydroxylamines. 5. Both phenolic and N-hydroxy metabolites of (+/-)-MDMA undergo Phase II conjugation before excretion in urine.
Collapse
Affiliation(s)
- M C Dumasia
- Department of Drug Metabolism, Horseracing Forensic Laboratory Ltd, Fordham, Ely, UK.
| |
Collapse
|
20
|
Scott PJH, Hockley BG, Kung HF, Manchanda R, Zhang W, Kilbourn MR. Studies into radiolytic decomposition of fluorine-18 labeled radiopharmaceuticals for positron emission tomography. Appl Radiat Isot 2008; 67:88-94. [PMID: 18951032 DOI: 10.1016/j.apradiso.2008.08.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 11/25/2022]
Abstract
Radiolytic decomposition of high specific concentration radiopharmaceuticals is an undesired side-effect that can hamper development of novel PET tracers. This was particularly evident in a series of carbon-11 and fluorine-18 labeled mono- and dimethyl-substituted aryl amines, where rapid decomposition was observed in isolation and formulation steps. We tested a number of additives that inhibit radiolysis and can be safely added to the synthesis procedures (purification and isolation) and reformulation steps to provide suitable clinical formulations. Ethanol and sodium ascorbate are established anti-oxidant stabilizers that completely inhibit radiolytic decomposition and are amenable to human use. Herein, we also demonstrate for the first time that nitrones are non-toxic radical scavengers that are capable of inhibiting radiolysis.
Collapse
Affiliation(s)
- Peter J H Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hollmann D, Bähn S, Tillack A, Beller M. N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chem Commun (Camb) 2008:3199-201. [DOI: 10.1039/b803114b] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Hlavica P. Functional interaction of nitrogenous organic bases with cytochrome P450: A critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:645-70. [PMID: 16503427 DOI: 10.1016/j.bbapap.2006.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 02/02/2023]
Abstract
The widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s. Based on a general, CYP2D6-related construct, the majority of prospective amine-docking residues was found to cluster near the distal heme face in the six known SRSs, made up by the highly variant helices B', F and G as well as the N-terminal portion of helix C and certain beta-structures. Most of the contact sites examined show a frequency of conservation < 20%, hinting at the requirement of some degree of conformational versatility, while a limited number of amino acids exhibiting a higher level of conservation reside close to the heme core. Some key determinants may have a dual role in amine binding and/or maintenance of protein integrity. Importantly, a series of non-SRS elements are likely to be operative via long-range effects. While hydrophobic mechanisms appear to dominate orientation of the nitrogenous compounds toward the iron-oxene species, polar residues seem to foster binding events through H-bonding or salt-bridge formation. Careful uncovering of structure-function relationships in amine-enzyme association together with recently developed unsupervised machine learning approaches will be helpful in both tailoring of novel amine-type drugs and early elimination of potentially toxic or mutagenic candidates. Also, chimeragenesis might serve in the construction of more efficient P450s for activation of amine drugs and/or bioremediation.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, D-80336 München, Germany.
| |
Collapse
|
23
|
Yang XX, Hu ZP, Chan SY, Zhou SF. Monitoring drug-protein interaction. Clin Chim Acta 2005; 365:9-29. [PMID: 16199025 DOI: 10.1016/j.cca.2005.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 11/25/2022]
Abstract
A variety of therapeutic drugs can undergo biotransformation via Phase I and Phase II enzymes to reactive metabolites that have intrinsic chemical reactivity toward proteins and cause potential organ toxicity. A drug-protein adduct is a protein complex that forms when electrophilic drugs or their reactive metabolite(s) covalently bind to a protein molecule. Formation of such drug-protein adducts eliciting cellular damages and immune responses has been a major hypothesis for the mechanism of toxicity caused by numerous drugs. The monitoring of protein-drug adducts is important in the kinetic and mechanistic studies of drug-protein adducts and establishment of dose-toxicity relationships. The determination of drug-protein adducts can also provide supportive evidence for diagnosis of drug-induced diseases associated with protein-drug adduct formation in patients. The plasma is the most commonly used matrix for monitoring drug-protein adducts due to its convenience and safety. Measurement of circulating antibodies against drug-protein adducts may be used as a useful surrogate marker in the monitoring of drug-protein adducts. The determination of plasma protein adducts and/or relevant antibodies following administration of several drugs including acetaminophen, dapsone, diclofenac and halothane has been conducted in clinical settings for characterizing drug toxicity associated with drug-protein adduct formation. The monitoring of drug-protein adducts often involves multi-step laboratory procedure including sample collection and preliminary preparation, separation to isolate or extract the target compound from a mixture, identification and determination. However, the monitoring of drug-protein adducts is often difficult because of short half-lives of the protein adducts, sampling problem and lack of sensitive analytical techniques for the protein adducts. Currently, chromatographic (e.g. high performance liquid chromatography) and immunological methods (e.g. enzyme-linked immunosorbent assay) are two major techniques used to determine protein adducts of drugs in patients. The present review highlights the importance for clinical monitoring of drug-protein adducts, with an emphasis on methodology and with a further discussion of the application of these techniques to individual drugs and their target proteins.
