1
|
Martinez SE, Pandey AV, Perez Jimenez TE, Zhu Z, Court MH. Pharmacogenomics of poor drug metabolism in greyhounds: Canine P450 oxidoreductase genetic variation, breed heterogeneity, and functional characterization. PLoS One 2024; 19:e0297191. [PMID: 38300925 PMCID: PMC10833530 DOI: 10.1371/journal.pone.0297191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Greyhounds metabolize cytochrome P450 (CYP) 2B11 substrates more slowly than other dog breeds. However, CYP2B11 gene variants associated with decreased CYP2B11 expression do not fully explain reduced CYP2B11 activity in this breed. P450 oxidoreductase (POR) is an essential redox partner for all CYPs. POR protein variants can enhance or repress CYP enzyme function in a CYP isoform and substrate dependent manner. The study objectives were to identify POR protein variants in greyhounds and determine their effect on coexpressed CYP2B11 and CYP2D15 enzyme function. Gene sequencing identified two missense variants (Glu315Gln and Asp570Glu) forming four alleles, POR-H1 (reference), POR-H2 (570Glu), POR-H3 (315Gln, 570Glu) and POR-H4 (315Gln). Out of 68 dog breeds surveyed, POR-H2 was widely distributed across multiple breeds, while POR-H3 was largely restricted to greyhounds and Scottish deerhounds (35% allele frequencies), and POR-H4 was rare. Three-dimensional protein structure modelling indicated significant effects of Glu315Gln (but not Asp570Glu) on protein flexibility through loss of a salt bridge between Glu315 and Arg519. Recombinant POR-H1 (reference) and each POR variant (H2-H4) were expressed alone or with CYP2B11 or CYP2D15 in insect cells. No substantial effects on POR protein expression or enzyme activity (cytochrome c reduction) were observed for any POR variant (versus POR-H1) when expressed alone or with CYP2B11 or CYP2D15. Furthermore, there were no effects on CYP2B11 or CYP2D15 protein expression, or on CYP2D15 enzyme kinetics by any POR variant (versus POR-H1). However, Vmax values for 7-benzyloxyresorufin, propofol and bupropion oxidation by CYP2B11 were significantly reduced by coexpression with POR-H3 (by 34-37%) and POR-H4 (by 65-72%) compared with POR-H1. Km values were unaffected. Our results indicate that the Glu315Gln mutation (common to POR-H3 and POR-H4) reduces CYP2B11 enzyme function without affecting at least one other major canine hepatic P450 (CYP2D15). Additional in vivo studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Stephanie E. Martinez
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Biomedical Research, University Children’s Hospital Bern, Switzerland and Translational Hormone Research Program, University of Bern, Bern, Switzerland
| | - Tania E. Perez Jimenez
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zhaohui Zhu
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Michael H. Court
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
2
|
Wang C, Tian Q. Diagnostic challenges and management advances in cytochrome P450 oxidoreductase deficiency, a rare form of congenital adrenal hyperplasia, with 46, XX karyotype. Front Endocrinol (Lausanne) 2023; 14:1226387. [PMID: 37635957 PMCID: PMC10453803 DOI: 10.3389/fendo.2023.1226387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Cytochrome P450 oxidoreductase deficiency (PORD) is a rare form of congenital adrenal hyperplasia that can manifest with skeletal malformations, ambiguous genitalia, and menstrual disorders caused by cytochrome P450 oxidoreductase (POR) mutations affecting electron transfer to all microsomal cytochrome P450 and some non-P450 enzymes involved in cholesterol, sterol, and drug metabolism. With the advancement of molecular biology and medical genetics, increasing numbers of PORD cases were reported, and the clinical spectrum of PORD was extended with studies on underlying mechanisms of phenotype-genotype correlations and optimum treatment. However, diagnostic challenges and management dilemma still exists because of unawareness of the condition, the overlapping manifestations with other disorders, and no clear guidelines for treatment. Delayed diagnosis and management may result in improper sex assignment, loss of reproductive capacity because of surgical removal of ruptured ovarian macro-cysts, and life-threatening conditions such as airway obstruction and adrenal crisis. The clinical outcomes and prognosis, which are influenced by specific POR mutations, the presence of additional genetic or environmental factors, and management, include early death due to developmental malformations or adrenal crisis, bilateral oophorectomies after spontaneous rupture of ovarian macro-cysts, genital ambiguity, abnormal pubertal development, and nearly normal phenotype with successful pregnancy outcomes by assisted reproduction. Thus, timely diagnosis including prenatal diagnosis with invasive and non-invasive techniques and appropriate management is essential to improve patients' outcomes. However, even in cases with conclusive diagnosis, comprehensive assessment is needed to avoid severe complications, such as chromosomal test to help sex assignment and evaluation of adrenal function to detect partial adrenal insufficiency. In recent years, it has been