1
|
Bartosik K, Micura R. Access to capped RNAs by chemical ligation. RSC Chem Biol 2024:d4cb00165f. [PMID: 39279877 PMCID: PMC11393730 DOI: 10.1039/d4cb00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
A distinctive feature of eukaryotic mRNAs is the presence of a cap structure at the 5' end. The typical cap consists of 7-methylguanosine linked to the first transcribed nucleotide through a 5',5'-triphosphate bridge. It plays a key role in many processes in eukaryotic cells, including splicing, intracellular transport, initiation of translation and turnover. Synthetic capped oligonucleotides have served as useful tools for elucidating these physiological processes. In addition, cap mimics with artificial modifications are of interest for the design of mRNA-based therapeutics and vaccines. While the short cap mimics can be obtained by chemical synthesis, the preparation of capped analogs of mRNA length is still challenging and requires templated enzymatic ligation of synthetic RNA fragments. To increase the availability of capped mRNA analogs, we present here a practical and non-templated approach based on the use of click ligation resulting in RNAs bearing a single triazole linkage within the oligo-phosphate backbone. Capped RNA fragments with up to 81 nucleotides in length have thus been obtained in nanomolar yields and are in demand for biochemical, spectroscopic or structural studies.
Collapse
Affiliation(s)
- Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82 6020 Innsbruck Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
2
|
Noël M, Guez T, Thillier Y, Vasseur JJ, Debart F. Access to High-Purity 7m G-cap RNA in Substantial Quantities by a Convenient All-Chemical Solid-Phase Method. Chembiochem 2023; 24:e202300544. [PMID: 37666794 DOI: 10.1002/cbic.202300544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Given the importance of mRNA with 5'-cap, easy access to RNA substrates with different 7m G caps, of high quality and in large quantities is essential to elucidate the roles of RNA and the regulation of underlying processes. In addition to existing synthetic routes to 5'-cap RNA based on enzymatic, chemical or chemo-enzymatic methods, we present here an all-chemical method for synthetic RNA capping. The novelty of this study lies in the fact that the capping reaction is performed on solid-support after automated RNA assembly using commercial 2'-O-propionyloxymethyl ribonucleoside phosphoramidites, which enable final RNA deprotection under mild conditions while preserving both 7m G-cap and RNA integrity. The capping reaction is efficiently carried out between a 5'-phosphoroimidazolide RNA anchored on the support and 7m GDP in DMF in the presence of zinc chloride. Substantial amounts of 7m G-cap RNA (from 1 to 28 nucleotides in length and of any sequence with or without internal methylations) containing various cap structures (7m GpppA, 7m GpppAm , 7m Gpppm6 A, 7m Gpppm6 Am , 7m GpppG, 7m GpppGm ) were obtained with high purity after IEX-HPLC purification. This capping method using solid-phase chemistry is convenient to perform and provides access to valuable RNA substrates as useful research tools to unravel specific issues regarding cap-related processes.
Collapse
Affiliation(s)
- Mathieu Noël
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Theo Guez
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Yann Thillier
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
- Present address: Chemgenes, 900 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Françoise Debart
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
3
|
Janowski M, Andrzejewska A. The legacy of mRNA engineering: A lineup of pioneers for the Nobel Prize. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:272-284. [PMID: 35855896 PMCID: PMC9278038 DOI: 10.1016/j.omtn.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
mRNA is like Hermes, delivering the genetic code to cellular construction sites, so it has long been of interest, but only to a small group of scientists, and only demonstrating its remarkable efficacy in coronavirus disease 2019 (COVID-19) vaccines allowed it to go out into the open. Therefore, now is the right timing to delve into the stepping stones that underpin this success and pay tribute to the underlying scientists. From this perspective, advances in mRNA engineering have proven crucial to the rapidly growing role of this molecule in healthcare. Development of consecutive generations of cap analogs, including anti-reverse cap analogs (ARCAs), has significantly boosted translation efficacy and maintained an enthusiasm for mRNA research. Nucleotide modification to protect mRNA molecules from the host's immune system, followed by finding appropriate purification and packaging methods, were other links in the chain enabling medical breakthroughs. Currently, vaccines are the central area of mRNA research, but it will reach far beyond COVID-19. Supplementation of missing or abnormal proteins is another large field of mRNA research. Ex vivo cell engineering and genome editing have been expanding recently. Thus, it is time to recognize mRNA pioneers while building upon their legacy.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Program in Image Guided Neurointerventions, Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA,Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland,Corresponding author Anna Andrzejewska, NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
4
|
Abe N, Imaeda A, Inagaki M, Li Z, Kawaguchi D, Onda K, Nakashima Y, Uchida S, Hashiya F, Kimura Y, Abe H. Complete Chemical Synthesis of Minimal Messenger RNA by Efficient Chemical Capping Reaction. ACS Chem Biol 2022; 17:1308-1314. [PMID: 35608277 DOI: 10.1021/acschembio.1c00996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific chemical modification of mRNA can improve its translational efficiency and stability. For this purpose, it is desirable to develop a complete chemical synthesis method for chemically modified mRNA. The key is a chemical reaction that introduces a cap structure into the chemically synthesized RNA. In this study, we developed a fast and quantitative chemical capping reaction between 5'-phosphorylated RNA and N7-methylated GDP imidazolide in the presence of 1-methylimidazole in the organic solvent dimethyl sulfoxide. It enabled quantitative preparation of capping RNA within 3 h. We prepared chemically modified 107-nucleotide mRNAs, including N6-methyladenosine, insertion of non-nucleotide linkers, and 2'-O-methylated nucleotides at the 5' end and evaluated their effects on translational activity in cultured HeLa cells. The results showed that mRNAs with non-nucleotide linkers in the untranslated regions were sufficiently tolerant to translation and that mRNAs with the Cap_2 structure had higher translational activity than those with the Cap_0 structure.
