1
|
Hernández-Cruz EY, Aparicio-Trejo OE, Hammami FA, Bar-Shalom D, Tepel M, Pedraza-Chaverri J, Scholze A. N-acetylcysteine in Kidney Disease: Molecular Mechanisms, Pharmacokinetics, and Clinical Effectiveness. Kidney Int Rep 2024; 9:2883-2903. [PMID: 39430194 PMCID: PMC11489428 DOI: 10.1016/j.ekir.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 10/22/2024] Open
Abstract
N-acetylcysteine (NAC) has shown beneficial effects in both acute kidney disease and chronic kidney disease (CKD) in preclinical and clinical studies. Different dosage and administration forms of NAC have specific pharmacokinetic properties that determine the temporal pattern of plasma concentrations of NAC and its active metabolites. Especially in acute situations with short-term NAC administration, appropriate NAC and glutathione (GSH) plasma concentrations should be timely ensured. For oral dosage forms, bioavailability needs to be established for the respective NAC formulation. Kidney function influences NAC pharmacokinetics, including a reduction of NAC clearance in advanced CKD. In addition, mechanisms of action underlying beneficial NAC effects depend on kidney function as well as comorbidities, both involving GSH deficiency, alterations in nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent signaling, oxidative stress, mitochondrial dysfunction, and disturbed mitochondrial bioenergetics. This also applies to nonrenal NAC mechanisms. The timing of preventive NAC administration in relation to potential injury is important. NAC administration seems most effective either preceding, or preceding and paralleling conditions that induce tissue damage. Furthermore, studies suggest that very high concentrations of NAC should be avoided because they could exert reductive stress. Delayed administration of NAC might interfere with endogenous repair mechanisms. In conclusion, studies on NAC treatment regimens need to account for both NAC pharmacokinetics and NAC molecular effects. Kidney function of the patient population and pathomechanisms of the kidney disease should guide rational NAC trial design. A targeted trial approach and biomarker-guided protocols could pave the way for the use of NAC in precision medicine.
Collapse
Affiliation(s)
- Estefani Y. Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Omar E. Aparicio-Trejo
- Department of Cardio-Renal Pathophysiology, Ignacio Chávez National Institute of Cardiology, Mexico City, Mexico
| | - Fadi A. Hammami
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Martin Tepel
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Jose Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alexandra Scholze
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit of Cardiac, Thoracic, and Vascular surgery, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Hirano SI, Takefuji Y. Molecular Hydrogen Protects against Various Tissue Injuries from Side Effects of Anticancer Drugs by Reducing Oxidative Stress and Inflammation. Biomedicines 2024; 12:1591. [PMID: 39062164 PMCID: PMC11274581 DOI: 10.3390/biomedicines12071591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
While drug therapy plays a crucial role in cancer treatment, many anticancer drugs, particularly cytotoxic and molecular-targeted drugs, cause severe side effects, which often limit the dosage of these drugs. Efforts have been made to alleviate these side effects by developing derivatives, analogues, and liposome formulations of existing anticancer drugs and by combining anticancer drugs with substances that reduce side effects. However, these approaches have not been sufficiently effective in reducing side effects. Molecular hydrogen (H2) has shown promise in this regard. It directly reduces reactive oxygen species, which have very strong oxidative capacity, and indirectly exerts antioxidant, anti-inflammatory, and anti-apoptotic effects by regulating gene expression. Its clinical application in various diseases has been expanded worldwide. Although H2 has been reported to reduce the side effects of anticancer drugs in animal studies and clinical trials, the underlying molecular mechanisms remain unclear. Our comprehensive literature review revealed that H2 protects against tissue injuries induced by cisplatin, oxaliplatin, doxorubicin, bleomycin, and gefitinib. The underlying mechanisms involve reductions in oxidative stress and inflammation. H2 itself exhibits anticancer activity. Therefore, the combination of H2 and anticancer drugs has the potential to reduce the side effects of anticancer drugs and enhance their anticancer activities. This is an exciting prospect for future cancer treatments.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Independent Researcher, 5-8-1-207 Honson, Chigasaki 253-0042, Japan
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-Ku, Tokyo 135-8181, Japan
| |
Collapse
|
3
|
Ibrahim MA, Khalifa AM, Mohamed AA, Galhom RA, Korayem HE, Abd El-Fadeal NM, Abd-Eltawab Tammam A, Khalifa MM, Elserafy OS, Abdel-Karim RI. Bone-Marrow-Derived Mesenchymal Stem Cells, Their Conditioned Media, and Olive Leaf Extract Protect against Cisplatin-Induced Toxicity by Alleviating Oxidative Stress, Inflammation, and Apoptosis in Rats. TOXICS 2022; 10:toxics10090526. [PMID: 36136492 PMCID: PMC9504158 DOI: 10.3390/toxics10090526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Hepatic and renal damage is a cisplatin (Cis)-induced deleterious effect that is a major limiting factor in clinical chemotherapy. OBJECTIVES The current study was designed to investigate the influence of pretreatment with olive leaf extract (OLE), bone-marrow-derived mesenchymal stem cells (BM-MSC), and their conditioned media (CM-MSC) against genotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity induced by cisplatin in rats. METHODS The rats were randomly divided into six groups (six rats each) as follows: Control; OLE group, treated with OLE; Cis group, treated with a single intraperitoneal dose of Cis (7 mg/kg bw); Cis + OLE group, treated with OLE and cisplatin; Cis + CM-MSC group, treated with BM-MSC conditioned media and Cis; and Cis + MSC group, treated with BM-MSC in addition to Cis. RESULTS Cis resulted in a significant deterioration in hepatic and renal functions and histological structures. Furthermore, it increased inflammatory markers (TNF-α, IL-6, and IL-1β) and malondialdehyde (MDA) levels and decreased glutathione (GSH) content, total antioxidant capacity (TAC), catalase (CAT), and superoxide dismutase (SOD) activity in hepatic and renal tissues. Furthermore, apoptosis was evident in rat tissues. A significant increase in serum 8-hydroxy-2-deoxyguanosine (8-OH-dG), nitric oxide (NO) and lactate dehydrogenase (LDH), and a decrease in lysozyme activity were detected in Cis-treated rats. OLE, CM-MSC, and BM-MSC have significantly ameliorated Cis-induced deterioration in hepatic and renal structure and function and improved oxidative stress and inflammatory markers, with preference to BM-MSC. Moreover, apoptosis was significantly inhibited, evident from the decreased expression of Bax and caspase-3 genes and upregulation of Bcl-2 proteins in protective groups as compared to Cis group. CONCLUSIONS These findings indicate that BM-MSC, CM-MSC, and OLE have beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the hepatotoxicity, nephrotoxicity, immunotoxicity, and genotoxicity in a rat model.