noted that proper hormone replacement therapy can lead to decrease or resolve of ovarian macro-cysts, and healthy babies can be delivered by in vitro fertilization and frozen embryo transfer following adequate control of multiple hormonal imbalances. Treatment may be complicated with adverse effects on drug metabolism caused by POR mutations. Unique challenges occur in female PORD patients such as ovarian macro-cysts prone to spontaneous rupture, masculinized genitalia without progression after birth, more frequently affected pubertal development, and impaired fertility. Thus, this review focuses only on 46, XX PORD patients to summarize the potential molecular pathogenesis, differential diagnosis of classic and non-classic PORD, and tailoring therapy to maintain health, avoid severe complications, and promote fertility.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qinjie Tian
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Loss of Protein Stability and Function Caused by P228L Variation in NADPH-Cytochrome P450 Reductase Linked to Lower Testosterone Levels. Int J Mol Sci 2022; 23:ijms231710141. [PMID: 36077536 PMCID: PMC9456303 DOI: 10.3390/ijms231710141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is the redox partner of steroid and drug-metabolising cytochromes P450 located in the endoplasmic reticulum. Mutations in POR cause a broad range of metabolic disorders. The POR variant rs17853284 (P228L), identified by genome sequencing, has been linked to lower testosterone levels and reduced P450 activities. We expressed the POR wild type and the P228L variant in bacteria, purified the proteins, and performed protein stability and catalytic functional studies. Variant P228L affected the stability of the protein as evidenced by lower unfolding temperatures and higher sensitivity to urea denaturation. A significant decline in the rate of electron transfer to cytochrome c and thiazolyl blue tetrazolium (MTT) was observed with POR P228L, while activities of CYP3A4 were reduced by 25% and activities of CYP3A5 and CYP2C9 were reduced by more than 40% compared with WT POR. The 17,20 lyase activity of CYP17A1, responsible for the production of the main androgen precursor dehydroepiandrosterone, was reduced to 27% of WT in the presence of the P228L variant of POR. Based on in silico and in vitro studies, we predict that the change of proline to leucine may change the rigidity of the protein, causing conformational changes in POR, leading to altered electron transfer to redox partners. A single amino acid change can affect protein stability and cause a severe reduction in POR activity. Molecular characterisation of individual POR mutations is crucial for a better understanding of the impact on different redox partners of POR.
Collapse
|
4
|
Chen K, Liu C, Zhang X, Xu Z, Shao M, Yang T, Rao Z. Identification of a novel cytochrome P450 17A1 enzyme and its molecular engineering. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01605b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Progesterone-17α-hydroxylase (CYP17A) could transform progesterone to 17α-hydroxyprogesterone (17-HP).
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Minglong Shao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Unal E, Demiral M, Yıldırım R, Taş FF, Ceylaner S, Özbek MN. Cytochrome P450 oxidoreductase deficiency caused by a novel mutation in the POR gene in two siblings: case report and literature review. Hormones (Athens) 2021; 20:293-298. [PMID: 33123976 DOI: 10.1007/s42000-020-00249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION P450 oxidoreductase (POR) deficiency is a rare form of congenital adrenal hyperplasia. In both genders, it can lead to ambiguous genitalia, impaired steroidogenesis, and skeletal findings similar to those of Antley-Bixler syndrome. CASES We describe two cases of POR deficiency. The first case was an 8.5-year-old girl who was admitted to our clinic due to ambiguous genitalia. Karyotype was 46, XX. There were mild dysmorphic facial findings and mild metacarpophalangeal joint deformity. The patient's basal cortisol and ACTH levels were normal, while 17-hydroxyprogesterone (17OHP) levels were high. Peak cortisol response to the ACTH stimulation test was found to be insufficient. Our second case, a sibling of the first case, was admitted for routine checkup at the age of 15 months. As in our first case, there were dysmorphic facial findings and metacarpophalangeal joint deformity. The genital structure was normal. Karyotype was 46, XY. Basal cortisol and ACTH levels were normal, while 17OHP level was slightly high. Peak cortisol response to the ACTH stimulation test was found to be insufficient. Based on our findings, POR deficiency was considered in both of these cases and NM_000941.3:c.929_937delTCTCGGACT(p.Ile310_Ser313delinsThr) (homozygous) mutation was detected in the POR gene that had not previously been described. CONCLUSION We detected a novel variant in the POR gene in two sibling cases with adrenal insufficiency, dysmorphic face, and mild skeletal findings. While the detected mutation caused ambiguous genitalia in the female case, it did not cause ambiguous genitalia in the male case.