Collapse
Affiliation(s)
- Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Akihiro Imaeda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kaoru Onda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Uchida
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Abstract
In recent years, it has become clear that RNA molecules are involved in almost all vital cellular processes and pathogenesis of human disorders. The functional diversity of RNA comes from its structural richness. Although composed of only four nucleotides, RNA molecules present a plethora of secondary and tertiary structures critical for intra and intermolecular contacts with other RNAs and ligands (proteins, small metabolites, etc.). In order to fully understand RNA function it is necessary to define its spatial structure. Crystallography, nuclear magnetic resonance and cryogenic electron microscopy have demonstrated considerable success in determining the structures of biologically important RNA molecules. However, these powerful methods require large amounts of sample. Despite their limitations, chemical synthesis and in vitro transcription are usually employed to obtain milligram quantities of RNA for structural studies, delivering simple and effective methods for large-scale production of homogenous samples. The aim of this paper is to provide an overview of methods for large-scale RNA synthesis with emphasis on chemical synthesis and in vitro transcription. We also present our own results of testing the efficiency of these approaches in order to adapt the material acquisition strategy depending on the desired RNA construct.
Collapse
|
6
|
Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem 2017; 13:2819-2832. [PMID: 30018667 PMCID: PMC5753152 DOI: 10.3762/bjoc.13.274] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic mRNA with its 5'-cap is of central importance for the cell. Many studies involving mRNA require reliable preparation and modification of 5'-capped RNAs. Depending on the length of the desired capped RNA, chemical or enzymatic preparation - or a combination of both - can be advantageous. We review state-of-the art methods and give directions for choosing the appropriate approach. We also discuss the preparation and properties of mRNAs with non-natural caps providing novel features such as improved stability or enhanced translational efficiency.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Nils Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Andrea Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
7
|
Warminski M, Kowalska J, Jemielity J. Synthesis of RNA 5'-Azides from 2'-O-Pivaloyloxymethyl-Protected RNAs and Their Reactivity in Azide-Alkyne Cycloaddition Reactions. Org Lett 2017. [PMID: 28636394 DOI: 10.1021/acs.orglett.7b01591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Commercially available 2'-O-pivaloyloxymethyl (PivOM) phosphoramidites were employed in an SPS protocol for RNA 5' azides. The utility of the N3-RNAs in CuAAC and SPAAC was demonstrated by RNA 5' labeling, chemical ligation including fragment joining and cyclization, and bioconjugation. As a result, several new RNA conjugates that may be valuable tools for studies on biological events such as innate immune response (cyclic dinucleotides), post-transcriptional gene regulation (circular RNAs), or mRNA turnover (m7G capped RNAs) were obtained.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw , Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Warminski M, Sikorski PJ, Kowalska J, Jemielity J. Applications of Phosphate Modification and Labeling to Study (m)RNA Caps. Top Curr Chem (Cham) 2017; 375:16. [PMID: 28116583 PMCID: PMC5396385 DOI: 10.1007/s41061-017-0106-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The cap is a natural modification present at the 5' ends of eukaryotic messenger RNA (mRNA), which because of its unique structural features, mediates essential biological functions during the process of gene expression. The core structural feature of the mRNA cap is an N7-methylguanosine moiety linked by a 5'-5' triphosphate chain to the first transcribed nucleotide. Interestingly, other RNA 5' end modifications structurally and functionally resembling the m7G cap have been discovered in different RNA types and in different organisms. All these structures contain the 'inverted' 5'-5' oligophosphate bridge, which is necessary for interaction with specific proteins and also serves as a cleavage site for phosphohydrolases regulating RNA turnover. Therefore, cap analogs containing oligophosphate chain modifications or carrying spectroscopic labels attached to phosphate moieties serve as attractive molecular tools for studies on RNA metabolism and modification of natural RNA properties. Here, we review chemical, enzymatic, and chemoenzymatic approaches that enable preparation of modified cap structures and RNAs carrying such structures, with emphasis on phosphate-modified mRNA cap analogs and their potential applications.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
9
|
Lietard J, Hassler MR, Fakhoury J, Damha MJ. An orthogonal photolabile linker for the complete "on-support" synthesis/fast deprotection/hybridization of RNA. Chem Commun (Camb) 2015; 50:15063-6. [PMID: 25329642 DOI: 10.1039/c4cc07153k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The preparation of a polystyrene solid support decorated with a photolabile linker is described. The entire post-synthetic processing of RNA can be carried out in the solid phase in a minimum amount of time. The deprotected RNA is available for "on-support" hybridization and photolysis releases siRNA duplexes under mild, neutral conditions.