Collapse
Affiliation(s)
- Mahrous A. Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt or
| | - Athar M. Khalifa
- Pathology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
| | - Alaa A. Mohamed
- Medical Biochemistry Division, Pathology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Rania A. Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Horeya E. Korayem
- Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Noha M. Abd El-Fadeal
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Ahmed Abd-Eltawab Tammam
- Physiology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Mansour Khalifa
- Human Physiology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Human Physiology Department, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Osama S. Elserafy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Criminal Justice and Forensic Sciences Department, King Fahd Security College, Riyadh 11451, Saudi Arabia
| | - Rehab I. Abdel-Karim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt or
| |
Collapse
|
4
|
Lee D, Lee SR, Park BJ, Song JH, Kim JK, Ko Y, Kang KS, Kim KH. Identification of Renoprotective Phytosterols from Mulberry ( Morus alba) Fruit against Cisplatin-Induced Cytotoxicity in LLC-PK1 Kidney Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:2481. [PMID: 34834844 PMCID: PMC8623081 DOI: 10.3390/plants10112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study was to explore the protective effects of bioactive compounds from the fruit of the mulberry tree (Morus alba L.) against cisplatin-induced apoptosis in LLC-PK1 pig kidney epithelial cells. Morus alba fruit is a well-known edible fruit commonly used in traditional folk medicine. Chemical investigation of M. alba fruit resulted in the isolation and identification of six phytosterols (1-6). Their structures were determined as 7-ketositosterol (1), stigmast-4-en-3β-ol-6-one (2), (3β,6α)-stigmast-4-ene-3,6-diol (3), stigmast-4-ene-3β,6β-diol (4), 7β-hydroxysitosterol 3-O-β-d-glucoside (5), and 7α-hydroxysitosterol 3-O-β-d-glucoside (6) by analyzing their physical and spectroscopic data as well as liquid chromatography/mass spectrometry data. All compounds displayed protective effects against cisplatin-induced LLC-PK1 cell damage, improving cisplatin-induced cytotoxicity to more than 80% of the control value. Compound 1 displayed the best effect at a relatively low concentration by inhibiting the percentage of apoptotic cells following cisplatin treatment. Its molecular mechanisms were identified using Western blot assays. Treatment of LLC-PK1 cells with compound 1 decreased the upregulated phosphorylation of p38 and c-Jun N-terminal kinase (JNK) following cisplatin treatment. In addition, compound 1 significantly suppressed cleaved caspase-3 in cisplatin-induced LLC-PK1 cells. Taken together, these findings indicated that cisplatin-induced apoptosis was significantly inhibited by compound 1 in LLC-PK1 cells, thereby supporting the potential of 7-ketositosterol (1) as an adjuvant candidate for treating cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Bang Ju Park
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea;
| | - Ji Hoon Song
- Jeju Institute of Korean Medicine, Jeju 63309, Korea;
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yuri Ko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Duan Z, Cai G, Li J, Chen X. Cisplatin-induced renal toxicity in elderly people. Ther Adv Med Oncol 2020; 12:1758835920923430. [PMID: 32489432 PMCID: PMC7238313 DOI: 10.1177/1758835920923430] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 03/20/2020] [Indexed: 01/19/2023] Open
Abstract
Despite available prevention and treatment measures, such as hydration, diuresis, magnesium supplementation, and amifostine, renal toxicity is still one of the major dose-limiting side effects of cisplatin. The aim of this review is to discuss the issue of cisplatin-induced nephrotoxicity in the elderly. Compared with young patients, the incidences of cisplatin-induced nephrotoxicity and acute kidney injury (AKI) in elderly patients are significantly increased, and survival time may be decreased. Following cisplatin treatment of elderly patients, tubulointerstitial injuries will be significantly aggravated based on their original age, both for acute injuries due to cell necrosis and exfoliation and chronic injuries due to interstitial fibrosis, tubular atrophy, and dilatation. The high incidence of cisplatin-induced nephrotoxicity in elderly patients may be associated with renal hypoperfusion; increased comorbidities, such as chronic kidney disease (CKD), cardiovascular disease, and diabetes mellitus; increased use of combined drugs [especially non-steroidal anti-inflammatory drugs, angiotensin-converting enzyme inhibitor and angiotensin receptor blockers (ACEI/ARB), and antibiotics]; decreased clearance of cisplatin; and high plasma ultrafilterable cisplatin. Considering hemodynamic stability and water balance, short duration and low volume hydration may be more suitable for treating elderly people. With the increasing popularity of low-dose daily/weekly regimens, we do not recommend routine diuretic treatment for elderly patients. We recommend using a less nephrotoxic platinum if large doses of cisplatin (100mg/m2) are needed.
Collapse
Affiliation(s)
- ZhiYu Duan
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - GuangYan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, 100853, China
| | - JiJun Li
- Department of Nephrology, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - XiangMei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
6
|
Increase in Protective Effect of Panax vietnamensis by Heat Processing on Cisplatin-Induced Kidney Cell Toxicity. Molecules 2019; 24:molecules24244627. [PMID: 31861213 PMCID: PMC6943650 DOI: 10.3390/molecules24244627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/02/2023] Open
Abstract
Cisplatin is a platinum-based anticancer agent used for treating a wide range of solid cancers. One of the side effects of this drug is its severe nephrotoxicity, limiting the safe dose of cisplatin. Therefore, many natural products have been studied and applied to attenuate the toxicity of this compound. In this study, we found that steamed Vietnamese ginseng (Panax vietnamensis) could significantly reduce the kidney damage of cisplatin in an in vitro model using porcine proximal tubular LLC-PK1 kidney cells. From processed ginseng under optimized conditions (120 °C, 12 h), we isolated seven compounds (20(R,S)-ginsenoside Rh2, 20(R,S)-ginsenoside Rg3, ginsenoside Rk1, ginsenoside-Rg5, and ocotillol genin) that showed kidney-protective potential against cisplatin toxicity. By comparing the 50% recovery concentration (RC50), the R form of ginsenoside, Rh2 and Rg3, had RC50 values of 6.67 ± 0.42 µM and 8.39 ± 0.3 µM, respectively, while the S forms of ginsenoside, Rh2 and Rg3, and Rk1, had weaker protective effects, with RC50 ranging from 46.15 to 88.4 µM. G-Rg5 and ocotillol, the typical saponin of Vietnamese ginseng, had the highest RC50 (180.83 ± 33.27; 226.19 ± 66.16, respectively). Our results suggest that processed Vietnamese gingseng (PVG), as well as those compounds, has the potential to improve kidney damage due to cisplatin toxicity.
