1
|
Dikmen Z, Turhan O, Özbal A, Bütün V. In-situ formation of fluorophore cross-linked micellar thick films and usage as drug delivery material for Propranolol HCl. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121452. [PMID: 35667138 DOI: 10.1016/j.saa.2022.121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene glycol monomethyl ether-block-poly(glycidyl methacrylate)-block-poly[2-(diethylamino)ethyl methacrylate] triblock copolymer was synthesized to prepare self-assembled micron sized films via a novel approach named as "phase separated micellar self assembly method". Liquid-air interface self assembly method via slow solvent evaporation was used to obtain micellar films. Cross-linking of polymer films was carried out by diffusion of fluorophore cross-linker into polymer solution from subphase. In-situ micellar formation was triggered via driven forces such as molecular interactions and slow evaporation of solvent. Thiazolo[5,4-d]thiazole based cross-linker fluorophores containing alkali subphases were used to prepare highly fluorescent cross-linked micellar films. Micellar morphologies of the films were characterized with SEM while the cross-sections of fluorophore cross-linked films were observed with TEM analysis to examine diffusion of the dye as nano-sized particles into the polymer film. Convenience and usability of the micellar films as drug delivery material were demonstrated with Propranolol HCl release via UV-Vis spectroscopic studies. Optical properties of the films before and after drug release were determined via photoluminescence spectroscopy to be able to sense the completion of the drug release process. Swelling and shrinkage properties of the films were also determined in different pH values. These highly fluorescent polymer films have great potential as drug delivery materials and biomedical sensing applications.
Collapse
Affiliation(s)
- Zeynep Dikmen
- Faculty of Engineering, Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Onur Turhan
- Institute of Science, Polymer Science and Technology Department, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Ayşegül Özbal
- Facullty of Science and Letters, Department of Chemistry, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Vural Bütün
- Facullty of Science and Letters, Department of Chemistry, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| |
Collapse
|
2
|
Akhlaq M, Azad AK, Fuloria S, Meenakshi DU, Raza S, Safdar M, Nawaz A, Subramaniyan V, Sekar M, Sathasivam KV, Wu YS, Miret MM, Fuloria NK. Fabrication of Tizanidine Loaded Patches Using Flaxseed Oil and Coriander Oil as a Penetration Enhancer for Transdermal Delivery. Polymers (Basel) 2021; 13:4217. [PMID: 34883720 PMCID: PMC8659784 DOI: 10.3390/polym13234217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
Transdermal drug delivery is important to maintain plasma drug concentrations for therapeutic efficacy. The current study reports the design, formulation, and evaluation of tizanidine transdermal patches formulated using chitosan and thiolated chitosan, ethyl cellulose (EC), polyvinylpyrrolidone (PVP), and Eudragit RL100 in different ratios. The tizanidine patches were formulated using flaxseed oil and coriander oil in the concentrations of 1% v/w, 2% v/w, 3% v/w, 4% v/w, 5% v/w, and 10% v/w. The patches were subjected to characterization of physicochemical property (thickness, weight uniformity, drug content, efficiency, percentage moisture uptake/loss), in vitro drug release and drug permeation, skin irritation, in vivo application, pharmacokinetics analysis, and stability studies. The results indicate that the interaction of thiolated chitosan with the negative charges of the skin opens the tight junctions of the skin, whereas flaxseed and coriander oils change the conformational domain of the skin. The novelty of this study is in the use of flaxseed and coriander oils as skin permeation enhancers for the formulation of tizanidine transdermal patches. The formulations follow non-Fickian drug release kinetics. The FTZNE23, FTZNE36 and FTZNE54, with 5% v/w flaxseed oil loaded formulations, exhibited higher flux through rabbit skin compared with FTZNE30, FTZNE35, FTZNE42, and FTZNE47, formulations loaded with 10% v/w coriander oil. The study concludes that flaxseed oil is a better choice for formulating tizanidine patches, offering optimal plasma concentration and therapeutic efficacy, and recommends the use of flaxseed and coriander oil based patches as a novel transdermal delivery system for tizanidine and related classes of drugs.