Collapse
Affiliation(s)
- Jory Lietard
- Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada.
| | | | | | | |
Collapse
|
10
|
Veliath E, Gaffney BL, Jones RA. Synthesis of capped RNA using a DMT group as a purification handle. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 33:40-52. [PMID: 24588755 DOI: 10.1080/15257770.2013.864417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report a new method for synthesis of capped RNA or 2'-OMe RNA that uses a N(2-)4,4'-dimethoxytrityl (DMT) group as a lipophilic purification handle to allow convenient isolation and purification of the capped RNA. The DMT group is easily removed under mild conditions without degradation of the cap. We have used this approach to prepare capped 10- and 20-mers. This method is compatible with the many condensation reactions that have been reported for preparation of capped RNA or cap analogues.
Collapse
Affiliation(s)
- Elizabeth Veliath
- a Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey , USA
| | | | | |
Collapse
|
11
|
Thillier Y, Losfeld G, Escande V, Dupouy C, Vasseur JJ, Debart F, Grison C. Metallophyte wastes and polymetallic catalysis: a promising combination in green chemistry. The illustrative synthesis of 5′-capped RNA. RSC Adv 2013. [DOI: 10.1039/c3ra23115a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Piecyk K, Davis RE, Jankowska-Anyszka M. 5'-Terminal chemical capping of spliced leader RNAs. Tetrahedron Lett 2012; 53:4843-4847. [PMID: 23175583 DOI: 10.1016/j.tetlet.2012.06.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spliced leader (SL) RNA trans-splicing adds a 2,2,7-trimethylguanosine cap (TMG) and a 22-nucleotide sequence, the SL, to the 5' end of mRNAs. Both non-trans-spliced with a monomethylguanosine cap (MMG) and trans-spliced mRNAs co-exist in trans-splicing metazoan cells. Efficient translation of TMG-capped mRNAs in nematodes requires a defined core of nucleotides within the SL sequence. Here we present a chemical procedure for the preparation and purification of 5'-terminal capped MMG and TMG wild-type, and mutant 22 nt spliced leader RNAs (GGU/ACUUAAUUACCCAAGUUUGAG) with or without a 3' biotin tag.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | | | | |
Collapse
|
13
|
Thillier Y, Decroly E, Morvan F, Canard B, Vasseur JJ, Debart F. Synthesis of 5' cap-0 and cap-1 RNAs using solid-phase chemistry coupled with enzymatic methylation by human (guanine-N⁷)-methyl transferase. RNA (NEW YORK, N.Y.) 2012; 18:856-68. [PMID: 22334760 PMCID: PMC3312571 DOI: 10.1261/rna.030932.111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/19/2011] [Indexed: 05/19/2023]
Abstract
The 5' end of eukaryotic mRNA carries a N(7)-methylguanosine residue linked by a 5'-5' triphosphate bond. This cap moiety ((7m)GpppN) is an essential RNA structural modification allowing its efficient translation, limiting its degradation by cellular 5' exonucleases and avoiding its recognition as "nonself" by the innate immunity machinery. In vitro synthesis of capped RNA is an important bottleneck for many biological studies. Moreover, the lack of methods allowing the synthesis of large amounts of RNA starting with a specific 5'-end sequence have hampered biological and structural studies of proteins recognizing the cap structure or involved in the capping pathway. Due to the chemical nature of N(7)-methylguanosine, the synthesis of RNAs possessing a cap structure at the 5' end is still a significant challenge. In the present work, we combined a chemical synthesis method and an enzymatic methylation assay in order to produce large amounts of RNA oligonucleotides carrying a cap-0 or cap-1. Short RNAs were synthesized on solid support by the phosphoramidite 2'-O-pivaloyloxymethyl chemistry. The cap structure was then coupled by the addition of GDP after phosphorylation of the terminal 5'-OH and activation by imidazole. After deprotection and release from the support, GpppN-RNAs or GpppN(2'-Om)-RNAs were purified before the N(7)-methyl group was added by enzymatic means using the human (guanine-N(7))-methyl transferase to yield (7m)GpppN-RNAs (cap-0) or (7m)GpppN(2'-Om)-RNAs (cap-1). The RNAs carrying different cap structures (cap, cap-0 or, cap-1) act as bona fide substrates mimicking cellular capped RNAs and can be used for biochemical and structural studies.
