1
|
Ding L, Shangguan H, Wang X, Liu J, Shi Y, Xu X, Xie Y. Extraction, purification, structural characterization, biological activity, mechanism of action and application of polysaccharides from Ganoderma lucidum: A review. Int J Biol Macromol 2025; 288:138575. [PMID: 39662574 DOI: 10.1016/j.ijbiomac.2024.138575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Ganoderma lucidum is a traditional tonic medicine in China, known as the "fairy grass" and "spiritual grass". It contains various chemical components, such as polysaccharides, triterpenoids, alkaloids, nucleosides, sterols, and acid compounds, which have the effects of tonifying qi and calming the mind, stopping cough and asthma, and are used to treat restlessness, lung deficiency cough and asthma, fatigue and shortness of breath, and lack of appetite. Ganoderma lucidum polysaccharides (GLPs) are one of the main bioactive ingredients and are widely used in traditional Chinese medicine and traditional medicine fields. They have shown good medicinal value in enhancing immunity, inhibiting tumor cell growth, delaying aging, lowering blood sugar, lowering blood lipids, protecting the heart, anti-radiation, anti-fatigue, and other aspects. This article reviews the research progress on the extraction and purification, structural characteristics, pharmacological activity, and mechanisms of GLPs, as well as their applications in industries such as medicine, food, and daily chemical products. The aim is to provide theoretical basis for the treatment of traditional Chinese medicine compound preparations and lay the foundation for the potential value development of Ganoderma lucidum products.
Collapse
Affiliation(s)
- Ling Ding
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China
| | - Huizi Shangguan
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China
| | - Xin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Jiping Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yongheng Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Xinya Xu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China.
| |
Collapse
|
2
|
Moyen Uddin Pk M, O'Sullivan J, Sayful Islam M, Shahangir Biswas M, Arbia L, Pervin R, Rahman M. Investigating the Anticancer Effects of Pleurotus ostreatus Polysaccharide on G0/G1 Cell Cycle Arrest and Apoptosis in Ehrlich Ascites Carcinoma Cells. Chem Biodivers 2024; 21:e202400897. [PMID: 38970566 DOI: 10.1002/cbdv.202400897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
Cancer is one of the leading causes of mortality worldwide. Despite the advancement of cancer treatment by various means including surgery, chemotherapy etc, cancer is still a challenging disease to manage. This study was undertaken to investigate extraction, purification, structural elucidation, and the potential anti-cancer effects of Pleurotus ostreatus polysaccharide (POP). The anti-cancer activities were performed on the Ehrlich Ascites Carcinoma Cell Line. The results demonstrated that the MW of POP was154649.8 Da with homopolysaccharide composed of D-glucose units, featuring (1→6)-α-D-Glcp backbone with O-6 branches and T-α-D-Glcp terminations. and the yield was 6.27 %. The antitumor activity assessment demonstrated significant cytotoxicity of POP against Ehrlich Ascites Carcinoma (EAC) cells, with an IC50 of 121.801 μg mL, supported by LDH release analysis. POP inhibited cell migration, invasion, and colony formation, indicating its potential as an anti-cancer agent. POP elicited the apoptotic activity with the upregulation of Caspase-9 and Bax, and downregulation of Bcl-2. The DNA fragmentation assay further confirmed apoptosis-mediated DNA degradations. Additionally, POP-induced cell cycle arrest at the G0/G1 phase, by altering the expression of p53, Cyclin D, and Cdk4 proteins. So, Pleurotus ostreatus polysaccharide (POP) showed significant cytotoxicity on Ehrlich Ascites Carcinoma cells, indicating potential as an anti-cancer agent.
Collapse
Affiliation(s)
- Md Moyen Uddin Pk
- Institute of Biological Sciences, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Jane O'Sullivan
- Department of Anaesthesiology and Critical Care, Tallaght University Hospital, Dublin, Ireland
| | - Mohammad Sayful Islam
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Mohammad Shahangir Biswas
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj, 6751, Bangladesh
| | - Lubatul Arbia
- Department of Biochemistry & Molecular Biology, Primeasia University, Dhaka-1213, Bangladesh
| | - Rumana Pervin
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Matiar Rahman
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
3
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
5
|
Huang Q, Pan X, Zhu W, Zhao W, Xu H, Hu K. Natural Products for the Immunotherapy of Glioma. Nutrients 2023; 15:2795. [PMID: 37375698 DOI: 10.3390/nu15122795] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioma immunotherapy has attracted increasing attention since the immune system plays a vital role in suppressing tumor growth. Immunotherapy strategies are already being tested in clinical trials, such as immune checkpoint inhibitors (ICIs), vaccines, chimeric antigen receptor T-cell (CAR-T cell) therapy, and virus therapy. However, the clinical application of these immunotherapies is limited due to their tremendous side effects and slight efficacy caused by glioma heterogeneity, antigen escape, and the presence of glioma immunosuppressive microenvironment (GIME). Natural products have emerged as a promising and safe strategy for glioma therapy since most of them possess excellent antitumor effects and immunoregulatory properties by reversing GIME. This review summarizes the status of current immunotherapy strategies for glioma, including their obstacles. Then we discuss the recent advancement of natural products for glioma immunotherapy. Additionally, perspectives on the challenges and opportunities of natural compounds for modulating the glioma microenvironment are also illustrated.
Collapse
Affiliation(s)
- Qi Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhao Zhu
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Zhao
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Rokos T, Pribulova T, Kozubik E, Biringer K, Holubekova V, Kudela E. Exploring the Bioactive Mycocompounds (Fungal Compounds) of Selected Medicinal Mushrooms and Their Potentials against HPV Infection and Associated Cancer in Humans. Life (Basel) 2023; 13:244. [PMID: 36676192 PMCID: PMC9861011 DOI: 10.3390/life13010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Medicinal mushrooms have been used as a medicinal tool for many centuries and, nowadays, are used in the prevention and therapy of various diseases, including as an adjunct to cancer treatment. It is estimated that 14-16% of global cancer cases are caused by infectious events; one well-known infectious agent that leads to cancer is the human papillomavirus (HPV). HPV is responsible for more than 99.7% of cervical cancer cases and also may play a role in vaginal, vulvar, penile, anal, rectal, and oropharyngeal carcinogenesis. Coriolus versicolor, a basidiomycetes class mushroom, consists of glycoproteins called polysaccharide-K (PSK) and polysaccharopeptide (PSP), which are mainly responsible for its effectiveness in the fight against a variety of cancers. Its beneficial effect lies in its ability to arrest different phases of the cell cycle, immunomodulation or induction of apoptosis. Coriolus versicolor extractcan reduces BCL-2 expression or increases the expression of p53 tumour suppressor genes in breast tumour cell lines. Inhibition of proliferation was also demonstrated with HeLa cells, while cervical cytology abnormalities improved in patients who locally applied Coriolus versicolor-based vaginal gel. Coriolus versicolor extract itself, and also its combination with another medicinal mushroom, Ganoderma lucidum, leads to improved HPV clearance in HPV cervical or oral-positive patients. Medicinal mushrooms can also increase the effectiveness of vaccination. This review considers the use of medicinal mushrooms as a suitable adjunct to the treatment of many cancers or precanceroses, including those caused by the HPV virus.