Collapse
Affiliation(s)
- Edip Unal
- Department of Pediatric Endocrinology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey.
| | - Meliha Demiral
- Department of Pediatric Endocrinology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Ruken Yıldırım
- Department of Pediatric Endocrinology, Diyarbakır Children's Hospital, Diyarbakır, Turkey
| | - Funda Feryal Taş
- Department of Pediatric Endocrinology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Serdar Ceylaner
- Department of Medical Genetics, Intergen Genetic Diagnosis Center, Ankara, Turkey
| | - Mehmet Nuri Özbek
- Department of Pediatric Endocrinology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| |
Collapse
|
6
|
Insight into the structural and functional analysis of the impact of missense mutation on cytochrome P450 oxidoreductase. J Mol Graph Model 2020; 100:107708. [PMID: 32805558 DOI: 10.1016/j.jmgm.2020.107708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/26/2023]
Abstract
Cytochrome P450 oxidoreductase (POR) is a steroidogenic and drug-metabolizing enzyme. It helps in the NADPH dependent transfer of electrons to cytochrome P450 (CYP) enzymes for their biological activity. In this study, we employed integrative computational approaches to decipher the impact of proline to leucine missense mutation at position 384 (P384L) in the connecting/hinge domain region which is essential for the catalytic activity of POR. Analysis of protein stability using DUET, MUpro, CUPSAT, I-Mutant2.0, iStable and SAAFEC servers predicted that mutation might alter the structural stability of POR. The significant conformational changes induced by the mutation to the POR structure were analyzed by long-range molecular dynamics simulation. The results revealed that missense mutation decreased the conformational stability of POR as compared to wild type (WT). The PCA based FEL analysis described the mutant-specific conformational alterations and dominant motions essential for the biological activity of POR. The LIGPLOT interaction analysis showed the different binding architecture of FMN, FAD, and NADPH as a result of mutation. The increased number of hydrogen bonds in the FEL conformation of WT proved the strong binding of cofactors in the binding pocket as compared to the mutant. The porcupine plot analysis associated with cross-correlation analysis depicted the high-intensity flexible motion exhibited by functionally important FAD and NADPH binding domain regions. The computational findings unravel the impact of mutation at the structural level, which could be helpful in understanding the molecular mechanism of drug metabolism.
Collapse
|
7
|
Parween S, Fernández-Cancio M, Benito-Sanz S, Camats N, Rojas Velazquez MN, López-Siguero JP, Udhane SS, Kagawa N, Flück CE, Audí L, Pandey AV. Molecular Basis of CYP19A1 Deficiency in a 46,XX Patient With R550W Mutation in POR: Expanding the PORD Phenotype. J Clin Endocrinol Metab 2020; 105:5736381. [PMID: 32060549 DOI: 10.1210/clinem/dgaa076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
CONTEXT Mutations in cytochrome P450 oxidoreductase (POR) cause a form of congenital adrenal hyperplasia (CAH). We report a novel R550W mutation in POR identified in a 46,XX patient with signs of aromatase deficiency. OBJECTIVE Analysis of aromatase deficiency from the R550W mutation in POR. DESIGN, SETTING, AND PATIENT Both the child and the mother had signs of virilization. Ultrasound revealed the presence of uterus and ovaries. No defects in CYP19A1 were found, but further analysis with a targeted Disorders of Sexual Development NGS panel (DSDSeq.V1, 111 genes) on a NextSeq (Illumina) platform in Madrid and Barcelona, Spain, revealed compound heterozygous mutations c.73_74delCT/p.L25FfsTer93 and c.1648C > T/p.R550W in POR. Wild-type and R550W POR were produced as recombinant proteins and tested with multiple cytochrome P450 enzymes at University Children's Hospital, Bern, Switzerland. MAIN OUTCOME MEASURE AND RESULTS POR-R550W showed 41% of the WT activity in cytochrome c and 7.7% activity for reduction of MTT. Assays of CYP19A1 showed a severe loss of activity, and CYP17A1 as well as CYP21A2 activities were also lost by more than 95%. Loss of CYP2C9, CYP2C19, and CYP3A4 activities was observed for the R550W-POR. Predicted adverse effect on aromatase activity as well as a reduction in binding of NADPH was confirmed. CONCLUSIONS Pathological effects due to POR-R550W were identified, expanding the knowledge of molecular pathways associated with aromatase deficiency. Screening of the POR gene may provide a diagnosis in CAH without defects in genes for steroid metabolizing enzymes.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mónica Fernández-Cancio
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Sara Benito-Sanz
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, CIBERER, ISCIII, Madrid, Spain
| | - Núria Camats
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Maria Natalia Rojas Velazquez
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Laboratorio de Genética Molecular, Departamento de Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | | | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Norio Kagawa
- Faculty of Medicine, Nagoya University, Nagoya, Japan
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Laura Audí