Collapse
Affiliation(s)
- Muhammad Akhlaq
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail khan 29050, Pakistan; (M.A.); (S.R.); (M.S.); (A.N.)
| | - Abul Kalam Azad
- Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Malaysia;
| | | | - Sajid Raza
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail khan 29050, Pakistan; (M.A.); (S.R.); (M.S.); (A.N.)
| | - Muhammad Safdar
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail khan 29050, Pakistan; (M.A.); (S.R.); (M.S.); (A.N.)
| | - Asif Nawaz
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail khan 29050, Pakistan; (M.A.); (S.R.); (M.S.); (A.N.)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom Selangor, Shah Alam 42610, Malaysia;
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Kathiresan V. Sathasivam
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Malaysia;
- Faculty of Applied Science, AIMST University, Bedong 08100, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research & Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia;
| | - Mireia Mallandrich Miret
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Sciences Food, University of Barcelona, 08028 Barcelona, Spain;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Malaysia;
| |
Collapse
|
3
|
In vitro and in vivo evaluation of gentamicin sulphate-loaded PLGA nanoparticle-based film for the treatment of surgical site infection. Drug Deliv Transl Res 2021; 10:1032-1043. [PMID: 32100268 DOI: 10.1007/s13346-020-00730-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study focuses on the in vitro and in vivo evaluation of the developed gentamicin sulphate (GS)-loaded poly lactic-co-glycolic acid (PLGA) nanoparticle (PNP)-based pullulan film (PNP-F). Sterilization being an essential pre-requisite for the dosage form was carried out using ethylene oxide. Post-sterilization, PNP-F was evaluated for mechanical properties, percentage drug loading, antimicrobial effectiveness study, test for sterility and in vitro dissolution study using Strat-M® membrane. In vitro dissolution study revealed that GS gradually released from PNP-F and the highest cumulative percentage drug release was found to be 86.76 ± 0.03% at 192 h. Wound healing assay was performed to study the effect of PNP-F over migratory potential of dermal fibroblast cells (NIH-3T3) in the presence of micro-organisms, Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA). PNP-F inhibited the growth of PA and SA, allowing the growth of fibroblast cells indicating its suitability for application. In vivo study of surgical site was performed by superficial incision model in Wistar rats. Measurement of in vivo incision healing confirmed faster wound healing in the incision which received PNP-F compared to marketed cream containing GS. Graphical abstract.
Collapse
|
4
|
Formulation optimization and characterization of transdermal film of curcumin by response surface methodology. CHINESE HERBAL MEDICINES 2021; 13:274-285. [PMID: 36117499 PMCID: PMC9476792 DOI: 10.1016/j.chmed.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/25/2020] [Accepted: 09/06/2020] [Indexed: 12/03/2022] Open
Abstract
Objective India is referred as goldmine of herbal drugs but still lack of optimization of herbal drugs, which has kept us on the back foot. The rationale of the study is to prepare optimized transdermal drug delivery system of curcumin employing response surface methodology to study the collective effect of independent variables like concentration of ethyl cellulose, hydroxyl propyl methyl cellulose and dibutyl phthalate which significantly influenced characteristics like percentage elongation and in vitro drug release. Method Twenty formulations containing varying concentrations of polymers and permeation enhancer were prepared using solvent casting technique. Result The study revealed that the effect of dibutyl phthalate (DBP) concentration was the highest on percentage elongation (P < 0.0001), while hydroxy propyl methyl cellulose (HPMC) concentration exhibited pronounced effect on drug release (P < 0.0001) through dialysis membrane. Linear model fitted the best for curcumin release and elongation for all formulations. According to Derringer’s desirability prediction tool, the composition of optimized film was found to be 242.14% of HPMC, 109.59% of ethyl cellulose (EC), and 1.03% of DBP. Under these conditions, the optimized patch exhibited a predicted value of %elongation and in vitro drug release of 94.35% and 80.0306%, respectively, which was comparable to the actual values of percent elongation and in vitro drug release i.e. 95.02% and 81.03% respectively. FTIR and thermal studies were also performed which revealed no interaction or complexation between drug and excipients. The ex vivo study performed using rat skin showed that the cumulative drug release from the optimized patch showed flux of (30.68 ± 18) µg/cm2/h. Conclusion It can be concluded that in future if proper optimization of herbal formulations is carried out, they can become the first choice for patients as compare to synthetic drugs.