Collapse
Affiliation(s)
- Tomas Rokos
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| | - Terezia Pribulova
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| | - Erik Kozubik
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| | - Kamil Biringer
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| | - Veronika Holubekova
- Department of Molecular Oncology and Diagnostics, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4C, 036 01 Martin, Slovakia
| | - Erik Kudela
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| |
Collapse
|
7
|
Management of Combined Therapy (Ceritinib, A. cinnamomea, G. lucidum, and Photobiomodulation) in Advanced Non-Small-Cell Lung Cancer: A Case Report. Life (Basel) 2022; 12:life12060862. [PMID: 35743893 PMCID: PMC9228003 DOI: 10.3390/life12060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
The 5-year survival rate of non-small-cell lung cancer (NSCLC) is still low (<21%) despite recent improvements. Since conventional therapies have a lot of side effects, combined therapy is strongly recommended. Here, we report a patient with advanced NSCLC who received combined therapy, including ceritinib, photobiomodulation (PBM), ACGL (Antrodia cinnamomea (A. cinnamomea), and Ganoderma lucidum (G. lucidum)). Based on combined therapy, suitable doses of A. cinnamomea, G. lucidum, and PBM are important for tumor inhibition. This case report presents clinical evidence on the efficacy of combined therapy in advanced NSCLC patients, including computed tomography (CT) scan, magnetic resonance imaging (MRI), carcinoembryonic antigen (CEA), and blood tests. The effective inhibition of human lung adenocarcinoma cells is demonstrated. Our case highlights important considerations for PBM and ACGL applications in NSCLC patients, the side effects of ceritinib, and long-term health maintenance.
Collapse
|
8
|
Nasr SA, Saad AAEM. Evaluation of the cytotoxic anticancer effect of polysaccharide of Nepeta septemcrenata. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Promoting cancer cells apoptosis is one of the effective methods to treat cancer. Human hepatocellular carcinoma (HepG2) and colorectal cancer (HCT-116) cell lines were used in the present study to evaluate the cytotoxic and anticancer properties of Nepeta septemcrenata Polysaccharide (NSP).
Result
Treatment of the two examined cells with NSP displayed a significant cytotoxicity towards HepG2 in a dose-dependent manner; meanwhile, its effect on HCT-116 was obtained under the influence of low doses. The quantitative real- time PCR (QRT-PCR) investigation revealed that NSP significantly up-regulated the expression levels of p53, p16, Fas, Fas-L, Bax, caspases-3, caspase-9, and TNF-α in association with down-regulation of cyclin D1, TERT, and BCL2. These findings declare the apoptotic characteristic of NSP.NSP, can also inhibit the development of cancer cells through the down-regulation of TGF-β and VEGF.
Conclusions
Our results suggested that the polysaccharides isolated from N. septemcrenata possess anticancer properties that could be explored for the development of novel anticancer agents.
Collapse
|
9
|
Adotey G, Alolga RN, Quarcoo A, Gedel MA, Anang AK, Holliday JC. Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS)-based metabolomic analysis of mycelial biomass of three Ganoderma isolates from the Lower Volta River Basin of Ghana. J Pharm Biomed Anal 2021; 205:114355. [PMID: 34500238 DOI: 10.1016/j.jpba.2021.114355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 11/28/2022]
Abstract
In this work, we sought to determine the differences and/or similarities in the metabolite composition of the mycelial biomass of three ganoderma isolates (Ganoderma LVRB-1, Ganoderma LVRB-9 and Ganoderma LVRB-17) from the Lower Volta River Basin of Ghana. The cultured mycelial mass of the three isolates were subjected to DNA sequencing. BLASTn searches of the internal transcribed spacer. (ITS) sequences of the isolates were conducted in the GenBank and the data obtained subjected to ITS phylogenetic analysis. Thereafter, extracts of the cultured mycelial biomass of the three isolates were subjected to untargeted ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based metabolomic analysis. A cursory examination of the total ion chromatograms of the isolates gave evidence of the differential levels of the metabolites present. Further analysis of the metabolomic data using multivariate analysis better captured these marked differences in terms of the presence and/or levels of the metabolites. Finally, four lanostane triterpenoids, namely ganoderic acid C6, ganoderenic acid A, Ganoderenic acid D and ganoderic acid G, together with two annotated compounds (ganoderic acids K and AM1) were detected in the mycelia biomass of the three ganoderma isolates from the Lower Volta River Basin of Ghana. The results provide the first ever metabolomic data on the chemical constituents of the mycelial biomass of ganoderma isolates from the Lower Volta River Basin of Ghana.
Collapse
Affiliation(s)
- Gideon Adotey
- Science Laboratory Department, Accra Technical University, P.O. Box GP 561, Barnes Road, Accra, Ghana.
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China.
| | - Abraham Quarcoo
- Science Laboratory Department, Accra Technical University, P.O. Box GP 561, Barnes Road, Accra, Ghana
| | - Mohammed Ahmed Gedel
- Science Laboratory Department, Accra Technical University, P.O. Box GP 561, Barnes Road, Accra, Ghana
| | - Abraham K Anang
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Ghana
| | | |
Collapse
|
10
|
Panda MK, Paul M, Singdevsachan SK, Tayung K, Das SK, Thatoi H. Promising Anti-cancer Therapeutics From Mushrooms: Current Findings and Future Perceptions. Curr Pharm Biotechnol 2021; 22:1164-1191. [PMID: 33032507 DOI: 10.2174/1389201021666201008164056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nowadays, medicines derived from natural sources have drawn much attention as potential therapeutic agents in the suppression and treatment of cancer because of their low toxicity and fewer side effects. OBJECTIVE The present review aims to assess the currently available knowledge on the ethnomedicinal uses and pharmacological activities of bioactive compounds obtained from medicinal mushrooms towards cancer treatment. METHODS A literature search has been conducted for the collection of research papers from universally accepted scientific databases. These research papers and published book chapters were scrutinized to retrieve information on ethnomedicinal uses of mushrooms, different factors involved in cancer cell proliferation, clinical and in silico pharmaceutical studies made for possible treatments of cancer using mushroom derived compounds. Overall, 241 articles were retrieved and reviewed from the year 1970 to 2020, out of which 98 relevant articles were finally considered for the preparation of this review. RESULTS This review presents an update on the natural bioactive substances derived from medicinal mushrooms and their role in inhibiting the factors responsible for cancer cell proliferation. Along with it, the present review also provides information on the ethnomedicinal uses, solvents used for extraction of anti-cancer metabolites, clinical trials, and in silico studies that were undertaken towards anticancer drug development from medicinal mushrooms. CONCLUSION The present review provides extensive knowledge on various anti-cancer substances obtained from medicinal mushrooms, their biological actions, and in silico drug designing approaches, which could form a basis for the development of natural anti-cancer therapeutics.