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Parween S, Rojas Velazquez MN, Udhane SS, Kagawa N, Pandey AV. Variability in Loss of Multiple Enzyme Activities Due to the Human Genetic Variation P284T Located in the Flexible Hinge Region of NADPH Cytochrome P450 Oxidoreductase. Front Pharmacol 2019; 10:1187. [PMID: 31749697 PMCID: PMC6843080 DOI: 10.3389/fphar.2019.01187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022] Open
Abstract
Cytochromes P450 located in the endoplasmic reticulum require NADPH cytochrome P450 oxidoreductase (POR) for their catalytic activities. Mutations in POR cause multiple disorders in humans related to the biosynthesis of steroid hormones and also affect drug-metabolizing cytochrome P450 activities. Electron transfer in POR occurs from NADH to FAD to FMN, and the flexible hinge region in POR is essential for domain movements to bring the FAD and FMN close together for electron transfer. We tested the effect of variations in the hinge region of POR to check if the effects would be similar across all redox partners or there will be differences in activities. Here we are reporting the effects of a POR genetic variant P284T located in the hinge region of POR that is necessary for the domain movements and internal electron transfer between co-factors. Human wild-type and P284T mutant of POR and cytochrome P450 proteins were expressed in bacteria, purified, and reconstituted for enzyme assays. We found that for the P284T variant of POR, the cytochrome c reduction activity was reduced to 47% of the WT and MTT reduction was reduced to only 15% of the WT. No impact on ferricyanide reduction activity was observed, indicating intact direct electron transfer from FAD to ferricyanide, but a severe loss of CYP19A1 (aromatase) activity was observed (9% of WT). In the assays of drug-metabolizing cytochrome P450 enzymes, the P284T variant of POR showed 26% activity for CYP2C9, 44% activity for CYP2C19, 23% activity for CYP3A4, and 44% activity in CYP3A5 assays compared to the WT POR. These results indicate a severe effect on several cytochrome P450 activities due to the P284T variation in POR, which suggests a negative impact on both the steroid as well as drug metabolism in the individuals carrying this variation. The negative impact of P284T mutation in the hinge region of POR seems to be due to disruption of FAD to FMN electron transfer. These results further emphasize the importance of hinge region in POR for protein flexibility and electron transfer within POR as well as the interaction of POR with different redox partners.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Maria Natalia Rojas Velazquez
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland.,Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Norio Kagawa
- School of Medicine, Nagoya University, Nagoya, Japan
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Velazquez MNR, Parween S, Udhane SS, Pandey AV. Variability in human drug metabolizing cytochrome P450 CYP2C9, CYP2C19 and CYP3A5 activities caused by genetic variations in cytochrome P450 oxidoreductase. Biochem Biophys Res Commun 2019; 515:133-138. [DOI: 10.1016/j.bbrc.2019.05.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 01/14/2023]
|
10
|
Udhane SS, Parween S, Kagawa N, Pandey AV. Altered CYP19A1 and CYP3A4 Activities Due to Mutations A115V, T142A, Q153R and P284L in the Human P450 Oxidoreductase. Front Pharmacol 2017; 8:580. [PMID: 28970799 PMCID: PMC5609582 DOI: 10.3389/fphar.2017.00580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
All cytochromes P450s in the endoplasmic reticulum rely on P450 oxidoreductase (POR) for their catalytic activities. Mutations in POR cause metabolic disorders of steroid hormone biosynthesis and affect certain drug metabolizing P450 activities. We studied mutations A115V, T142A, Q153R identified in the flavin mononucleotide (FMN) binding domain of POR that interacts with partner proteins and P284L located in the hinge region that is required for flexibility and domain movements in POR. Human wild-type (WT) and mutant POR as well as CYP3A4 and CYP19A1 proteins in recombinant form were expressed in bacteria, and purified proteins were reconstituted in liposomes for enzyme kinetic assays. Quality of POR protein was checked by cytochrome c reduction assay as well as flavin content measurements. We found that proteins carrying mutations A115V, T142A located close to the FMN binding site had reduced flavin content compared to WT POR and lost almost all activity to metabolize androstenedione via CYP19A1 and showed reduced CYP3A4 activity. The variant P284L identified from apparently normal subjects also had severe loss of both CYP19A1 and CYP3A4 activities, indicating this to be a potentially disease causing mutation. The mutation Q153R initially identified in a patient with disordered steroidogenesis showed remarkably increased activities of both CYP19A1 and CYP3A4 without any significant change in flavin content, indicating improved protein–protein interactions between POR Q153R and some P450 proteins. These results indicate that effects of mutations on activities of individual cytochromes P450 can be variable and a detailed analysis of each variant with different partner proteins is necessary to accurately determine the genotype-phenotype correlations of POR variants.