Collapse
|
5
|
Saha K, Butola BS, Joshi M. Drug release behavior of polyurethane/clay nanocomposite: Film vs. nanofibrous web. J Appl Polym Sci 2014. [DOI: 10.1002/app.40824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kasturi Saha
- Department of Textile Technology; Indian Institute of Technology Delhi; New Delhi 110016 India
| | - B. S. Butola
- Department of Textile Technology; Indian Institute of Technology Delhi; New Delhi 110016 India
| | - Mangala Joshi
- Department of Textile Technology; Indian Institute of Technology Delhi; New Delhi 110016 India
| |
Collapse
|
6
|
Castán H, Ruiz M, Clares B, Morales M. Design, development and characterization of buccal bioadhesive films of Doxepin for treatment of odontalgia. Drug Deliv 2014; 22:869-76. [DOI: 10.3109/10717544.2014.896958] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
7
|
Systemic delivery of β-blockers via transdermal route for hypertension. Saudi Pharm J 2014; 23:587-602. [PMID: 26702253 PMCID: PMC4669430 DOI: 10.1016/j.jsps.2013.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/14/2013] [Indexed: 02/05/2023] Open
Abstract
Hypertension is the most common cardiovascular disease worldwide. Moreover, management of hypertension requires long-term treatment that may result in poor patient compliance with conventional dosage forms due to greater frequency of drug administration. Although there is availability of a plethora of therapeutically effective antihypertensive molecules, inadequate patient welfare is observed; this arguably presents an opportunity to deliver antihypertensive agents through a different route. Ever since the transdermal drug delivery came into existence, it has offered great advantages including non-invasiveness, prolonged therapeutic effect, reduced side effects, improved bioavailability, better patient compliance and easy termination of drug therapy. Attempts were made to develop the transdermal therapeutic system for various antihypertensive agents, including β-blockers, an important antihypertensive class. β-blockers are potent, highly effective in the management of hypertension and other heart ailments by blocking the effects of normal amounts of adrenaline in the heart and blood vessels. The shortcomings associated with β-blockers such as more frequent dose administration, extensive first pass metabolism and variable bioavailability, make them an ideal candidate for transdermal therapeutic systems. The present article gives a brief view of different β-blockers formulated as transdermal therapeutic system in detail to enhance the bioavailability as well as to improve patient compliance. Constant improvement in this field holds promise for the long-term success in technologically advanced transdermal dosage forms being commercialized sooner rather than later.
Collapse
|
8
|
Abstract
Hypertension is a chronic disease with one of the highest chances of causing death, and long-term treatment is required. The antihypertensive drugs used in the treatment are generally administered orally. The limitations of the oral route make transdermal delivery of drugs more attractive. The transdermal route offers numerous advantages including avoidance of systemic first-pass metabolism and high patient compliance. The transdermal therapeutic systems, popularly known as ‘patches’, deliver drugs across the skin with a constant release rate. However, skin is a unique membrane having excellent barrier properties. Either chemical enhancers or physical methods such as iontophoresis and electroporation have been used to provide effective plasma drug concentrations. This review article focuses on the approaches to enhance skin permeability of antihypertensive drugs for the optimization of transdermal therapeutic systems of these drugs and the research studies intended for the optimization of transdermal dosage forms of antihypertensive drugs are summarized.