Collapse
|
7
|
Lee D, Lee J, Vu-Huynh KL, Van Le TH, Tuoi Do TH, Hwang GS, Park JH, Kang KS, Nguyen MD, Yamabe N. Protective Effect of Panaxynol Isolated from Panax vietnamensis against Cisplatin-Induced Renal Damage: In Vitro and In Vivo Studies. Biomolecules 2019; 9:E890. [PMID: 31861234 PMCID: PMC6995609 DOI: 10.3390/biom9120890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Polyacetylenic compounds isolated from Panax species are comprised of non-polar C17 compounds, exhibiting anti-inflammatory, antitumor, and antifungal activities. Panaxynol represents the major component of the essential oils of ginseng. We investigated whether panaxynol isolated from Panax vietnamensis (Vietnamese ginseng, VG) could prevent cisplatin-induced renal damage induced in vitro and in vivo. Cisplatin-induced apoptotic cell death was observed by staining with annexin V conjugated with Alexa Fluor 488, and western blotting evaluated the molecular mechanism. Panaxynol at concentrations above 0.25 μM prevented cisplatin-induced LLC-PK1 porcine renal proximal tubular cell death. LLC-PK1 cells treated with cisplatin demonstrated an increase in apoptotic cell death, whereas pretreatment with 2 and 4 μM panaxynol decreased this effect. Cisplatin demonstrated a marked increase in the phosphorylation of c-Jun N-terminal kinase (JNK), P38, and cleaved caspase-3. However, pretreatment with 2 and 4 μM panaxynol reversed the upregulated phosphorylation of JNK, P38, and the expression of cleaved caspase-3. We confirmed that the protective effect of panaxynol isolated from P. vietnamensis in LLC-PK1 cells was at least partially mediated by reducing the cisplatin-induced apoptotic damage. In the animal study, panaxynol treatment ameliorated body weight loss and blood renal function markers and downregulated the mRNA expression of inflammatory mediators.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (J.L.); (G.S.H.); (K.S.K.)
| | - Jaemin Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (J.L.); (G.S.H.); (K.S.K.)
| | - Kim Long Vu-Huynh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam;
| | - Thi Hong Van Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam; (T.H.V.L.); (T.H.T.D.)
| | - Thi Hong Tuoi Do
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam; (T.H.V.L.); (T.H.T.D.)
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (J.L.); (G.S.H.); (K.S.K.)
| | - Jeong Hill Park
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (J.L.); (G.S.H.); (K.S.K.)
| | - Minh Duc Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam;
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam; (T.H.V.L.); (T.H.T.D.)
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (J.L.); (G.S.H.); (K.S.K.)
| |
Collapse
|
8
|
Li X, Zhang H, Chan L, Liu C, Chen T. Nutritionally Available Selenocysteine Derivative Antagonizes Cisplatin-Induced Toxicity in Renal Epithelial Cells through Inhibition of Reactive Oxygen Species-Mediated Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5860-5870. [PMID: 29779385 DOI: 10.1021/acs.jafc.8b01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Discovery of nutritionally available agents that could antagonize cisplatin-induced nephrotoxicity is of great significance and clinical application potential. 3,3'-Diselenodipropionic acid (DSePA) is a seleno-amino acid derivative that exhibits strong antioxidant activity. Therefore, this study aimed to examine the protective effects of DSePA on cisplatin-induced renal epithelial cells damage as well as the molecular mechanisms. The results revealed that DSePA effectively inhibited cell apoptosis induced by cisplatin through suppressing the caspase activation and poly(ADP-ribose) polymerase cleavage. In addition, DSePA blocked the cisplatin-induced mitochondrial dysfunction, as evidenced by the loss of mitochondrial membrane potential and reduction of mitochondrial mass. The results of western blot analysis showed that DSePA reversed the expression level of Bcl-2 family proteins altered by cisplatin. The cisplatin-activated AKT pathway was also modulated by DSePA. Moreover, these results indicate that DSePA could protect HK-2 cells from cisplatin-induced toxicity in renal epithelial cells by inhibiting intracellular reactive oxygen species-mediated apoptosis while showing an unobvious effect on its anticancer efficacy. Taken together, this study demonstrates that selenocysteine could be further developed as novel nutritionally available agents to antagonize cisplatin-induced nephrotoxicity during cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Tianfeng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , People's Republic of China
| |
Collapse
|
9
|
Nematbakhsh M, Pezeshki Z, Eshraghi Jazi F, Mazaheri B, Moeini M, Safari T, Azarkish F, Moslemi F, Maleki M, Rezaei A, Saberi S, Dehghani A, Malek M, Mansouri A, Ghasemi M, Zeinali F, Zamani Z, Navidi M, Jilanchi S, Shirdavani S, Ashrafi F. Cisplatin-Induced Nephrotoxicity; Protective Supplements and Gender Differences. Asian Pac J Cancer Prev 2017; 18:295-314. [PMID: 28345324 PMCID: PMC5454720 DOI: 10.22034/apjcp.2017.18.2.295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cisplatin (CDDP) has been widely used as a chemotherapeutic agent for solid tumors. The most common side effect of CDDP is nephrotoxicity, and many efforts have been made in the laboratory and the clinic to employ candidate adjuvants to CDDP to minimize this adverse influence. Many synthetic and herbal antioxidants as well as trace elements have been investigated for this purpose in recent years and a variety of positive and negative results have been yielded. However, no definitive supplement has so far been proposed to prevent CDDP-induced nephrotoxicity; however, this condition is gender related and the sex hormone estrogen may protect the kidney against CDDP damage. In this review, the results of research related to the effect of different synthetic and herbal antioxidants supplements are presented and discussed with suggestions included for future work.