Collapse
Affiliation(s)
- Sameer S Udhane
- Department of Pediatric Endocrinology, Diabetology and MetabolismUniversity Children's Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of BernBern, Switzerland
| | - Shaheena Parween
- Department of Pediatric Endocrinology, Diabetology and MetabolismUniversity Children's Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of BernBern, Switzerland
| | - Norio Kagawa
- School of Medicine, Nagoya UniversityNagoya, Japan
| | - Amit V Pandey
- Department of Pediatric Endocrinology, Diabetology and MetabolismUniversity Children's Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of BernBern, Switzerland
| |
Collapse
|
11
|
Bai Y, Li J, Wang X. Cytochrome P450 oxidoreductase deficiency caused by R457H mutation in POR gene in Chinese: case report and literature review. J Ovarian Res 2017; 10:16. [PMID: 28288674 PMCID: PMC5348910 DOI: 10.1186/s13048-017-0312-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 11/23/2022] Open
Abstract
Background Cytochrome P450 oxidoreductase deficiency (PORD) is a rare disease exhibiting a variety of clinical manifestations. It can be difficult to differentiate with other diseases such as 21-hydroxylase deficiency (21-OHD), polycystic ovary syndrome (PCOS) and Antley–Bixler syndrome (ABS). Nearly 100 cases of PORD have been reported worldwide. However, the genetic characters and clinical management are still unclear, especially in China. Case presentation In this study, we report a 27-year-old female Chinese patient who first presented with amenorrhea and recurrence of large ovary cyst. She was misdiagnosed with PCOS and non-classical 21-OHD due to ovary cysts and elevated 17-hydroxy-progesterone. The patient’s complaining of a mild difficulty of bending the metacarpophalangeal joints reminded us to consider PORD, which usually presents with skeletal deformities and sexual dysfunction. The diagnosis of PORD was confirmed by genetic analyses, which showed the patient harboring a homozygous missense mutation in the POR gene (R457H) and her parents carrying the heterozygous mutation. The patient was treated with low-dose corticosteroids and estrogen/progesterone sequential therapy, and her ovarian cyst gradually reduced with regular menstruation in the follow-up. Moreover, the clinical and genetic characteristics of 104 previously reported PORD cases were also summarized and analyzed. Conclusions PORD is a very rare disease which can be easily misdiagnosed in mild cases. Clinicians should keep in mind of this disease in patients with sexual dysfunction, especially combined with special skeletal deformities. Our data could provide a consciously understanding of this disease for clinic practicers. Low-dose corticosteroids combined with estrogen/progesterone sequential therapy will be effective in PORD patients with recurrence of large ovary cyst. The fact that the reported PORD patients in China carrying an identical variant R457H in POR gene also give us a viewpoint that R457H mutation in POR gene maybe important in causing PORD in Chinese as same as in Japanese.
Collapse
Affiliation(s)
- Yang Bai
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Nanjing North Street, NO 155, Shenyang, 110001, People's Republic of China
| | - Jinhui Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Nanjing North Street, NO 155, Shenyang, 110001, People's Republic of China
| | - Xiaoli Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Nanjing North Street, NO 155, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
12
|
Flück CE, Pandey AV. Impact on CYP19A1 activity by mutations in NADPH cytochrome P450 oxidoreductase. J Steroid Biochem Mol Biol 2017; 165:64-70. [PMID: 27032764 DOI: 10.1016/j.jsbmb.2016.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/23/2022]
Abstract
Cytochrome P450 aromatase (CYP19A1), in human placenta metabolizes androgens to estrogens and uses reduced nicotinamide adenine dinucleotide phosphate through cytochrome P450 oxidoreductase (POR) for the energy requirements of its metabolic activities. Mutations in the human POR lead to congenital adrenal hyperplasia due to loss of activities of several steroid metabolizing enzymatic reactions conducted by the cytochrome P450 proteins located in the endoplasmic reticulum. Effect of POR mutations on different P450 activities depend on individual partner proteins. In this report we have studied the impact of mutations found in the POR on the enzymatic activity of CYP19A1. We expressed wild type as well mutant human POR proteins in bacteria and purified the recombinant proteins, which were then used in an in vitro reconstitution system in combination with CYP19A1 and lipids for enzymatic analysis. We found that several mutations as well as polymorphisms in human POR can cause reduction of CYP19A1 activity. This would affect metabolism of estrogens in people with variations of POR allele. The POR mutants Y181D and R616X were found to have no activity in supporting CYP19A1 reactions. The POR mutations Y607C and delF646 showed a loss of 60-90% activity and two polymorphic forms of POR, R316W and G413S showed similar to WT activity. One POR variant, Q153R had almost double the activity of WT. Loss of CYP19A1 activity may contribute to disordered steroidogenesis in female patients with POR mutations as well as in mothers with POR variants carrying a male child.