Collapse
Affiliation(s)
- Mrunmaya K Panda
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Manish Paul
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Sameer K Singdevsachan
- Spinco Biotech Pvt. Ltd., Spinco Towers, No. 934, 5th A cross, Service Road, HRBR Layout 1st Block, Kalyan Nagar, Bengaluru-560043, Karnataka, India
| | - Kumananda Tayung
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati-781014, Assam, India
| | - Swagat K Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar- 751003, Odisha, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| |
Collapse
|
11
|
Liu H, Wang ZY, Zhou YC, Song W, Ali U, Sze DMY. Immunomodulation of Chinese Herbal Medicines on NK cell populations for cancer therapy: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113561. [PMID: 33157222 DOI: 10.1016/j.jep.2020.113561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immunomodulation has become a crucial modality for cancer treatment. Chinese Herbal Medicines (CHMs) are expected as adjuvant therapy for immunomodulation against cancer, but face the key challenge of poor scientific evidence. Changes of natural killer (NK) cells on numbers and/or cytotoxicity are a novel respect to evaluate the immunomodulation of CHMs. AIM OF THE STUDY The purpose of this review is to investigate the immunomodulation of Chinese Herbal Medicines (CHMs) on NK cell populations for cancer therapy. MATERIALS AND METHODS A systematic review was conducted and outside mainstream electronic databases were screened for potential reference articles. This review tried to report and critically analyzed all the correlative studies, especially these clinical trials (3 CHM extracts and 11 CHM formulas). RESULTS Evidence-based functions of CHMs against cancer could be summarized as: (1) enhancement of NK cells activity or relative percentage; (2) prevention of tumor growth and metastasis; (3) relief on side-effects or complications of therapeutic strategies (i.e. chemotherapy, radiotherapy and resection). Briefly, most of cellular studies and two thirds animal studies were based on the extract or components of single herbs, whilst most of clinical trials were keen on formula or prescription of CHMs. The main components of CHMs were demonstrated active on promoting the cytotoxicity of NK cells, including Angelica sinensis, Ganoderma lucidum, Panax ginseng, Radix Astragali, Lentinus edodes, etc. CONCLUSIONS: This comprehensive review demonstrated NK cells activity was positively associated with quality of life but not survival benefit of cancer patients. Thus exploring the roles of NK cells in adjuvant therapy against cancer is confirmed to be beneficial to explore the underlying relationship between immunomodulation and quality of life.
Collapse
Affiliation(s)
- Hao Liu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China.
| | - Zi-Ying Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, And Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yu-Cong Zhou
- State Key Laboratory of Microbial Metabolism, And School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wei Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Usman Ali
- Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China.
| | - Daniel M-Y Sze
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
12
|
Ganoderma lucidum polysaccharide (GLP) enhances antitumor immune response by regulating differentiation and inhibition of MDSCs via a CARD9-NF-κB-IDO pathway. Biosci Rep 2021; 40:225254. [PMID: 32530032 PMCID: PMC7313449 DOI: 10.1042/bsr20201170] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
A homogeneous polysaccharide (GLP), with an average molecular weight of 4.44 × 104 Da, was isolated and purified from the fruiting bodies of Ganoderma lucidum. In this work, we examined the antitumor activities of GLP using a mouse Lewis lung cancer (LLC) model and explored possible molecular pathways involved in its immunomodulatory mechanism on tumor-host interaction. GLP administration (25 and 100 mg/kg) significantly inhibited tumor growth, as evidenced by the decreased tumor volume and tumor weight, as well as histological features of tumor tissues with concomitant down-regulation of proliferating cell nuclear antigen (PCNA) proliferative marker. Less myeloid-derived suppressor cells (MDSCs) were accumulated in both spleen and tumor tissues from GLP-treated mice. In contrast, the percentage of CD4+ and CD8+ T cells together with the production of Th1-type cytokines (IFN-γ and IL-12) was increased in the spleen of LLC-bearing mice following GLP administration. Furthermore, GLP administration reversed the attenuated expression of CARD9, p-Syk and p-p65, and increased indoleamine 2,3-dioxygenase (IDO) protein expression in MDSCs of LLC-bearing mice. Collectively, our data demonstrated the first time that GLP induced the differentiation of MDSCs and inhibited the accumulation of MDSCs via CARD9-NF-κB-IDO pathway, thus prevented lung cancer development.
Collapse
|
13
|
Fermentation Production of Ganoderma lucidum by Bacillus subtilis Ameliorated Ceftriaxone-induced Intestinal Dysbiosis and Improved Intestinal Mucosal Barrier Function in Mice. DIGITAL CHINESE MEDICINE 2020. [DOI: 10.1016/j.dcmed.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
14
|
Alkahtani J, Soliman Elshikh M, Almaary KS, Ali S, Imtiyaz Z, Bilal Ahmad S. Anti-bacterial, anti-scavenging and cytotoxic activity of garden cress polysaccharides. Saudi J Biol Sci 2020; 27:2929-2935. [PMID: 33100848 PMCID: PMC7569137 DOI: 10.1016/j.sjbs.2020.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Plants polysaccharides are an infinite stock of drug composites with varying pharmacological and biological activities. The present investigation aimed to examine the antibacterial, anti-scavenging and cytotoxic potential of garden cress (GC) polysaccharides. The antibacterial effects vs Escherichia coli and as well as Staphylococcus aureus of GC polysaccharides were examined by means of agar diffusion assay, minimum inhibitory concentration (MIC), outer and inner cell membrane permeability. Antioxidant potential of the GC polysaccharides were performed by free radical DPPH scavenging, superoxide anion scavenging, hydroxyl radical scavenging, reducing power potential assay, and hydrogen peroxide method. Cytotoxicity potential of GC polysaccharides were evaluated by MTT assay in human cervical (HeLa) and liver carcinoma (HepG2) cell lines. The findings showed that GC polysaccharides MIC were 1.06 and 0.56 mg mL-1 against E. coli and S. aureus, respectively. Compared to the standard inhibitor, the GC polysaccharides showed essential inhibitor assays in a very dose dependent approach, and notable actions to scavenge reactive oxygen species (ROS) are also due to the large quantities of hydrophilic polyphenols. The IC50 values of all tested parameters were measured against standard ascorbic acid antioxidant agent. The GC polysaccharides diminish the cell viability percentage of HeLa and HepG2 in a concentration dependent manner. GC polysaccharides at a dose of 500 µg ml-1 exhibited higher anti-tumor activity in both HeLa (65.33 ± 3.75%) and HepG2 (60.33 ± 3.48%). The findings obtained in this study indicate that GC polysaccharides has antibacterial and has a possible source of natural antioxidant and also has cytotoxic effect on different carcinoma cell lines.
Collapse
Affiliation(s)
- Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shafat Ali
- Department of Biochemistry, Government Medical College (GMC-Srinagar), 190010 India
| | - Zuha Imtiyaz
- College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheikh Bilal Ahmad
- Division of Veterinary, Biochemistry, SKUAST-Kashmir, Shuhama, Alustang, J&K 190006, India
| |
Collapse
|
15
|
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:135-163. [PMID: 31030746 DOI: 10.1016/bs.pmbts.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Edible medicinal mushrooms have been traditionally used for health promotion and longevity in China and other East Asian countries for centuries. Structural and pharmacological studies revealed that fungal glycans show multiple physiological and healthy promoting effects including immunomodulation, anti-tumor, anti-aging, anti-oxidation, hypoglycemic, hypolipidemic, anti-radiation, and other effects. Fungal glycans isolated from different kinds of medicinal mushrooms are partially purified and clinically tested. Without serious safety concerns of mostly glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. In this chapter, 185 independent studies involving in biochemical, pharmacological and clinical studies of fungal glycans during the past four decades (1977-2019) from PubMed, CNKI (China National Knowledge Infrastructure) and Wanfang databases are summarized. In future, understanding the fungal glycan-based drugs at molecular biological level would be needed to comprehend the clinical efficacy of glycan-based drugs.
