1
|
Hendijani F, Hosseini FS. Interindividual variability in diabetic patients’ response to opium poppy: an overview of impressive factors. Per Med 2022; 19:155-163. [PMID: 35220727 DOI: 10.2217/pme-2021-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetic patients always seek alternative treatments to lower their blood glucose level efficiently, because antidiabetic drugs produce adverse effects and many patients experience reduced response after a treatment period. Opium poppy ( Papaver somniferum) is frequently consumed by diabetic patients for reduction of blood glucose level. Scientific studies found controversial results in the investigation of the blood glucose-lowering effects of opium poppy. In this regard, we explored the antidiabetic effect of opium poppy more closely. The antidiabetic or antihyperglycemic effect of P. somniferum alkaloids were reviewed. Next, opioid receptors and their role in diabetes were explored. In the final part origins of interindividual variabilities in opioid receptors and metabolizing enzymes’ functions including genetic and epigenetic factors were reviewed.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Department of Pharmacognosy & Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Sadat Hosseini
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
Zemljic-Harpf AE, Hoe LES, Schilling JM, Zuniga-Hertz JP, Nguyen A, Vaishnav YJ, Belza GJ, Budiono BP, Patel PM, Head BP, Dillmann WH, Mahata SK, Peart JN, Roth DM, Headrick JP, Patel HH. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB J 2021; 35:e21407. [PMID: 33583084 PMCID: PMC10843897 DOI: 10.1096/fj.201903233r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
The obesity epidemic has increased type II diabetes mellitus (T2DM) across developed countries. Cardiac T2DM risks include ischemic heart disease, heart failure with preserved ejection fraction, intolerance to ischemia-reperfusion (I-R) injury, and refractoriness to cardioprotection. While opioids are cardioprotective, T2DM causes opioid receptor signaling dysfunction. We tested the hypothesis that sustained opioid receptor stimulus may overcome diabetes mellitus-induced cardiac dysfunction via membrane/mitochondrial-dependent protection. In a murine T2DM model, we investigated effects of morphine on cardiac function, I-R tolerance, ultrastructure, subcellular cholesterol expression, mitochondrial protein abundance, and mitochondrial function. T2DM induced 25% weight gain, hyperglycemia, glucose intolerance, cardiac hypertrophy, moderate cardiac depression, exaggerated postischemic myocardial dysfunction, abnormalities in mitochondrial respiration, ultrastructure and Ca2+ -induced swelling, and cell death were all evident. Morphine administration for 5 days: (1) improved glucose homeostasis; (2) reversed cardiac depression; (3) enhanced I-R tolerance; (4) restored mitochondrial ultrastructure; (5) improved mitochondrial function; (6) upregulated Stat3 protein; and (7) preserved membrane cholesterol homeostasis. These data show that morphine treatment restores contractile function, ischemic tolerance, mitochondrial structure and function, and membrane dynamics in type II diabetic hearts. These findings suggest potential translational value for short-term, but high-dose morphine administration in diabetic patients undergoing or recovering from acute ischemic cardiovascular events.