Collapse
Affiliation(s)
- Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran. *
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Oleuropein Ameliorates Cisplatin-induced Hematological Damages Via Restraining Oxidative Stress and DNA Injury. Indian J Hematol Blood Transfus 2016; 33:348-354. [PMID: 28824236 DOI: 10.1007/s12288-016-0718-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
The prevalence of cancer, in the world is increasing steadily. Despite intense research efforts, no approved therapy is yet available. Cisplatin is a chemotherapeutic drug but induces acute tissue injury. Oleuropein (OLE) is a major phenolic compound and used as a possible natural antioxidant, antimicrobial, and anticancer agent. We hypothesized that antioxidant activity of OLE may decrease cisplatin-induced oxidative stress and prevent to the development of chemotherapeutic complications including abnormality in hematological condition. Male Sprague Dawley rats were used in the experiments. Rats were randomly assigned to one of eight groups: control group; group treated with i.p. injection in a single dose of 7 mg/kg/day cisplatin; groups treated with 50, 100 and 200 mg/kg/day OLE (i.p.); and groups treated with OLE for 3 days starting at 24 h following cisplatin injection. First, hematological assessment was appreciated between control and experimental groups. Second, total oxidative stress (TOS) and total antioxidant capacity (TAC) levels of blood were measured by biochemical studies. In addition to this, oxidative DNA damage was determined by measuring as increases in 8-hydroxy-deoxyguanosine (8-OH-dG) adducts. The treatment with cisplatin elevated the TOS and 8-OH-dG levels that were then reversed by OLE. Reductions in antioxidant capacity with respect to corresponding controls were also restored by OLE treatment. These findings suggest that the OLE treatment against cisplatin-induced toxicity improves the function of blood cells and helps them to survive in the belligerent environment created by free radicals.
Collapse
|
11
|
Comparative Nephroprotective Effects of Silymarin, N-Acetylcysteine, and Thymoquinone Against Carbon Tetrachloride-Induced Nephrotoxicity in Rats. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016. [DOI: 10.5812/ircmj.37746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ghasemi M, Nematbakhsh M, Pezeshki Z, Soltani N, Moeini M, Talebi A. Nephroprotective effect of estrogen and progesterone combination on cisplatin-induced nephrotoxicity in ovariectomized female rats. Indian J Nephrol 2016; 26:167-75. [PMID: 27194830 PMCID: PMC4862261 DOI: 10.4103/0971-4065.160337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recently, we reported that estrogen (Es) has no beneficial effect on cisplatin (CP)-induced nephrotoxicity, but the role of progesterone (Pr) and the combination of Es and Pr are not yet well-defined. In this study, we investigated the protective role of Pr, and co-administration of Es/Pr on CP-induced nephrotoxicity. Eighty-six ovariectomized female Wistar rats were divided into 13 groups, and the experiments were performed in two phases. In Phase I, Groups 1-4 received 2, 5, 10, and 25 mg/kg, IM Pr dissolved in sesame oil every 5 days for four doses. Groups 5-8 had the same treatment regimen as Groups 1-4, but after the third injection the animals also received continuous dose of CP (2.5 mg/kg/day, i.p.) for 8 days. Group 9, as the positive control group, received sesame oil instead of Pr plus CP. Group 10, as the negative control group, received sesame oil instead of Pr. After the most effective dose of Pr was determined in Phase I, Groups 11-13 in Phase II received 10 mg/kg Pr plus either 0.25, 0.5, or 1 mg/kg, IM estradiol valerate every 5 days for four doses. After the third injection, they also received a continuous dose of CP for 8 days. The levels of blood urea nitrogen (BUN) and creatinine (Cr), kidney tissue damage score (KTDS), and kidney weight (KW) increased and body weight (BW) decreased in the positive control group (P < 0.05). Administration of Pr (10 mg/kg) plus CP decreased KTDS and BW loss and KW. Co-administration of ES/Pr at specific doses improved Cr, BUN, and KTDS; and resulted in reduced CP-induced nephrotoxicity. The results obtained suggest that the beneficial effect of Pr on CP-induced nephrotoxicity is dose-dependent. In addition, combination of Es/Pr with a specific dose decreased CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- M Ghasemi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Institute of Basic and Applied Sciences Research, Isfahan, Iran
| | - Z Pezeshki
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - N Soltani
- Department of Physiology, Hormozgan University of Medical Sciences, Isfahan, Iran
| | - M Moeini
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Talebi
- Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Helal MAM. The effects ofN-acetyl-l-cysteine on the female reproductive performance and nephrotoxicity in rats. Ren Fail 2016; 38:311-20. [DOI: 10.3109/0886022x.2015.1127742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Sinha S, Jothiramajayam M, Ghosh M, Jana A, Chatterji U, Mukherjee A. Vetiver oil (Java) attenuates cisplatin-induced oxidative stress, nephrotoxicity and myelosuppression in Swiss albino mice. Food Chem Toxicol 2015; 81:120-128. [PMID: 25910835 DOI: 10.1016/j.fct.2015.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 12/24/2022]
Abstract
Clinical efficacy of the widely used anticancer drug cisplatin is limited due to its adverse side effects in normal tissues mediated by oxidative stress. This study was aimed to investigate the protective effects of vetiver acetate oil, Java (VO) against cisplatin-induced toxicity in Swiss albino mice. The ameliorating potential was evaluated by orally priming the animals with VO at doses 5, 10 or 20 mg/kg bw for 7 days prior to cisplatin treatment. Acute toxicity in mice was induced by injecting cisplatin (3 mg/kg bw) intraperitoneally for 5 consecutive days. Significant attenuation of renal toxicity was confirmed by histopathological examination, lowered levels of serum blood urea nitrogen, creatinine and reduced DNA damage. VO also compensated deficits in the renal antioxidant system. VO intervention significantly inhibited DNA damage, clastogenic effects, and cell cycle arrest in the bone marrow cells of mice. Hematological parameters indicated attenuation of cisplatin-induced myelosuppression. Overall, this study provides for the first time that VO has a protective role in the abatement of cisplatin-induced toxicity in mice which may be attributed to its antioxidant activity.
Collapse
Affiliation(s)
- Sonali Sinha
- Cell Biology and Genetic Toxicology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Manivannan Jothiramajayam
- Cell Biology and Genetic Toxicology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Manosij Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Aditi Jana
- Cell Biology and Genetic Toxicology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Urmi Chatterji
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
15
|
Oh GS, Kim HJ, Shen A, Lee SB, Khadka D, Pandit A, So HS. Cisplatin-induced Kidney Dysfunction and Perspectives on Improving Treatment Strategies. Electrolyte Blood Press 2014; 12:55-65. [PMID: 25606044 PMCID: PMC4297704 DOI: 10.5049/ebp.2014.12.2.55] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023] Open
Abstract
Cisplatin is one of the most widely used and highly effective drug for the treatment of various solid tumors; however, it has dose-dependent side effects on the kidney, cochlear, and nerves. Nephrotoxicity is the most well-known and clinically important toxicity. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced nephrotoxicity. Even though the establishment of cisplatin-induced nephrotoxicity can be alleviated by diuretics and pre-hydration of patients, the prevalence of cisplatin nephrotoxicity is still high, occurring in approximately one-third of patients who have undergone cisplatin therapy. Therefore it is imperative to develop treatments that will ameliorate cisplatin-nephrotoxicity. In this review, we discuss the mechanisms of cisplatin-induced renal toxicity and the new strategies for protecting the kidneys from the toxic effects without lowering the tumoricidal activity.