Collapse
Affiliation(s)
- Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zijing Zhou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
The effect of Ganoderma lucidum extract on immunological function and identify its anti-tumor immunostimulatory activity based on the biological network. Sci Rep 2018; 8:12680. [PMID: 30139984 PMCID: PMC6107651 DOI: 10.1038/s41598-018-30881-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Ganoderma lucidum extract (GLE) has shown positive effects for tumor treatment. However, the molecular mechanism of GLE treatment is unknown. In this study, a Hepa1-6-bearing C57 BL/6 mouse model was established to explore the anti-tumor and immunostimulatory activity of GLE treatment. The results showed that GLE effectively inhibited tumor growth without hepatic/renal toxicity and bone marrow suppression, and might enhancing immunological function. Based on the mRNA profiles of GLE treated and untreated mice, 302 differentially expressed (DE) mRNAs were identified and 6 kernel mRNAs were identified from the established protein-protein interaction (PPI) network. Quantitative RT-PCR and western-blot analysis indicated that 6 mRNAs have had statistically significant differences between the GLE treated and untreated mice. Furthermore, four kernel pathways were isolated from the KEGG-Target network, including the Jak-STAT signaling pathway, T cell receptor signaling pathway, PI3K-Akt signaling pathway, and cytokine-cytokine receptor interaction. Western-blot and cytokine detection results demonstrated that GLE suppressed growth and proliferation of tumors by the Jak-STAT signaling pathway, T cell receptor signaling pathway and PI3K-Akt signaling pathway, but also regulated the expression levels of serum immune cytokines and improved the anti-tumor immunostimulatory activity.
Collapse
|
17
|
Li LF, Liu HB, Zhang QW, Li ZP, Wong TL, Fung HY, Zhang JX, Bai SP, Lu AP, Han QB. Comprehensive comparison of polysaccharides from Ganoderma lucidum and G. sinense: chemical, antitumor, immunomodulating and gut-microbiota modulatory properties. Sci Rep 2018; 8:6172. [PMID: 29670154 PMCID: PMC5906605 DOI: 10.1038/s41598-018-22885-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/02/2018] [Indexed: 11/24/2022] Open
Abstract
Both Ganoderma lucidum (GL) and G. sinense (GS) are used as Lingzhi in China. Their functions are assumed to mainly derive from triterpenes and polysaccharides; however, the two species have very different triterpenes profiles, if this was the case, then the bioactivity of these two species should differ. Instead, could the polysaccharides be similar, contributing to the shared therapeutic basis? In this study, two main polysaccharide fractions from different batches of GL and GS were systematically compared by a series of chemical and biological experiments. The results showed that the polysaccharides from two species shared the same structural features in terms of mono-/oligo-saccharide profiles, molecular size, sugar linkages, and IR/NMR spectra. In addition, these polysaccharides showed similar tumor-suppressive activity in mice. Further study on RAW264.7 cells indicated that these polysaccharides exhibited similar inducing effects to macrophages, as evaluated in the phagocytosis function, NO/cytokines production, inhibition against the viability and migration of cancer cells. Mechanistic investigation revealed the identical activation via TLR-4 related MAPK/NF-κB signaling pathway and gut-microbiota modulatory effects. In summary, GL and GS polysaccharides presented similar chemical features, antitumor/immunomodulating activities and mechanism; this establishes polysaccharides as the active principles and supports the official use of both species as Lingzhi.
Collapse
Affiliation(s)
- Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hong-Bing Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Wei Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Peng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tin-Long Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hau-Yee Fung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ji-Xia Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Su-Ping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ai-Ping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
18
|
Wang C, Shi S, Chen Q, Lin S, Wang R, Wang S, Chen C. Antitumor and Immunomodulatory Activities of Ganoderma lucidum Polysaccharides in Glioma-Bearing Rats. Integr Cancer Ther 2018; 17:674-683. [PMID: 29607690 PMCID: PMC6142075 DOI: 10.1177/1534735418762537] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Malignant gliomas are the most common brain tumors with high rates of recurrence
and mortality. Novel approaches are in research, and immunotherapy emerges as a
promising strategy. Recently, scientific attention has been focused on
Ganoderma lucidum polysaccharides (GL-PS), one of the
critical bioactive components of G lucidum, which have been
recognized as a promising natural source of immunomodulatory and anticancer
compounds. It remains unknown whether the GL-PS have any immunomodulatory and
anticancer effects on brain glioma. This study was designed to identify and
characterize the antitumor action and influence of immune system of GL-PS in
glioma-bearing rats. Results showed that GL-PS increased the concentration of
serum interleukin-2, tumor necrosis factor-α, and interferon-γ, and enhanced the
cytotoxic activity of natural killer cells and T cells, promoting the functional
maturation of dendritic cells, thus resulting in the inhibition of glioma growth
and prolonged survival of rats. Therefore, GL-PS may be potentially useful as
part of the treatment regimen to regulate host immune responses and increase the
antitumor effects of immunotherapy for glioma.
Collapse
Affiliation(s)
- Chunhua Wang
- 1 Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,2 Fujian Neurosurgical Institute, Fuzhou, Fujian, People's Republic of China
| | - Songsheng Shi
- 1 Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,2 Fujian Neurosurgical Institute, Fuzhou, Fujian, People's Republic of China
| | - Quan Chen
- 1 Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Shuqian Lin
- 3 Fujian Agricultural and Forestry University, Fuzhou, Fujian, People's Republic of China.,4 Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou, Fujian, People's Republic of China
| | - Rui Wang
- 1 Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,2 Fujian Neurosurgical Institute, Fuzhou, Fujian, People's Republic of China
| | - Saizhen Wang
- 3 Fujian Agricultural and Forestry University, Fuzhou, Fujian, People's Republic of China.,4 Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou, Fujian, People's Republic of China
| | - Chunmei Chen
- 1 Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,2 Fujian Neurosurgical Institute, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
19
|
Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum. Appl Environ Microbiol 2017; 83:AEM.01289-17. [PMID: 28802268 DOI: 10.1128/aem.01289-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022] Open
Abstract
Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC-silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC-silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC-silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC-silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC-silenced strains. The content of ganoderic acid was significantly increased in the ODC-silenced strains. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.
Collapse
|
20
|
Gill BS, Navgeet, Kumar S. Ganoderma lucidum targeting lung cancer signaling: A review. Tumour Biol 2017; 39:1010428317707437. [PMID: 28653896 DOI: 10.1177/1010428317707437] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lung cancer causes huge mortality to population, and pharmaceutical companies require new drugs as an alternative either synthetic or natural targeting lung cancer. The conventional therapies cause side effects, and therefore, natural products are used as a therapeutic candidate in lung cancer. Chemical diversity among natural products highlights the impact of evolution and survival of fittest. One such neglected natural product is Ganoderma lucidum used for promoting health and longevity for a longer time. The major bioconstituents of G. lucidum are mainly terpenes, polysaccharides, and proteins, which were explored for various activities ranging from apoptosis to autophagy. The bioconstituents of G. lucidum activate plasma membrane receptors and initiate various downstream signaling leading to nuclear factor-κB, phosphoinositide 3-kinase, Akt, and mammalian target of rapamycin in cancer. The bioconstituents regulate the expression of various genes involved in cell cycle, immune response, apoptosis, and autophagy in lung cancer. This review highlights the inextricable role of G. lucidum and its bioconstituents in lung cancer signaling for the first time.