Collapse
Affiliation(s)
- Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Burkhard FZ, Parween S, Udhane SS, Flück CE, Pandey AV. P450 Oxidoreductase deficiency: Analysis of mutations and polymorphisms. J Steroid Biochem Mol Biol 2017; 165:38-50. [PMID: 27068427 DOI: 10.1016/j.jsbmb.2016.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) is required for metabolic reactions of steroid and drug metabolizing cytochrome P450 proteins located in endoplasmic reticulum. Mutations in POR cause a complex set of disorders resembling combined deficiencies of multiple steroid metabolizing enzymes. The P450 oxidoreductase deficiency (PORD) was first reported in patients with symptoms of defects in steroidogenic cytochrome P450 enzymes and ambiguous genitalia, and bone malformation features resembling Antley-Bixler syndrome. POR is now classified as a separate and rare form of congenital adrenal hyperplasia (CAH), which may cause disorder of sexual development (DSD). Since the initial description of PORD in 2004, a large number of POR mutations and polymorphisms have been described. In this report we have performed computational analysis of mutations and polymorphisms in POR linked to metabolism of steroids and xenobiotics and pathology of PORD from the reported cases. The mutations in POR that were identified in patients with disruption of steroidogenesis also have severe effects on cytochrome P450 proteins involved in metabolism of drugs. Different variations in POR show a range of diverse effects on different partner proteins that are often linked to the location of the particular variants. The variations in POR that cause defective binding of co-factors always have damaging effects on all partner proteins, while the mutations causing subtle structural changes may lead to altered interaction with partner proteins and the overall effect may be different for each individual partner. Computational analysis of available sequencing data and mutation analysis shows that Japanese (R457H), Caucasian (A287P) and Turkish (399-401) populations can be linked to unique founder mutations. Other mutations identified so far were identified as rare alleles or in single isolated reports. The common polymorphism of POR is the variant A503V which can be found in about 27% of alleles in general population but there are remarkable differences among different sub populations.
Collapse
Affiliation(s)
- Fabian Z Burkhard
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Shaheena Parween
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Sameer S Udhane
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland.
| |
Collapse
|
14
|
Pandey AV, Sproll P. Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol 2014; 5:103. [PMID: 24847272 PMCID: PMC4023047 DOI: 10.3389/fphar.2014.00103] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) supports reactions of microsomal cytochrome P450 which metabolize drugs and steroid hormones. Mutations in POR cause disorders of sexual development. P450 oxidoreductase deficiency (PORD) was initially identified in patients with Antley–Bixler syndrome (ABS) but now it has been established as a separate disorder of sexual development (DSD). Here we are summarizing the work on variations in POR related to metabolism of drugs and xenobiotics. We have compiled mutation data on reported cases of PORD from clinical studies. Mutations found in patients with defective steroid profiles impact metabolism of steroid hormones as well as drugs. Some trends are emerging that establish certain founder mutations in distinct populations, with Japanese (R457H), Caucasian (A287P), and Turkish (399–401) populations showing repeated findings of similar mutations. Most other mutations are found as single occurrences. A large number of different variants in POR gene with more than 130 amino acid changes are now listed in databases. Among the polymorphisms, the A503V is found in about 30% of all alleles but there are some differences across different population groups.