Collapse
Affiliation(s)
- Gi-Su Oh
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Korea
| | - Hyung-Jin Kim
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Korea
| | - Su Bin Lee
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Korea
| | - Dipendra Khadka
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Korea
| | - Arpana Pandit
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Korea
| |
Collapse
|
16
|
Rasoulian B, Kaeidi A, Pourkhodadad S, Dezfoulian O, Rezaei M, Wahhabaghai H, Alirezaei M. Effects of pretreatment with single-dose or intermittent oxygen on Cisplatin-induced nephrotoxicity in rats. Nephrourol Mon 2014; 6:e19680. [PMID: 25695032 PMCID: PMC4318017 DOI: 10.5812/numonthly.19680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/29/2014] [Accepted: 06/14/2014] [Indexed: 02/04/2023] Open
Abstract
Background: Renal injury is the main side effect of cisplatin (CP), an anticancer drug. It has been shown that pretreatment with single-dose oxygen (0.5 to six hours) could reduce CP-induced renal toxicity in rats. Objectives: The present study aimed to compare the effects of pretreatment with single-dose and intermittent O2 on CP-induced nephrotoxicity. Materials and Methods: Adult male rats were allocated to seven groups (eight rats in each group). The rats were kept in normal air or hyperoxic environment (O2, 80%) for either a single six-hour period or intermittent six hours per day for seven days and then were subjected to intraperitoneal injection of saline or CP (5 mg/kg) at 48 hours, 72 hours, or seven days after exposure to O2. Three days after CP (or Saline) injection, renal function tests, renal tissue injury scores, and cleaved Caspase-3 and Bax/Bcl-2 genes expression (as markers of renal cell apoptosis) were assessed. Results: Treatment with the 6-hour single-dose O2 reduced renal injury significantly when CP was administrated 48 hours after O2 pretreatment. Pretreatment with intermittent seven days of six hours per day had no protective effects and even relatively worsened renal injury when CP was injected 48 hours or 72 hours after the last session of O2 pretreatment. The beneficial effects of pretreatment with O2 on renal structure and function were seen if CP was administrates seven days after pretreatment with intermittent O2. Conclusions: The pattern of pretreatment with O2 could change this potential and highly protective strategy against CP-induced nephropathy to an ineffective or even mildly deteriorating one. Therefore, O2 administration before CP injection to patients with cancer, for therapeutic purposes or as a preconditioning approach, should be performed and investigated with caution until exact effects of different protocols has been determined in human.
Collapse
Affiliation(s)
- Bahram Rasoulian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, IR Iran
- Department of Physiology and Pharmacology, Lorestan University of Medical Sciences, Khorramabad, IR Iran
| | - Ayat Kaeidi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, IR Iran
| | - Soheila Pourkhodadad
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, IR Iran
- Corresponding author: Soheila Pourkhodadad, Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences, Khorramabad, IR Iran. Tel/Fax: +98-6613204005,
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, IR Iran
| | - Maryam Rezaei
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, IR Iran
| | | | - Masoud Alirezaei
- Division of Biochemistry, School of Veterinary Medicine, Lorestan University, Khorramabad, IR Iran
| |
Collapse
|
17
|
Wanchoo R, Khan S, Kolitz JE, Jhaveri KD. Carfilzomib-related acute kidney injury may be prevented by N-acetyl-L-cysteine. J Oncol Pharm Pract 2014; 21:313-6. [PMID: 24748581 DOI: 10.1177/1078155214531804] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Carfilzomib is a second-generation epoxyketone proteasome inhibitor that is approved for treatment of relapsed and refractory multiple myeloma. Phase 2 trials have reported that 25% of treated patients have renal adverse effects. Pre-renal/vasoconstriction-related insult from this chemotherapy agent has been documented. We describe a case of a 78-year-old man with refractory multiple myeloma with acute kidney injury associated with carfilzomib treatment. We show that use of N-acetyl-l-cysteine in our patient partially mitigated the renal injury upon re-challenge. This case report hypothesizes that acute renal injury from carfilzomib is caused by vasoconstriction of the renal vessels, which may be prevented by N-acetyl-l-cysteine.