Collapse
Affiliation(s)
- Balraj Singh Gill
- 1 Centre for Biosciences, Central University of Punjab, Bathinda, India
| | - Navgeet
- 2 Department of Biotechnology, Doaba College, Jalandhar, India
| | - Sanjeev Kumar
- 3 Centre for Plant Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
21
|
Ya G. A Lentinus edodes polysaccharide induces mitochondrial-mediated apoptosis in human cervical carcinoma HeLa cells. Int J Biol Macromol 2017; 103:676-682. [PMID: 28528001 DOI: 10.1016/j.ijbiomac.2017.05.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/30/2017] [Accepted: 05/16/2017] [Indexed: 01/27/2023]
Abstract
In this study, a homogeneous polysaccharide (LEP1) with an average molecular weight of 53kDa was successfully purified from the fruiting bodies of Lentinus edodes and its anticancer efficacy on human cervical carcinoma HeLa cells in vitro and associated possible molecular mechanism were also evaluated. MTT assay showed that LEP1 exhibited a dose-dependent inhibitory effect on the proliferation of HeLa cells and caused apoptotic death. Our present findings provided the first evidence that LEP1 induced the apoptosis of HeLa cells via a mitochondria dependent pathway, as indicated by an increase in Bax/Bcl-2 ratio, a loss of mitochondrial membrane potential (Δym), the release of cytochrome c from the mitochondria to the cytosol, activation of caspase-9 and caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) in HeLa cells. These combined results unequivocally indicated that the involvement of mitochondria-mediated signaling pathway in LEP1-induced apoptosis and strongly provided experimental evidence for the use of LEP1 as a potential therapeutic agent in the prevention and treatment of human cervical carcinoma.
Collapse
Affiliation(s)
- Guowei Ya
- Department of Medical Oncology, the First Affiliated Hospital, Nanyang Medical College, Nanyang 473000, China.
| |
Collapse
|
22
|
Chen C, Li P, Li Y, Yao G, Xu JH. Antitumor effects and mechanisms of Ganoderma extracts and spores oil. Oncol Lett 2016; 12:3571-3578. [PMID: 27900038 DOI: 10.3892/ol.2016.5059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle.
Collapse
Affiliation(s)
- Chun Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Peng Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd, Fuzhou, Fujian 350001, P.R. China
| | - Guan Yao
- Systems Biology Laboratory, Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Jian-Hua Xu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
23
|
Induction of apoptosis in MCF-7 human breast cancer cells by Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelium). Mol Med Rep 2015; 13:1243-9. [DOI: 10.3892/mmr.2015.4655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 09/01/2015] [Indexed: 11/05/2022] Open
|
24
|
Li X, He L, Yang Y, Liu F, Cao Y, Zuo J. Effects of extracellular polysaccharides of Ganoderma lucidum supplementation on the growth performance, blood profile, and meat quality in finisher pigs. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Bishop KS, Kao CHJ, Xu Y, Glucina MP, Paterson RRM, Ferguson LR. From 2000years of Ganoderma lucidum to recent developments in nutraceuticals. PHYTOCHEMISTRY 2015; 114:56-65. [PMID: 25794896 DOI: 10.1016/j.phytochem.2015.02.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 05/21/2023]
Abstract
Medicinal mushrooms have been used for centuries as nutraceuticals to improve health and to treat numerous chronic and infectious diseases. One such mushroom is Ganoderma lucidum, commonly known as Lingzhi, a species revered as a medicinal mushroom for treating assorted diseases and prolonging life. The fungus is found in diverse locations, and this may have contributed to confusion regarding the correct taxonomic classification of the genus Ganoderma. G. lucidum was first used to name a specimen found in England and thereafter was naively applied to a different Ganoderma species found in Asia, commonly known as Chinese Lingzhi. Despite the taxonomic confusion, which has largely been uncorrected, the popularity of Lingzhi has escalated across the globe. The current taxonomic situation is now discussed accurately in this Special Issue on Ganoderma. Today it is a multi-billion dollar industry wherein Lingzhi is cultivated or collected from the wild and consumed as a tea, in alcoholic beverages, and as a nutraceutical to confer numerous health benefits. Consumption of nutraceuticals has grown in popularity, and it is becoming increasingly important that active ingredients be identified and that suppliers make substantiated health claims about their products. The objective of this article is to present a review of G. lucidum over the past 2000 years from prized ancient "herbal" remedy to its use in nutraceuticals and to the establishment of a 2.5 billion $ (US) industry.
Collapse
Affiliation(s)
- Karen S Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Chi H J Kao
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yuanye Xu
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - R Russell M Paterson
- IBB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
26
|
Ferreira ICFR, Heleno SA, Reis FS, Stojkovic D, Queiroz MJRP, Vasconcelos MH, Sokovic M. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. PHYTOCHEMISTRY 2015; 114:38-55. [PMID: 25457487 DOI: 10.1016/j.phytochem.2014.10.011] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 06/04/2023]
Abstract
Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity.
Collapse
Affiliation(s)
| | - Sandrina A Heleno
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Portugal; Centre of Chemistry, University of Minho, Braga, Portugal
| | - Filipa S Reis
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Dejan Stojkovic
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Plant Physiology, Belgrade, Serbia
| | | | - M Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Marina Sokovic
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Plant Physiology, Belgrade, Serbia
| |
Collapse
|
27
|
Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35 Suppl:S185-S198. [PMID: 25818339 DOI: 10.1016/j.semcancer.2015.03.004] [Citation(s) in RCA: 1056] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.
Collapse
|
28
|
Shawi OEE, El-Rahman SSA, Hameed MAE. Reishi Mushroom Attenuates Hepatic Inflammation and Fibrosis Induced by Irradiation Enhanced Carbon Tetrachloride in Rat Model. JOURNAL OF BIOSCIENCES AND MEDICINES 2015; 03:24-38. [DOI: 10.4236/jbm.2015.310004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
29
|
Choong YK, Sun SQ, Zhou Q, Lan J, Lee HL, Chen XD. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Lin J, Chang YJ, Yang WB, Yu AL, Wong CH. The multifaceted effects of polysaccharides isolated from Dendrobium huoshanense on immune functions with the induction of interleukin-1 receptor antagonist (IL-1ra) in monocytes. PLoS One 2014; 9:e94040. [PMID: 24705413 PMCID: PMC3976396 DOI: 10.1371/journal.pone.0094040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/12/2014] [Indexed: 01/20/2023] Open
Abstract
Dendrobium huoshanense is a valuable and versatile Chinese herbal medicine with the anecdotal claims of cancer prevention and anti-inflammation. However, its immunological activities are limited to in vitro studies on a few cytokines and immune cell functions. First, we investigated the effects of polysaccharides isolated from DH (DH-PS) on inducing a panel of cytokines/chemokines in mice in vivo and human in vitro. We found that DH polysaccharides (DH-PS) induced TH1, TH2, inflammatory cytokines and chemokines in mouse in vivo and human cells in vitro. Secondly, we demonstrated that DH-PS expanded mouse splenocytes in vivo including CD4+ T cells, CD8+ T cells, B cells, NK cells, NKT cells, monocytes/macrophages, granulocytes and regulatory T cells. Notably, DH-PS induced an anti-inflammatory molecule, IL-1ra, in mouse and human immune cells, especially monocytes. The serum level of IL-1ra elicited by the injection of DH-PS was over 10 folds of IL-1β, suggesting that DH-PS-induced anti-inflammatory activities might over-ride the inflammatory ones mediated by IL-1β. The signaling pathways of DH-PS-induced IL-1ra production was shown to involve ERK/ELK, p38 MAPK, PI3K and NFκB. Finally, we observed that IL-1ra level induced by DH-PS was significantly higher than that by F3, a polysaccharide extract isolated from another popular Chinese herbal medicine, Ganoderma lucidum. These results indicated that DH-PS might have potential applications for ameliorating IL-1-induced pathogenic conditions.