Collapse
Affiliation(s)
- Amit V Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern Bern, Switzerland ; Program in Molecular Life Sciences, Department of Biology, University of Bern Bern, Switzerland
| | - Patrick Sproll
- Program in Molecular Life Sciences, Department of Biology, University of Bern Bern, Switzerland
| |
Collapse
|
15
|
Koyama Y, Homma K, Hasegawa T. Urinary steroid profiling: a powerful method for the diagnosis of abnormal steroidogenesis. Expert Rev Endocrinol Metab 2014; 9:273-282. [PMID: 30736166 DOI: 10.1586/17446651.2014.904199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we will focus on urinary steroid profiling by gas chromatography mass spectrometry (GC/MS) and summarize its contribution to the diagnosis of abnormal steroidogenesis; congenital enzyme deficiency of steroid synthesis and metabolism, adrenal carcinoma and other steroid related diseases. Mass spectrometry technique, such as GC/MS and liquid chromatography tandem mass spectrometry (LC-MS/MS), has become the main tool for steroid measurement and GC/MS is mainly used for urine sampling. We will discuss the pros and cons of urinary steroid profiling by GC/MS and LC-MS/MS. Although GC/MS analysis needs intricate pretreatment, time and expenses, sensitive and simultaneous measurement of whole pathway steroid measurements have improved the accuracy of diagnosis.
Collapse
Affiliation(s)
- Yuhei Koyama
- a Mitsubishi Chemical Medience Co., Tokyo, Japan
| | - Keiko Homma
- b Keio University Hospital Central Clinical Laboratories, Tokyo, Japan
| | - Tomonobu Hasegawa
- c Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
16
|
Pandey AV, Flück CE. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 2013; 138:229-54. [PMID: 23353702 DOI: 10.1016/j.pharmthera.2013.01.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/18/2023]
Abstract
Cytochrome P450 oxidoreductase (POR) is an enzyme that is essential for multiple metabolic processes, chiefly among them are reactions catalyzed by cytochrome P450 proteins for metabolism of steroid hormones, drugs and xenobiotics. Mutations in POR cause a complex set of disorders that often resemble defects in steroid metabolizing enzymes 17α-hydroxylase, 21-hydroxylase and aromatase. Since our initial reports of POR mutations in 2004, more than 200 different mutations and polymorphisms in POR gene have been identified. Several missense variations in POR have been tested for their effect on activities of multiple steroid and drug metabolizing P450 proteins. Mutations in POR may have variable effects on different P450 partner proteins depending on the location of the mutation. The POR mutations that disrupt the binding of co-factors have negative impact on all partner proteins, while mutations causing subtle structural changes may lead to altered interaction with specific partner proteins and the overall effect may be different for each partner. This review summarizes the recent discoveries related to mutations and polymorphisms in POR and discusses these mutations in the context of historical developments in the discovery and characterization of POR as an electron transfer protein. The review is focused on the structural, enzymatic and clinical implications of the mutations linked to newly identified disorders in humans, now categorized as POR deficiency.
Collapse
Affiliation(s)
- Amit V Pandey
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, 3004 Bern, Switzerland.
| | | |
Collapse
|
17
|
Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency. Proc Natl Acad Sci U S A 2011; 108:13486-91. [PMID: 21808038 DOI: 10.1073/pnas.1106632108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.
Collapse
|
18
|
Flück CE, Mullis PE, Pandey AV. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism. Biochem Biophys Res Commun 2010; 401:149-53. [DOI: 10.1016/j.bbrc.2010.09.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
19
|
At the crossroads of steroid hormone biosynthesis: the role, substrate specificity and evolutionary development of CYP17. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:200-9. [PMID: 20619364 DOI: 10.1016/j.bbapap.2010.06.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/28/2010] [Accepted: 06/26/2010] [Indexed: 11/22/2022]
Abstract
Cytochrome P450s play critical roles in the metabolism of various bioactive compounds. One of the crucial functions of cytochrome P450s in Chordata is in the biosynthesis of steroid hormones. Steroid 17alpha-hydroxylase/17,20-lyase (CYP17) is localized in endoplasmic reticulum membranes of steroidogenic cells. CYP17 catalyzes the 17alpha-hydroxylation reaction of delta4-C₂₁ steroids (progesterone derivatives) and delta5-C₂₁ steroids (pregnenolone derivatives) as well as the 17,20-lyase reaction producing C₁₉-steroids, a key branch point in steroid hormone biosynthesis. Depending on CYP17 activity, the steroid hormone biosynthesis pathway is directed to either the formation of mineralocorticoids and glucocorticoids or sex hormones. In the present review, the current information on CYP17 is analyzed and discussed.