Collapse
Affiliation(s)
- Rimda Wanchoo
- Division of Kidney Diseases and Hypertension, Hofstra NS-LIJ School of Medicine, Great Neck, NY, USA
| | - Seyyar Khan
- Division of Kidney Diseases and Hypertension, Hofstra NS-LIJ School of Medicine, Great Neck, NY, USA
| | - Jonathan E Kolitz
- Don Monti Division of Oncology/Division of Hematology, Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Lake Success, New York
| | - Kenar D Jhaveri
- Division of Kidney Diseases and Hypertension, Hofstra NS-LIJ School of Medicine, Great Neck, NY, USA
| |
Collapse
|
18
|
Akbas HS, Timur M, Ozben T. Concurrent use of antioxidants in cancer therapy: an update. Expert Rev Clin Immunol 2014; 2:931-9. [DOI: 10.1586/1744666x.2.6.931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Mazaheri S, Nematbakhsh M, Bahadorani M, Pezeshki Z, Talebi A, Ghannadi AR, Ashrafi F. Effects of Fennel Essential Oil on Cisplatin-induced Nephrotoxicity in Ovariectomized Rats. Toxicol Int 2013; 20:138-45. [PMID: 24082507 PMCID: PMC3783680 DOI: 10.4103/0971-6580.117256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Cisplatin (cis-diamminedichloroplatinum II (CDDP)) is an effective drug in cancer therapy to treat solid tumors. However, the drug is accompanied by nephrotoxicity. Previous reports indicated that estrogen has no protective role against CDDP-induced nephrotoxicity, but the role of phytoestrogen as an estrogenic agent in plants is not determined yet. The major composition of fennel essential oil (FEO) is trans-anethole that has estrogenic activity; so, we used FEO as a phytoestrogen source against CDDP-induced nephrotoxicity. Materials and Methods: Fifty-four ovariectomized Wistar rats were divided into seven groups. Groups 1-3 received different doses of FEO (250, 500, and 1000 mg/kg/day, respectively) for 10 days. Group 4 received saline for 10 days plus single dose of CDDP (7 mg/kg, intraperitoneally (ip)) at day 3. Groups 5-7 received FEO similar to groups 1-3, respectively; plus a single dose of CDDP (7 mg/kg, ip) on day 3. On day 10, the animals were sacrificed for histopathological studies. Results: The serum levels of blood urea nitrogen (BUN) and creatinine (Cr), kidney tissue damage score (KTDS), and kidney weight (KW) and body weight changes in CDDP-treated groups increased significantly (P < 0.05). FEO did not reduce the levels of BUN and Cr, KTDS, and KW and body weight changes. Also, the serum and tissue levels of nitrite were not altered significantly by FEO. Conclusion: FEO, as a source of phytoestrogen, did not induce kidney damage. In addition, FEO similar to estrogen was not a nephroprotectant agent against CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Safoora Mazaheri
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Deparment of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | | | | | | | | | | | |
Collapse
|
20
|
Nematbakhsh M, Pezeshki Z. Sex-Related Difference in Nitric Oxide Metabolites Levels after Nephroprotectant Supplementation Administration against Cisplatin-Induced Nephrotoxicity in Wistar Rat Model: The Role of Vitamin E, Erythropoietin, or N-Acetylcysteine. ISRN NEPHROLOGY 2013; 2013:612675. [PMID: 24967237 PMCID: PMC4045416 DOI: 10.5402/2013/612675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/14/2013] [Indexed: 01/09/2023]
Abstract
Background. Nitric oxide (NO) concentration in serum is altered by cisplatin (CP), and NO influences CP-induced nephrotoxicity. The effect of nephroprotectant agent supplementation (vitamin E, human recombinant erythropoietin (EPO), or n-acetylcysteine (NAC)) on the NO metabolites levels after CP administration in the two genders was determined. Methods. Sixty-four adult Wistar rats were randomly divided into 10 groups. Male and female rats in different groups received vehicle (saline), CP (7 mg/kg) alone, CP plus EPO (100 IU/kg), CP plus vitamin E (250 mg/kg), and CP plus NAC (600 mg/kg). CP was administrated as a single dose, but the supplementations were given for a period of 7 days. Results. In male rats, the serum levels of total NO metabolites (NOx) and nitrite were increased significantly (P < 0.05) by CP. However, vitamin E significantly reduced the serum levels of these metabolites, which was increased by administration of CP (P < 0.05), and such findings were not observed for female rats. The EPO or NAC did not influence NO metabolites neither in male rats nor in female rats.
Conclusion. Although vitamin E, EPO, and NAC are reported to be nephroprotectant agents against CP-induced nephrotoxicity, only vitamin E could reduce the level of all NO metabolites only in male rats.
Collapse
Affiliation(s)
- Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran ; Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745, Iran
| | - Zahra Pezeshki
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran
| |
Collapse
|
21
|
Sooriyaarachchi M, Narendran A, Gailer J. N-Acetyl-l-cysteine modulates the metabolism of cis-platin in human plasma in vitro. Metallomics 2013; 5:197-207. [DOI: 10.1039/c3mt00012e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Shalby AB, Assaf N, Ahmed HH. Possible mechanisms for N-acetyl cysteine and taurine in ameliorating acute renal failure induced by cisplatin in rats. Toxicol Mech Methods 2011; 21:538-46. [DOI: 10.3109/15376516.2011.568985] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Abdelrahman AM, Al Salam S, AlMahruqi AS, Al husseni IS, Mansour MA, Ali BH. N-acetylcysteine improves renal hemodynamics in rats with cisplatin-induced nephrotoxicity. J Appl Toxicol 2010; 30:15-21. [PMID: 19681060 DOI: 10.1002/jat.1465] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work investigated the effect of N-acetylcysteine (NAC), on renal hemodynamics in cisplatin (CP)-induced nephrotoxicity in Wistar-Kyoto (WKY) rats. The animals were divided into four groups (n = 5 or 6). The first and second groups received normal saline (control) and intraperitoneal (i.p.) N-acetylcysteine (500 mg kg(-1) per day for 9 days), respectively. The third and fourth groups were given a single intraperitoneal (i.p.) injection of CP (5 mg kg(-1)) and an i.p. injection of CP (5 mg kg(-1)) together with i.p. NAC (500 mg kg(-1) per day for 9 days), respectively. At the end of the experiment, rats were anesthetized and blood pressure and renal blood flow were monitored, followed by intravenous (i.v.) injection of norepinephrine (NE) for measurement of renal vasoconstrictor responses. CP caused a significant reduction in renal blood flow but did not affect NE-induced renal vasoconstriction. In addition, CP significantly increased plasma concentrations of urea and creatinine and urinary N-acetyl-beta-D-glucosaminidase (NAG) activity and kidney relative weight. CP decreased body weight and creatinine clearance. Histopathologically, CP caused remarkable renal damage compared with control. NAC alone did not produce any significant change in any of the variables measured. However, NAC significantly ameliorated CP-induced hemodynamic, biochemical and histopathological changes. The concentration of platinum in the kidneys of CP ? NAC treated rats was less than in CP-treated rats by 37%. The results show that administration of i.p. NAC (500 mg kg(-1) per day for 9 days) reversed the renal hemodynamic changes as well as the biochemical and histopathological indices of CP-induced nephrotoxicity in WKY rats.
Collapse
Affiliation(s)
- Aly M Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Muscat 123, Sultanate of Oman.
| | | | | | | | | | | |
Collapse
|
24
|
Rasoulian B, Jafari M, Mahbod M, Dehaj ME, Nowrozi M, Wahhabaghai H, Mofid M, Ghasemi A, Bigdeli MR, Khoshbaten A. Pretreatment with Oxygen Protects Rat Kidney from Cisplatin Nephrotoxicity. Ren Fail 2010; 32:234-42. [DOI: 10.3109/08860221003592838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
25
|
Vila-Torres E, Albert-Marí A, Almenar-Cubells D, Jiménez-Torres NV. Cisplatin preparation error; patient management and morbidity. J Oncol Pharm Pract 2010; 15:249-53. [PMID: 19304879 DOI: 10.1177/1078155209103657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Antineoplastic drug therapy errors represent a high iatrogenic potential due to antineoplastic drugs narrow therapeutic ranges and the complexity of chemotherapy regimens that may increase the risk of morbidity and mortality for oncology patients. SETTING We report a 57-year-old man with head and neck cancer who mistakenly received 180 mg/ m(2) of cisplatin overdose despite the safety measures and validations carried out during preparation. The patient developed moderate nausea and vomiting, acute renal failure, hearing difficulty (tinnitus), and severe myelodepression. PATIENT MANAGEMENT: Prophylactic and symptomatic treatments were applied in order to prevent and correct toxicity during the 9 days stay at hospital. RESULT He recovered with mild tinnitus and mild renal impairment as the only sequelae. This case presents a hospital stay and treatment quite different to others used to reverse all cisplatin overdose toxicity and it shows the benefits of prompt management.