Collapse
Affiliation(s)
- Juway Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Bin Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Alice L. Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics/Hematology-Oncology, University of California San Diego Medical Center, San Diego, California, United States of America
- Center of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail: (CHW); (ALY)
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (CHW); (ALY)
| |
Collapse
|
31
|
Zhang S, Nie S, Huang D, Feng Y, Xie M. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1581-1589. [PMID: 24506418 DOI: 10.1021/jf4053012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ganoderma is a precious health-care edible medicinal fungus in China. A novel Ganoderma atrum polysaccharide (PSG-1) is the main bioactive component. We investigated the antitumor effect and molecular mechanisms of PSG-1. It exhibited no significant effect on cell proliferation directly. In contrast, administration of PSG-1 markedly suppressed tumor growth in CT26 tumor-bearing mice. It was observed that PSG-1 caused apoptosis in CT26 cells. Apoptosis was associated with loss of mitochondrial membrane potential, enhancement of mitochondrial cytochrome c release and intracellular ROS production, elevation of p53 and Bax expression, downregulation of Bcl-2, and the activation of caspase-9 and -3. Moreover, PSG-1 enhanced immune organ index and promoted lymphocyte proliferation as well as cytokine levels in serum. Taken together, our data indicate that PSG-1 has potential antitumor activity in vivo by inducing apoptosis via mitochondria-mediated apoptotic pathway and enhances host immune system function. Therefore, PSG-1 could be a safe and effective antitumor, bioactive agent or functional food.
Collapse
Affiliation(s)
- Shenshen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | | | | | | | | |
Collapse
|
32
|
Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proc Natl Acad Sci U S A 2013; 110:13809-14. [PMID: 23908400 DOI: 10.1073/pnas.1312457110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans.
Collapse
|
33
|
Nie S, Zhang H, Li W, Xie M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2013.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Xin T, Zhang F, Jiang Q, Chen C, Huang D, Li Y, Shen W, Jin Y. Extraction, purification and antitumor activity of a water-soluble polysaccharide from the roots of Polygala tenuifolia. Carbohydr Polym 2012; 90:1127-31. [PMID: 22840049 DOI: 10.1016/j.carbpol.2012.06.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 11/25/2022]
Abstract
One polysaccharide PTP was isolated and purified from the roots of Polygala tenuifolia. It consisted of galactose, glucose and galactose in the ratio of 3.1:3.7:2.5, and a small amount of rhamnose, mannose and xylose. 17 general amino acids were identified to be components of the protein-bound polysaccharide analyzed by automatic amino acid analyzer. In order to test the anti-cancer activity of PTP, we investigated its effect against the growth of human ovarian cancer cells SKOV3 in vitro and in ovarian cancer rats. The intracellular reactive oxygen species (ROS) and glutathione (GSH) in SKOV3 cells following PTP treatment were also quantified to explore the possible mechanism underlying the antitumor activity of the polysaccharide. The result showed that PTP is effective on inhibiting the proliferation of SKOV3 cells in a concentration-dependent manner. Furthermore, treatment with PTP caused a rapid depletion of intracellular GSH content and accumulation of intracellular ROS, thus resulting in the apoptosis, which may prove to be a pivotal mechanism for its cancer protection action. In addition, a significant tumor growth inhibition effect was observed in nude mice after PTP administration for 7 weeks. All above indicated PTP could be beneficial towards ovarian cancer therapy.
Collapse
Affiliation(s)
- Tao Xin
- Department of Medical Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang SH, Liang CJ, Weng YW, Chen YH, Hsu HY, Chien HF, Tsai JS, Tseng YC, Li CY, Chen YL. Ganoderma lucidum polysaccharides prevent platelet-derived growth factor-stimulated smooth muscle cell proliferation in vitro and neointimal hyperplasia in the endothelial-denuded artery in vivo. J Cell Physiol 2012; 227:3063-71. [DOI: 10.1002/jcp.23053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Stronger cytotoxicity in CTLs with granzyme B and porforin was induced by Ganoderma lucidum polysaccharides acting on B16F10 cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2012.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Cui XY, Cui SY, Zhang J, Wang ZJ, Yu B, Sheng ZF, Zhang XQ, Zhang YH. Extract of Ganoderma lucidum prolongs sleep time in rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:796-800. [PMID: 22207209 DOI: 10.1016/j.jep.2011.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/05/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (Ling Zhi) is a basidiomycete white-rot macrofungus that has been used as a tranquilizing agent (i.e., An-Shen effect) for the treatment of restlessness, insomnia, and palpitation in China for hundreds of years. AIM OF THE STUDY The present study aimed to investigate whether Ganoderma lucidum extract (GLE) influences the sleep of freely moving rats and the potential mechanism. MATERIALS AND METHODS Ganoderma lucidum extract was extracted from fruiting bodies of Ganoderma lucidum. Rats were treated with GLE orally for 3 days, and on the third day, electroencephalographic and electromyographic recordings were made for 6h from 9:00 p.m. to 3:00 a.m. in freely moving rats. Sleep parameters were analyzed using SleepSign software. Tumor necrosis factor-α (TNF-α) levels were measured using the enzyme-linked immunosorbent assay. RESULTS Three-day administration of GLE significantly increased total sleep time and non-rapid eye movement (NREM) sleep time at a dose of 80 mg/kg (i.g.) without influencing slow-wave sleep or REM sleep in freely moving rats. TNF-α levels were significantly increased concomitantly in serum, the hypothalamus, and dorsal raphe nucleus. The hypnotic effect of GLE (80 mg/kg, i.g.) was significantly inhibited by intracerebroventricular injection of TNF-α antibody (2.5 μg/rat). Co-administration of GLE (40 mg/kg, i.g.) and TNF-α (12.5 ng/rat, i.c.v.), both at ineffective doses, revealed an additive hypnotic effect. CONCLUSION These results suggest that GLE has hypnotic effects in freely moving rats. The mechanism by which the extract promoted sleep remains unclear, but this effect appears to be primarily related to the modulation of cytokines such as TNF-α. Furthermore, these data at least partially support the ethnomedical use of Ganoderma lucidum.