Collapse
Affiliation(s)
- Alice E. Zemljic-Harpf
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Louise E. See Hoe
- Department of Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jan M. Schilling
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Juan P. Zuniga-Hertz
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Alexander Nguyen
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Yash J. Vaishnav
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Gianna J. Belza
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Boris P. Budiono
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - Piyush M. Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Brian P. Head
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Wolfgang H. Dillmann
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason N. Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - David M. Roth
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - John P. Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - Hemal H. Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Radahmadi M, Sharifi MR, Amini M, Fesharaki M. Effect of the co-administration of glucose with morphine on glucoregulatory hormones and causing of diabetes mellitus in rats. Adv Biomed Res 2016; 5:21. [PMID: 26962523 PMCID: PMC4770615 DOI: 10.4103/2277-9175.175907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/28/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Morphine is related to dysregulation of serum hormone levels. In addition, addict subjects interest to sugar intake. Therefore, this study investigated the effect of co-administration of glucose with Mo on the glucoregulatory hormones and causing of diabetes mellitus in rats. MATERIALS AND METHODS Male rats were randomly divided into four groups including, control, morphine, Morphine-Glucose and diabetes groups. Morphine was undergone through doses of 10, 20, 30, 40, 50, and 60 mg/kg, respectively on days 1, 2, 3, 4, 5, and 6. Then, dose of 60 mg/kg was used repeated for 20 extra days. The Morphine-Glucose group received the same doses of morphine plus 1 g/kg glucose per day. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin. At the end of experiment, the serum insulin, glucagon, growth hormone (GH), cortisol, and glucose levels were measured. The homeostasis model assessment (HOMA) indexes concluding the HOMA-insulin resistance (HOMA-IR) and HOMA-β were evaluated. RESULTS Morphine insignificantly induced a hyperglycemia condition and insulin resistance. Whereas, the beta-cell functions significantly (P < 0.05) decreased only in morphine group. The co-administration of glucose slightly increased the GH, and increased insulin and cortisol levels significantly (P < 0.05 and P < 0.01; respectively) in the Morphine-Glucose group. Furthermore, the co-administration of glucose with morphine could nearly modulate the morphine effects on body weight, glucose, and glucagon levels. CONCLUSION It is probable that the co-administration of glucose with morphine modulate the serum glucose levels by stimulating the beta-cell functions and to increase insulin secretion.
Collapse
Affiliation(s)
- Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Amini
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrafarin Fesharaki
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Eisinger DA, Ammer H. Down-regulation of c-Cbl by morphine accounts for persistent ERK1/2 signaling in delta-opioid receptor-expressing HEK293 cells. J Biol Chem 2009; 284:34819-28. [PMID: 19828455 DOI: 10.1074/jbc.m109.042937] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Opioids display ligand-specific differences in the time course of ERK1/2 signaling. Whereas full agonists, like etorphine, induce only transient activation of ERK1/2, the partial agonist morphine mediates persistent stimulation of mitogenic signaling. Here we report that in stably delta-opioid receptor (DOR)-expressing HEK293 (HEK/DOR) cells, the transient nature of etorphine-induced ERK1/2 signaling is due to desensitization of epidermal growth factor (EGF) receptor-mediated activation of the Ras/Raf-1/ERK1/2 cascade. Desensitization of ERK1/2 activity by etorphine is associated with down-regulation of EGF receptors, an effect mediated by the ubiquitin ligase c-Cbl. In contrast, chronic morphine treatment failed to desensitize EGF receptors, resulting in unimpeded ERK1/2 signaling. The failure of morphine to desensitize ERK1/2 signaling is mediated by persistent activation of c-Src, which induces degradation of c-Cbl. The role of c-Src in opioid-specific ERK1/2 signaling is further demonstrated by pretreatment of the cells with PP2 and SKI-I as well as overexpression of a dominant negative c-Src mutant (c-Src(dn)) or a c-Src-resistant c-Cbl mutant (CblY3F), both of which facilitate desensitization of ERK1/2 signaling by morphine. Conversely, overexpression of c-Src as well as down-regulation of c-Cbl by small interfering RNA results in persistent etorphine-induced stimulation of ERK1/2 activity. Subcellular fractionation experiments finally attributed the ability of morphine to persistently activate c-Src to its redistribution from Triton X-100-insensitive membrane rafts to DOR and EGF receptor containing high density membrane compartments implicated in ERK1/2 signaling. These results demonstrate that agonist-specific differences in the temporal and spatial pattern of c-Src activation determine the kinetics of DOR-mediated regulation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University Munich, 80539 Muenchen, Germany.
| | | |
Collapse
|
5
|
Abstract
This review covers beta-phenylethylamines and isoquinoline alkaloids and compounds derived from them, including further products of oxidation, condensation with formaldehyde and rearrangement, some of which do not contain an isoquinoline system, together with naphthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids, with the structures of new bases, together with their reactions, syntheses and biological activities are reported. The literature from July 2001 to June 2002 is reviewed, with 581 references cited.
Collapse
|