Collapse
Affiliation(s)
- E Vila-Torres
- Pharmacy Department, Hospital General de Ciudad Real, Ciudad Real, Spain.
| | | | | | | |
Collapse
|
26
|
Abstract
Cisplatin is one of the most widely used antineoplastic agents in the treatment of solid tumour and haematological malignancies, including cancers of the testes, ovary, bladder, head and neck, oesophagus, stomach and lung, as well as lymphoma and osteosarcoma. Its non-specific targeting commonly results in adverse effects and toxicities affecting the gastrointestinal, renal, neurological and haematological systems even when administered at standard doses. Since cisplatin-related toxicities are dose-dependent, these may be more pronounced in the setting of a cisplatin overdose, resulting in significant morbidity and/or mortality. The incidence of cisplatin overdoses is unknown; however, early-phase clinical trials utilizing high-dose cisplatin, and case reports in the overdose setting have characterized the clinical features associated with cisplatin overdoses, highlighting some therapeutic strategies for consideration. To date, no published guidelines exist for managing a cisplatin overdose. The major toxicities of a cisplatin overdose include nausea and vomiting, renal insufficiency, electrolyte abnormalities, myelosuppression, ototoxicity, peripheral neuropathy, hepatotoxicity and retinopathy. Diarrhoea, pancreatitis, seizures and respiratory failure have also been reported. No specific antidote for cisplatin exists. Key management principles and strategies to lessen toxicities include renoprotection and enhancing drug elimination with aggressive intravenous hydration with or without the use of an osmotic diuretic, and avoidance of nephrotoxic medications. Sodium thiosulfate and plasmapheresis, with or without haemodialysis support, should be strongly considered. Close monitoring of clinical and laboratory parameters, and institution of supportive therapies, including antiemetics and haematopoietic colony stimulating factor support, are warranted. Based on the current literature, experimental therapies such as amifostine, ditiocarb sodium (diethyldithiocarbamate), acetylcysteine, fosfomycin and colestipol are of limited clinical effectiveness and remain investigational. This review serves to highlight the clinical spectrum of toxicities resulting from a cisplatin overdose, to critically appraise the available literature and to present a suggested algorithmic approach for the initial management of a cisplatin overdose.
Collapse
Affiliation(s)
- Roger Y Tsang
- Department of Oncology, Division of Medical Oncology, Cross Cancer Institute and University of Alberta, Alberta, Canada
| | | | | |
Collapse
|
27
|
Rodrigues MAC, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NAG, Santos AC. Carvedilol protects against the renal mitochondrial toxicity induced by cisplatin in rats. Mitochondrion 2009; 10:46-53. [PMID: 19772951 DOI: 10.1016/j.mito.2009.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/04/2009] [Accepted: 09/11/2009] [Indexed: 11/27/2022]
Abstract
The clinical use of cisplatin is highly limited by its nephrotoxicity, which has been associated with mitochondrial dysfunction. We investigated the protective effect of carvedilol, an antihypertensive with strong antioxidant properties, against the nephrotoxicity induced by cisplatin in rats. Carvedilol was able to counteract the renal damage by preventing the mitochondrial dysfunction induced by cisplatin. The mitochondrial eletrochemical potential, calcium uptake, respiration and the phosphorylative capacity were preserved by the co-administration of carvedilol. The mechanism of protection probably does not involve alterations in the cellular and sub-cellular distribution of cisplatin. The study suggests that carvedilol is a potential drug for the adjuvant nephroprotective therapy during cisplatin chemotherapy.
Collapse
Affiliation(s)
- M A Carvalho Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S. Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol 2009; 64:753-61. [PMID: 19148645 DOI: 10.1007/s00280-008-0924-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/30/2008] [Indexed: 02/08/2023]
Abstract
PURPOSE Cisplatin is a widely used anti-cancer drug in the treatment of a wide range of tumors; however, its application is limited by nephrotoxicity, which is affected by oxidative stress. We have reported that molecular hydrogen (H(2)) acts as an efficient antioxidant (Ohsawa et al. in Nat Med 13:688-694, 2007). Here we show that hydrogen efficiently mitigates the side effects of cisplatin by reducing oxidative stress. METHODS Mice were administered cisplatin followed by inhaling hydrogen gas (1% H(2) in air). Furthermore, instead of inhaling hydrogen gas, we examined whether drinking water containing hydrogen (hydrogen water; 0.8 mM H(2) in water) is applicable by examining oxidative stress, mortality, and body-weight loss. Nephrotoxicity was assessed by morphological changes, serum creatinine and blood urea nitrogen (BUN) levels. RESULTS Inhalation of hydrogen gas improved mortality and body-weight loss caused by cisplatin, and alleviated nephrotoxicity. Hydrogen was detected in blood when hydrogen water was placed in the stomach of a rat. Consuming hydrogen water ad libitum also reduced oxidative stress, mortality, and body-weight loss induced by cisplatin in mice. Hydrogen water improved metamorphosis accompanying decreased apoptosis in the kidney, and nephrotoxicity as assessed by serum creatinine and BUN levels. Despite its protective effects against cisplatin-induced toxicity, hydrogen did not impair anti-tumor activity of cisplatin against cancer cell lines in vitro and tumor-bearing mice in vivo. CONCLUSION Hydrogen has potential for improving the quality of life of patients during chemotherapy by efficiently mitigating the side effects of cisplatin.