Collapse
Affiliation(s)
- Xiang-Yu Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun J, Peng RH, Xiong AS, Tian Y, Zhao W, Xu H, Liu DT, Chen JM, Yao QH. Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071-9 in Pichia pastoris. Mol Biol Rep 2011; 39:3807-14. [DOI: 10.1007/s11033-011-1158-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/30/2011] [Indexed: 11/30/2022]
|
39
|
Matute RG, Serra A, Figlas D, Curvetto N. Copper and zinc bioaccumulation and bioavailability of Ganoderma lucidum. J Med Food 2011; 14:1273-9. [PMID: 21554122 DOI: 10.1089/jmf.2010.0206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ganoderma lucidum is a widely recognized medicinal mushroom. The bioaccumulation and potential bioavailability of copper (Cu) and zinc (Zn), which are essentials for human health, were analyzed in G. lucidum mycelium and fruit bodies grown in the presence of these metals to test their potential utility as a food dietary supplement. Mycelia grown in culture medium with non-mycotoxic doses of Cu or Zn (25 and 50 mg/kg) were selected for evaluation of the bioavailability of these metals in the gastrointestinal tract by using an in vitro simulated digestion system. One gram of dried mycelium grown in the presence of 50 mg/kg Cu or Zn showed a bioavailability of 19% for Cu and 2% for Zn of the recommended daily intake (RDI). When production of fruit bodies was evaluated, the highest biological efficiency (23%) was reached when the substrate was enriched with 100 mg/kg Cu. Cu and Zn contents obtained either before or after digestion of fruit bodies from all metal-enriched treatments were substantially lower than those from metal-enriched mycelia. The metal bioavailability was also low: 1.5% of the Cu RDI and almost negligible for Zn. The results are discussed in relation to the RDI values exhibited by two commercial supplements. The potential incorporation of these mineral-enriched mycelia/fruit bodies in capsules, infusions, and dietary supplements is evaluated.
Collapse
Affiliation(s)
- Ramiro González Matute
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, CERZOS (CONICET), Bahía Blanca, Argentina.
| | | | | | | |
Collapse
|
40
|
Ye L, Zheng X, Zhang J, Tang Q, Yang Y, Wang X, Li J, Liu Y, Pan Y. Biochemical characterization of a proteoglycan complex from an edible mushroom Ganoderma lucidum fruiting bodies and its immunoregulatory activity. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Sun LX, Lin ZB, Li XJ, Li M, Lu J, Duan XS, Ge ZH, Song YX, Xing EH, Li WD. Promoting effects of Ganoderma lucidum polysaccharides on B16F10 cells to activate lymphocytes. Basic Clin Pharmacol Toxicol 2010; 108:149-54. [PMID: 20964805 DOI: 10.1111/j.1742-7843.2010.00632.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immune system in patients with cancer often fails to control tumour growth because of deficient immunogenicity of tumour cells. Ganoderma lucidum polysaccharides (Gl-PS) are believed to have anti-tumour effects by boosting host immune function. Additionally, Gl-PS may have some direct effects on tumour cells in the activation of lymphocytes, thus enhancing the immunogenicity of tumour cells. We tested the effects of Gl-PS in lymphocyte activation by incubating Gl-PS with a tumour cell line deficient in antigen presentation. Our study showed that Gl-PS can promote B16F10 melanoma cells to induce lymphocyte proliferation, CD69 and FasL expression and IFN-γ production, indicating that Gl-PS can improve the nature of B16F10 cells to activate lymphocytes. Furthermore, H-2D(b) [a major histocompatibility (MHC) class I molecule], and B7-1 and B7-2 (two prominent co-stimulatory molecules expressed on B16F10 cells) were enhanced by Gl-PS, suggesting that these molecules may at least partially be involved in the process of Gl-PS on B16F10 cells to activate lymphocytes.
Collapse
Affiliation(s)
- Li-Xin Sun
- Department of Pharmacology, Peking University Health Science Center, School of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin CY, Chen YH, Lin CY, Hsu HY, Wang SH, Liang CJ, Kuan II, Wu PJ, Pai PY, Wu CC, Chen YL. Ganoderma lucidum polysaccharides attenuate endotoxin-induced intercellular cell adhesion molecule-1 expression in cultured smooth muscle cells and in the neointima in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9563-9571. [PMID: 20687608 DOI: 10.1021/jf100508j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The expression of adhesion molecules on vessels and subsequent leukocyte recruitment are critical events in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi) polysaccharides (EORP), which is effective against cancer and immunological disorders, on adhesion molecule expression by human aortic smooth muscle cells (HASMCs) and the underlying mechanism. EORP significantly suppressed lipopolysaccharide (LPS)-induced intercellular cell adhesion molecule-1 (ICAM-1) mRNA and protein expression and reduced the binding of human monocytes to LPS-stimulated HASMCs. Immunoprecipitation and real-time polymerase chain reaction demonstrated that EORP markedly reduced the interaction of human antigen R protein (HuR) with the 3'-UTR of ICAM-1 mRNA in LPS-stimulated HASMCs. EORP treatment also suppressed extracellular signal-regulated kinase (ERK) phosphorylation and reduced the density of the shifted bands of nuclear factor (NF)-kappaB after LPS-induced activation. In an endothelial-denuded artery model in LPS-treated mice, daily oral administration of EORP for 2 weeks decreased neointimal hyperplasia and ICAM-1 expression in the plasma and neointima. These results provide evidence that EORP attenuates LPS-induced adhesion molecule expression and monocyte adherence and that this protective effect is mediated by decreased ERK phosphorylation and NF-kappaB activation. These findings suggest that EORP has anti-inflammatory properties and could prove useful in the prevention of vascular diseases and inflammatory responses.
Collapse
Affiliation(s)
- Ching-Yuang Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ye L, Li J, Zhang J, Pan Y. NMR characterization for polysaccharide moiety of a glycopeptide. Fitoterapia 2010; 81:93-6. [DOI: 10.1016/j.fitote.2009.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 07/30/2009] [Accepted: 08/08/2009] [Indexed: 12/01/2022]
|
44
|
Chen YK, Kuo YH, Chiang BH, Lo JM, Sheen LY. Cytotoxic activities of 9,11-dehydroergosterol peroxide and ergosterol peroxide from the fermentation mycelia of ganoderma lucidum cultivated in the medium containing leguminous plants on Hep 3B cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5713-9. [PMID: 19492810 DOI: 10.1021/jf900581h] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The objective of this study was to investigate the cytotoxicity of the ethanolic extract of mycelia from Ganoderma lucidum (EMG) cultivated in a medium containing leguminous plants Glycine max (L.) Merr. and Astragalus membranaceus on human hepatocellular carcinoma cells (Hep 3B) and to isolate the active components from EMG. The results indicated that EMG induced cytotoxicity in a dose- and time-dependent manner, and the cells treated with EMG for 24, 48, and 72 h had IC(50) values of 156.8, 89.9, and 70.1 microg/mL, respectively. Furthermore, EMG was fractionated into seven fractions (F1-F7). We found that F5 and F6 had higher growth inhibitory effects on Hep 3B cells than the other fractions, and F6 possessed enough amounts (about 2.1 g) to carry out a more detailed study. F6 caused a sub-G1 peak rise and DNA fragmentation in Hep 3B cells and was further separated by high-performance liquid chromatography to obtain two active compounds, 9,11-dehydroergosterol peroxide [9(11)-DHEP] (compound 1) and ergosterol peroxide (EP) (compound 2). The IC(50) values of 9(11)-DHEP and EP based on the cell viability of Hep 3B were 16.7 and 19.4 microg/mL, respectively.