Collapse
|
20
|
Flück CE, Nicolo C, Pandey AV. Clinical, structural and functional implications of mutations and polymorphisms in human NADPH P450 oxidoreductase. Fundam Clin Pharmacol 2007; 21:399-410. [PMID: 17635179 DOI: 10.1111/j.1472-8206.2007.00520.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 proteins are involved in metabolism of drugs and xenobiotics. In the endoplasmic reticulum a single nicotinamide adenine dinucleotide phosphate (NADPH) P450 oxidoreductase (POR) supplies electrons to all microsomal P450s for catalytic activity. POR is a flavoprotein that contains both flavin mononucleotide and flavin adenine dinucleotide as cofactors and uses NADPH as the source of electrons. We have recently reported a number of POR mutations in the patients with disordered steroidogenesis. In the first report we had described missense mutations (A287P, R457H, V492E, C569Y, and V608F) identified in four patients with defects in steroid production. Each POR variant was produced as recombinant N-27 form of the enzyme in bacteria and as full-length form in yeast. Membranes from bacteria or yeast expressing normal or variant POR were purified and their activities were characterized in cytochrome c and CYP17A1 assays. Later we have published a larger study that described a whole range of POR mutations and characterized the mutants/polymorphisms A115V, T142A, M263V, Y459H, A503V, G539R, L565P, R616X, V631I, and F646del from the sequencing of patient DNA. We also studied POR variants Y181D, P228L, R316W, G413S, and G504R that were available in public databases or published literature. Three-dimensional structure of rat POR is known and we have used this structure to deduce the structure-function correlation of POR mutations in human. The missense mutations found in patients with disordered steroidogenesis are generally in the co-factor binding and functionally important domains of POR and the apparent polymorphisms are found in regions with lesser structural importance. A variation in POR can alter the activity of all microsomal P450s, and therefore, can affect the metabolism of drugs and xenobiotics even when the P450s involved are otherwise normal. It is important to study the genetic and biochemical basis of POR variants in human population to gain information about possible differences in P450 mediated reactions among the individuals carrying a variant or polymorphic form of POR that could impact their metabolism.
Collapse
Affiliation(s)
- Christa E Flück
- Department of Pediatrics Endocrinology, University Children's Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland
| | | | | |
Collapse
|
21
|
Gonçalves J, Friães A, Moura L. Congenital adrenal hyperplasia: focus on the molecular basis of 21-hydroxylase deficiency. Expert Rev Mol Med 2007; 9:1-23. [PMID: 17466088 DOI: 10.1017/s1462399407000300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractCongenital adrenal hyperplasia (CAH) is an autosomal recessive disorder caused by defects in one of several steroidogenic enzymes involved in the synthesis of cortisol from cholesterol in the adrenal glands. More than 90% of cases are caused by 21-hydroxylase deficiency, and the severity of the resulting clinical symptoms varies according to the level of 21-hydroxylase activity. 21-Hydroxylase deficiency is usually caused by mutations in theCYP21A2gene, which is located on the RCCX module, a chromosomal region highly prone to genetic recombination events that can result in a wide variety of complex rearrangements, such as gene duplications, gross deletions and gene conversions of variable extensions. Molecular genotyping ofCYP21A2and the RCCX module has proved useful for a more accurate diagnosis of the disease, and prenatal diagnosis. This article summarises the clinical features of 21-hydroxylase deficiency, explains current understanding of the disease at the molecular level, and highlights recent developments, particularly in diagnosis.
Collapse
Affiliation(s)
- João Gonçalves
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | | | | |
Collapse
|
22
|
Abstract
All microsomal P450s require POR (cytochrome P450 reductase) for catalytic activity. Most of the clinically used drugs are metabolized by a small number of P450s and polymorphisms in the cytochrome P450s are known to cause changes in drug metabolism. We have recently found a number of POR missense mutations in the patients with disordered steroidogenesis. Our initial report described five missense mutations (A284P, R454H, V489E, C566Y and V605F) identified in four patients. We built bacterial expression vectors for each POR variant, purified the membranes expressing normal or variant POR and characterized their activities with cytochrome c and P450c17 assays. We have recently completed an extensive study of the range of POR mutations and characterized the mutants/polymorphisms A112V, T139A, M260V, Y456H, A500V, G536R, L562P, R613X, V628I and F643del from sequencing of patient DNA. We also studied POR variants Y179D, P225L, R313W, G410S and G501R that were available in databases or the published literature. We analysed the mutations with a three-dimensional model of human POR that was based on an essentially similar rat POR with known crystal structure. The missense mutations found in patients with disordered steroidogenesis mapped to functionally important domains of POR and the apparent polymorphisms mapped to less crucial regions. Since a variation in POR can alter the activity of all microsomal P450s, it can also affect the drug metabolism even with a normal P450. Understanding the genetic and biochemical basis of POR-mediated drug metabolism will provide valuable information about possible differences in P450-mediated reactions among the individuals carrying a variant or polymorphic form of POR.
Collapse
Affiliation(s)
- A V Pandey
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3010 Bern, Switzerland.
| |
Collapse
|