Collapse
Affiliation(s)
- Naomi Nakashima-Kamimura
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
29
|
Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. ACTA ACUST UNITED AC 2008; 61:223-42. [PMID: 18986801 DOI: 10.1016/j.etp.2008.09.003] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 02/07/2023]
Abstract
cis-Diamminedichloroplatinum (II) (cisplatin) is an important chemotherapeutic agent useful in the treatment of several cancers; however, it has several side effects such as nephrotoxicity. The role of the oxidative and nitrosative stress in cisplatin-induced nephrotoxicity is additionally supported by the protective effect of several free radical scavengers and antioxidants. Furthermore, in in vitro experiments, antioxidants or reactive oxygen species (ROS) scavengers have a cytoprotective effect on cells exposed to cisplatin. Recently, the participation of nitrosative stress has been more explored in cisplatin-induced renal damage. The use of a water-soluble Fe(III) porphyrin complex able to metabolize peroxynitrite (ONOO(-)) has demonstrated that this anion contributes to both in vivo and in vitro cisplatin-induced toxicity. ONOO(-) is produced when nitric oxide (NO*) reacts with superoxide anion (O(2)(*-)); currently, there are evidences suggesting alterations in NO* production after cisplatin treatment and the evidence appear to NO* has a toxic effect. This article goes through current evidence of the mechanism by more than a few compounds have beneficial effects on cisplatin-induced nephrotoxicity, contribute to understanding the role of oxidative and nitrosative stress and suggest several points as part of the mechanism of cisplatin toxicity.
Collapse
Affiliation(s)
- Yolanda I Chirino
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Tlalpan, DF, Mexico.
| | | |
Collapse
|
30
|
Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 2008; 73:994-1007. [PMID: 18272962 DOI: 10.1038/sj.ki.5002786] [Citation(s) in RCA: 1340] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cisplatin is one of the most widely used and most potent chemotherapy drugs. However, side effects in normal tissues and organs, notably nephrotoxicity in the kidneys, limit the use of cisplatin and related platinum-based therapeutics. Recent research has shed significant new lights on the mechanism of cisplatin nephrotoxicity, especially on the signaling pathways leading to tubular cell death and inflammation. Renoprotective approaches are being discovered, but the protective effects are mostly partial, suggesting the need for combinatorial strategies. Importantly, it is unclear whether these approaches would limit the anticancer effects of cisplatin in tumors. Examination of tumor-bearing animals and identification of novel renoprotective strategies that do not diminish the anticancer efficacy of cisplatin are essential to the development of clinically applicable interventions.
Collapse
Affiliation(s)
- N Pabla
- Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, USA
| | | |
Collapse
|
31
|
Dickey DT, Muldoon LL, Doolittle ND, Peterson DR, Kraemer DF, Neuwelt EA. Effect of N-acetylcysteine route of administration on chemoprotection against cisplatin-induced toxicity in rat models. Cancer Chemother Pharmacol 2007; 62:235-41. [PMID: 17909806 PMCID: PMC2776068 DOI: 10.1007/s00280-007-0597-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
Dosing and route of administration of N-acetylcysteine (NAC) for protection against cisplatin (CDDP) nephrotoxicity was investigated in rats. Two models of toxicity were tested: a single high dose of CDDP (10 mg/kg intraperitoneally (IP)), and multiple low dose treatments (1 mg/kg IP twice a day for 4 days, 10 days rest, then repeated). NAC (50-1,200 mg/kg) was given to the rats by IP, oral (PO), intravenous (IV) and intra-arterial (IA) routes. Renal toxicity was determined by blood urea nitrogen (BUN) and creatinine (CR) levels 3 days after treatment. Blood collected 15 min after NAC was analyzed for total NAC. Both models of CDDP administration produced renal toxicity. In the single dose CDDP model, NAC 400 mg/kg given IP and PO produced no renal protection as measured by BUN (131.8 +/- 8.2 and 123.3 +/- 8.2, respectively) or CR (2.3 +/- 0.38 and 1.77 +/- 0.21, respectively). IV NAC reduced nephrotoxicity, (BUN 26.3 +/- 6.8, CR 0.47 +/- 0.15). NAC 50 mg/kg IA gave better protection than IV. In the repeated-dose CDDP model, nephrotoxicity was blocked by 800 mg/kg NAC given IV but not IP. Blood concentrations of total NAC showed a dose response after IV NAC, but high dose NAC (1,200 mg/kg) by the PO route gave very low levels of NAC. Thus the protective properties of NAC are affected by the dose and route of administration.
Collapse
Affiliation(s)
- D Thomas Dickey
- Department of Neurology and Blood Brain Barrier Program, Oregon Health & Science University, 3181 SW Sam Jackson Parkway, L603, Portland, OR, 97239, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
BACKGROUND Cisplatin is a major antineoplastic drug for the treatment of solid tumors, but it has dose-dependent renal toxicity. METHODS We reviewed clinical and experimental literature on cisplatin nephrotoxicity to identify new information on the mechanism of injury and potential approaches to prevention and/or treatment. RESULTS Unbound cisplatin is freely filtered at the glomerulus and taken up into renal tubular cells mainly by a transport-mediated process. The drug is at least partially metabolized into toxic species. Cisplatin has multiple intracellular effects, including regulating genes, causing direct cytotoxicity with reactive oxygen species, activating mitogen-activated protein kinases, inducing apoptosis, and stimulating inflammation and fibrogenesis. These events cause tubular damage and tubular dysfunction with sodium, potassium, and magnesium wasting. Most patients have a reversible decrease in glomerular filtration, but some have an irreversible decrease in glomerular filtration. Volume expansion and saline diuresis remain the most effective preventive strategies. CONCLUSIONS Understanding the mechanisms of injury has led to multiple approaches to prevention. Furthermore, the experimental approaches in these studies with cisplatin are potentially applicable to other drugs causing renal dysfunction.
Collapse
Affiliation(s)
- Xin Yao
- Department of Internal Medicine, Texas Tech University Health Science Center, Lubbock, Texas 79430, USA
| | | | | | | |
Collapse
|
33
|
Saint-Lorant G, Madelaine J, Galais MP, Thierry L, Chédru-Legros V. Hydratation des patients sous cisplatine : enquête de pratiques et élaboration d’un protocole. Therapie 2005; 60:499-505. [PMID: 16433016 DOI: 10.2515/therapie:2005071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Administration of cisplatin requires hyperhydration of the patient to prevent nephrotoxic effects of this molecule. MATERIALS AND METHODS A survey done in different hospitals - university hospitals, general hospitals and cancer institutes--has shown a large variability in the hydration protocols. A multidisciplinary group was set up in our university hospital comprising oncologists, nephrologists and pharmacists. This group has developed a consensual local protocol from a bibliographic analysis (Medline) and from the personal experience of each member. CONCLUSION This protocol was approved by our hospital's Committee of Drugs and Medical Devices.
Collapse
|
34
|
Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2003; 12:161-76. [PMID: 12642981 DOI: 10.1002/pds.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|