Collapse
Affiliation(s)
- Xiao-Xia Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
24
|
Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, McLeod HL. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 2005; 44:279-304. [PMID: 15762770 DOI: 10.2165/00003088-200544030-00005] [Citation(s) in RCA: 345] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches using in vitro, in silico and in vivo models can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (K(I)) and the maximal rate of inactivation at saturation (k(inact)). Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), antihypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs. Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of its K(I), k(inact) and partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
26
|
Bissel P, Castagnoli N, Penich S. Studies on the cytochrome P450 catalyzed oxidation of 13C labeled 1-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine by 13C NMR. Bioorg Med Chem 2005; 13:2975-80. [PMID: 15781407 DOI: 10.1016/j.bmc.2005.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 02/01/2005] [Indexed: 11/16/2022]
Abstract
A recent study from Hanzlik's laboratory (J. Am. Chem. Soc. 2002, 124, 8268) has provided compelling evidence of a hydrogen atom transfer pathway for the cytochrome P450-catalyzed oxidative N-decyclopropylation of N-cyclopropyl-N-methylaniline. In the present paper, we report an analogous pathway for the oxidative decyclopropylation of a 13C-labeled 1-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridinyl substrate. Three 13C-enriched metabolites were characterized: (1) a diastereomeric pair of N-cyclopropyl-N-oxides; (2) the N-cyclopropylpyridinium species; and (3) cyclopropanone hydrate. These results extend the hydrogen atom transfer pathway to include aliphatic tertiary amine substrates. Consideration of all of the available evidence, however, leads us to conclude that the cytochrome P450-catalyzed alpha-carbon oxidations of cyclopropylamines may proceed via both the single electron and hydrogen atom transfer pathways.
Collapse
Affiliation(s)
- Philippe Bissel
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212, USA
| | | | | |
Collapse
|
27
|
Hlavica P. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis. ACTA ACUST UNITED AC 2004; 271:4335-60. [PMID: 15560776 DOI: 10.1111/j.1432-1033.2004.04380.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 enzymes promote a number of oxidative biotransformations including the hydroxylation of unactivated hydrocarbons. Whereas the long-standing consensus view of the P450 mechanism implicates a high-valent iron-oxene species as the predominant oxidant in the radicalar hydrogen abstraction/oxygen rebound pathway, more recent studies on isotope partitioning, product rearrangements with 'radical clocks', and the impact of threonine mutagenesis in P450s on hydroxylation rates support the notion of the nucleophilic and/or electrophilic (hydro)peroxo-iron intermediate(s) to be operative in P450 catalysis in addition to the electrophilic oxenoid-iron entity; this may contribute to the remarkable versatility of P450s in substrate modification. Precedent to this mechanistic concept is given by studies with natural and synthetic P450 biomimics. While the concept of an alternative electrophilic oxidant necessitates C-H hydroxylation to be brought about by a cationic insertion process, recent calculations employing density functional theory favour a 'two-state reactivity' scenario, implicating the usual ferryl-dependent oxygen rebound pathway to proceed via two spin states (doublet and quartet); state crossing is thought to be associated with either an insertion or a radicalar mechanism. Hence, challenge to future strategies should be to fold the disparate and sometimes contradictory data into a harmonized overall picture.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| |
Collapse
|
28
|
Zhou S. Separation and detection methods for covalent drug–protein adducts. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:63-90. [PMID: 14630144 DOI: 10.1016/s1570-0232(03)00399-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covalent binding of reactive metabolites of drugs to proteins has been a predominant hypothesis for the mechanism of toxicity caused by numerous drugs. The development of efficient and sensitive analytical methods for the separation, identification, quantification of drug-protein adducts have important clinical and toxicological implications. In the last few decades, continuous progress in analytical methodology has been achieved with substantial increase in the number of new, more specific and more sensitive methods for drug-protein adducts. The methods used for drug-protein adduct studies include those for separation and for subsequent detection and identification. Various chromatographic (e.g., affinity chromatography, ion-exchange chromatography, and high-performance liquid chromatography) and electrophoretic techniques [e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional SDS-PAGE, and capillary electrophoresis], used alone or in combination, offer an opportunity to purify proteins adducted by reactive drug metabolites. Conventionally, mass spectrometric (MS), nuclear magnetic resonance, and immunological and radioisotope methods are used to detect and identify protein targets for reactive drug metabolites. However, these methods are labor-intensive, and have provided very limited sequence information on the target proteins adducted, and thus the identities of the protein targets are usually unknown. Moreover, the antibody-based methods are limited by the availability, quality, and specificity of antibodies to protein adducts, which greatly hindered the identification of specific protein targets of drugs and their clinical applications. Recently, the use of powerful MS technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight) together with analytical proteomics have enabled one to separate, identify unknown protein adducts, and establish the sequence context of specific adducts by offering the opportunity to search for adducts in proteomes containing a large number of proteins with protein adducts and unmodified proteins. The present review highlights the separation and detection technologies for drug-protein adducts, with an emphasis on methodology, advantages and limitations to these techniques. Furthermore, a brief discussion of the application of these techniques to individual drugs and their target proteins will be outlined.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|