Collapse
Affiliation(s)
- Yu-Kuo Chen
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Yue GGL, Fung KP, Leung PC, Lau CBS. Comparative studies on the immunomodulatory and antitumor activities of the different parts of fruiting body ofGanoderma lucidumandGanodermaspores. Phytother Res 2008; 22:1282-91. [DOI: 10.1002/ptr.2478] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Abstract
As previously suggested, it may be feasible to impede tumorevoked angiogenesis with a nutraceutical program composed of glycine, fish oil, epigallocatechin-3-gallate, selenium, and silymarin, complemented by a low-fat vegan diet, exercise training, and, if feasible, a salicylate and the drug tetrathiomolybdate. It is now proposed that the scope of this program be expanded to address additional common needs of cancer patients: blocking the process of metastasis; boosting the cytotoxic capacity of innate immune defenses (natural killer [NK] cells); preventing cachexia, thromboembolism, and tumor-induced osteolysis; and maintaining optimal micronutrient status. Modified citrus pectin, a galectin-3 antagonist, has impressive antimetastatic potential. Mushroombeta-glucans and probiotic lactobacilli can amplify NK activity via stimulatory effects on macrophages. Selenium, beta-carotene, and glutamine can also increase the number and/or cytotoxic activity of NK cells. Cachectic loss of muscle mass can be opposed by fish oil, glutamine, and beta-hydroxy-beta-methylbutyrate. Fish oil, policosanol, and vitamin D may have potential for control of osteolysis. High-dose aspirin or salicylates, by preventing NF-B activation, can be expected to aid prevention of metastasis and cachexia while down-regulating osteolysis, but their impacts on innate immune defenses will not be entirely favorable. A nutritional insurance formula crafted for the special needs of cancer patients can be included in this regimen. To minimize patient inconvenience, this complex core nutraceutical program could be configured as an oil product, a powder, and a capsule product, with the nutritional insurance formula provided in tablets. It would be of interest to test this program in nude mouse xenograft models.
Collapse
Affiliation(s)
- Mark F McCarty
- Block Center for Integrative Cancer Care, Evanston, IL 60201, USA.
| | | |
Collapse
|
47
|
Lin KI, Kao YY, Kuo HK, Yang WB, Chou A, Lin HH, Yu AL, Wong CH. Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1. J Biol Chem 2006; 281:24111-23. [PMID: 16798741 DOI: 10.1074/jbc.m601106200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polysaccharides of Ganoderma lucidum (Reishi) possess immunomodulation activities; however, their mode of molecular action in regulating each cellular subset in the immune system is still not clear. Here, we investigate the function of the main polysaccharide fraction of Reishi (Reishi-F3) in B lymphocyte activation/differentiation. We find that Reishi-F3 causes mouse splenic B cell activation and differentiation to IgM-secreting plasma cells, and the process depends on Reishi-F3-mediated induction of Blimp-1, a master regulator capable of triggering the changes of a cascade of gene expression during plasmacytic differentiation. In human peripheral B lymphocytes, although Reishi-F3 fails to induce their activation, it is able to enhance antibody secretion, which is associated with Blimp-1 mRNA induction. The function of Reishi-F3 depends on the Toll-like receptors TLR4/TLR2 as neutralizing antibodies against TLR4/TLR2 block Reishi-F3-mediated induction of Blimp-1 mRNA and Ig secretion. We have shown that interaction of Reishi-F3 with TLR4/TLR2 followed by signaling through p38 MAPK is involved in the induction of Blimp-1 mRNA, whereas signaling through ERK, p38 MAPK, JNK, and IKK complex is involved in Reishi-F3-mediated Ig secretion. Furthermore, the differential mechanism of Reishi-F3 in mouse and human B cell activation is probably due to the presence of Blimp-1 regulatory site in human CD86 promoter. These results establish the signaling and molecular mechanisms of Reishi-F3 on promoting antibody secretion.
Collapse
Affiliation(s)
- Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen X, Hu ZP, Yang XX, Huang M, Gao Y, Tang W, Chan SY, Dai X, Ye J, Ho PCL, Duan W, Yang HY, Zhu YZ, Zhou SF. Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int Immunopharmacol 2006; 6:499-508. [PMID: 16428086 DOI: 10.1016/j.intimp.2005.08.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 08/10/2005] [Accepted: 08/30/2005] [Indexed: 11/28/2022]
Abstract
Many herbal medicines are widely used as immuno-modulators in Asian countries. Ganoderma lucidum (Lingzhi) is one of the most commonly used herbs in Asia and preclinical studies have established that the polysaccharide fractions of G. lucidum have potent immuno-modulating effects. However, clinical evidence for this is scanty. The present open-labeled study aimed to evaluate the effects of G. lucidum polysaccharides on selected immune functions in patients with advanced colorectal cancer. Forty-seven patients were enrolled and treated with oral G. lucidum at 5.4 g/day for 12 weeks. Selected immune parameters were monitored using various immunological methods throughout the study. In 41 assessable cancer patients, treatment with G. lucidum tended to increase mitogenic reactivity to phytohemagglutinin, counts of CD3, CD4, CD8 and CD56 lymphocytes, plasma concentrations of interleukin (IL)-2, IL-6 and interferon (IFN)-gamma, and NK activity, whereas plasma concentrations of IL-1 and tumor necrosis factor (TNF)-alpha were decreased. For all of these parameters, no statistical significance was observed when a comparison was conducted between baseline and those values after a 12-week treatment with G. lucidum. The changes of IL-1 were correlated with those for IL-6, IFN-gamma, CD3, CD4, CD8 and NK activity (p<0.05) and IL-2 changes were correlated with those for IL-6, CD8 and NK activity. The results indicate that G. lucidum may have potential immuno-modulating effect in patients with advanced colorectal cancer. Further studies are needed to explore the benefits and safety of G. lucidum in cancer patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Clinical Pharmacy, 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
"Lingzhi" (Ganoderma lucidum), a popular medicinal mushroom, has been used in China for longevity and health promotion since ancient times. Investigations into the anticancer activity of lingzhi have been performed in both in vitro and in vivo studies, supporting its application for cancer treatment and prevention. The proposed anticancer activity of lingzhi has prompted its usage by cancer patients. It remains debatable as to whether lingzhi is a food supplement for health maintenance or actually a therapeutic "drug" for medical proposes. Thus far there has been no report of human trials using lingzhi as a direct anticancer agent, despite some evidence showing the usage of lingzhi as a potential supplement to cancer patients. Cellular immune responses and mitogenic reactivity of cancer patients have been enhanced by lingzhi, as reported in two randomized and one nonrandomized trials, and the quality of life of 65% of lung cancer patients improved in one study. The direct cytotoxic and anti-angiogenesis mechanisms of lingzhi have been established by in vitro studies; however, clinical studies should not be neglected to define the applicable dosage in vivo. At present, lingzhi is a health food supplement to support cancer patients, yet the evidence supporting the potential of direct in vivo anticancer effects should not be underestimated. Lingzhi or its products can be classified as an anticancer agent when current and more direct scientific evidence becomes available.
Collapse
Affiliation(s)
- John W M Yuen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, SAR, China
| | | |
Collapse
|