Collapse
Affiliation(s)
- Yann Thillier
- IBMM, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, 34095 Montpellier cedex 05, France
| | - Etienne Decroly
- AFMB, UMR 6098 CNRS-Universités d'Aix-Marseille I et II, 13288 Marseille cedex 9, France
| | - François Morvan
- IBMM, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, 34095 Montpellier cedex 05, France
| | - Bruno Canard
- AFMB, UMR 6098 CNRS-Universités d'Aix-Marseille I et II, 13288 Marseille cedex 9, France
| | - Jean-Jacques Vasseur
- IBMM, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, 34095 Montpellier cedex 05, France
| | - Françoise Debart
- IBMM, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, 34095 Montpellier cedex 05, France
| |
Collapse
|
14
|
Lewdorowicz M, Jemielity J, Kierzek R, Shapira M, Stepinski J, Darzynkiewicz E. Solid-supported synthesis of 5'-mRNA CAP-4 from Trypanosomatids. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:1329-33. [PMID: 18066778 DOI: 10.1080/15257770701533065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The unique structure of 5' mRNA cap from Trypanosomatids is the most modified cap found in nature. Here we present the synthesis of cap-4 (m(7)Gpppm(3)(6,6,2')Apm(2')Apm(2')Cpm(2)(3,2')Up) on a disulfide-tethered solid support. This approach allows obtaining cap-4 more efficiently then previously described. Moreover such modified resin could be a useful tool for affinity purification of Leishmania proteins interacting with cap-4. For the final step of synthesis, namely coupling of phosphorylated tetranucleotide with activated 7-methylguanosine 5'-diphosphate two systems were compared. Surprisingly, the coupling in water with Mn(2+) as a catalyst, gave better results than usually more effective coupling in DMF with ZnCl(2).
Collapse
Affiliation(s)
- Magdalena Lewdorowicz
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, Zwirki i Wigury 93, Warsaw 02-089, Poland
| | | | | | | | | | | |
Collapse
|
15
|
Peyrane F, Selisko B, Decroly E, Vasseur JJ, Benarroch D, Canard B, Alvarez K. High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2'O positions. Nucleic Acids Res 2007; 35:e26. [PMID: 17259217 PMCID: PMC1851634 DOI: 10.1093/nar/gkl1119] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many eukaryotic and viral mRNAs, in which the first transcribed nucleotide is an adenosine, are decorated with a cap-1 structure, 7MeG5′-ppp5′-A2′OMe. The positive-sense RNA genomes of flaviviruses (Dengue, West Nile virus) for example show strict conservation of the adenosine. We set out to produce GpppA- and 7MeGpppA-capped RNA oligonucleotides for non-radioactive mRNA cap methyltransferase assays and, in perspective, for studies of enzyme specificity in relation to substrate length as well as for co-crystallization studies. This study reports the use of a bacteriophage T7 DNA primase fragment to synthesize GpppACn and 7MeGpppACn (1 ≤ n ≤ 9) in a one-step enzymatic reaction, followed by direct on-line cleaning HPLC purification. Optimization studies show that yields could be modulated by DNA template, enzyme and substrate concentration adjustments and longer reaction times. Large-scale synthesis rendered pure (in average 99%) products (1 ≤ n ≤ 7) in quantities of up to 100 nmol starting from 200 nmol cap analog. The capped RNA oligonucleotides were efficient substrates of Dengue virus (nucleoside-2′-O-)-methyltransferase, and human (guanine-N7)-methyltransferase. Methyltransfer reactions were monitored by a non-radioactive, quantitative HPLC assay. Additionally, the produced capped RNAs may serve in biochemical, inhibition and structural studies involving a variety of eukaryotic and viral methyltransferases and guanylyltransferases.
Collapse
Affiliation(s)
- F. Peyrane
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - B. Selisko
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - E. Decroly
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - J. J. Vasseur
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - D. Benarroch
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - B. Canard
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - K. Alvarez
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- *To whom the correspondence should be addressed. Tel: +33 491 828630; Fax: +33 491 828646;
| |
Collapse
|