Collapse
|
9
|
Thakur G, Mitra A, Basak A, Sheet D. Characterization and scanning electron microscopic investigation of crosslinked freeze dried gelatin matrices for study of drug diffusivity and release kinetics. Micron 2012; 43:311-20. [DOI: 10.1016/j.micron.2011.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 07/30/2011] [Accepted: 09/09/2011] [Indexed: 01/15/2023]
|
10
|
Mittal A, Sara US, Ali A, Mohammed A. Design, development, physicochemical, in vitro and in vivo evaluation of monolithic matrix type transdermal patches containing nitrendipine. Pharm Dev Technol 2009; 14:422-34. [DOI: 10.1080/10837450902748388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Mundada A, Avari J. Damar Batu as a novel matrix former for the transdermal drug delivery: in vitro evaluation. Drug Dev Ind Pharm 2009; 35:1147-54. [DOI: 10.1080/03639040902882249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Gupta SP, Jain SK. Development of Matrix-Membrane Transdermal Drug Delivery System for Atenolol. Drug Deliv 2008; 11:281-6. [PMID: 15742552 DOI: 10.1080/10717540490493943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A polymer matrix system for transdermal delivery of Atenolol was developed for its prolonged and controlled release systemic availability. To achieve the desired and controlled release rate, different combinations of Eudragit RL with polyvinyl pyrrolidone and polyethylene glycol 4000 were used in the preparations of polymeric matrix system. These preparations were evaluated for in vitro release and permeation of the drug across pig skin. The desired systems exhibited linear relationship between drug release (Q) versus ne0.8(hr0.8). The product exhibiting required skin permeation 64 mcg/h/cm2 to achieve an effective plasma concentration was selected for the in vivo performance evaluation. The drug plasma profile was compared with the plasma profile obtained following the administration of a conventional oral dose of Atenolol. The study revealed that the designed polymeric matrix transdermal drug delivery system of Atenolol could be successful with improved performance.
Collapse
Affiliation(s)
- S P Gupta
- Government College of Pharmacy, Aurangabad, India.
| | | |
Collapse
|
13
|
Abstract
A polymer matrix system for transdermal delivery of atenolol was developed for its prolonged and controlled release using different ratios of ethylcellulose and hydroxypropyl methylcellulose. These polymeric matrix films were characterized for thickness, tensile strength, moisture content and drug content. They were also studied for in vitro drug release and in vitro drug skin permeation. The drug release from the films was found to be Fickian diffusion type and exhibiting linear relationship between drug release (Q) vs. square root of time (t0.5). The in vitro skin permeation of drug from transdermal drug delivery system (TDDS) was evaluated using dermatomed pig skin. The product which shows in vitro drug skin permeation near to 64 mcg/h/ml was selected for in vivo studies. The in vivo studies revealed that Ma EC HPMC 46 is most effective among the other polymeric matrix TDDS. The AUC0-28 with Ma EC HPMC 46 was better than orally administered conventional doses at twelve hours interval (AUC0-28 1587 ng h/ml) as well as no trough and peaks in drug plasma level was recorded with TDDS. Hence, it could be concluded that the designed polymeric matrix TDDS of atenolol could be used successfully for effective and prolonged delivery of atenolol. However, it further demands exploration in clinic, an insight vision towards the development of TDDS for commercial use.
Collapse
Affiliation(s)
- S P Gupta
- Government College of Pharmacy, Opp. Govt. Polytechnic, Vedant Road, Aurangabad, MS, 431005, India.
| | | |
Collapse
|
14
|
Abstract
Beta-adrenoceptor blocking drugs (beta-blockers) are one of the most frequently used class of cardiovascular drugs that are mainly used in conventional dosage forms., which have their own limitations including hepatic first-pass metabolism, high incidence of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Essentially, attempts have been made to develop novel drug delivery systems for beta-blockers, including transdermal delivery systems, to circumvent the drawbacks of conventional drug delivery. However, so far none of the beta-blocker drugs have been marketed as transdermal delivery systems. Nevertheless, there have been noteworthy research endeavours worldwide at the laboratory level to investigate the skin permeation and to develop transdermal formulations of beta-blockers including: propranolol, metoprolol, atenolol, timolol, levobunolol, bupranolol, bopindolol, mepindolol, sotalol, labetolol, pindolol, acebutolol and oxprenolol. Innovative research exploiting penetration-enhancing strategies, such as iontophoresis, electroporation, microneedles and sonophoresis, holds promise for the successful use of these drugs as consumer-friendly transdermal dosage forms in clinical practice. This paper presents an overview of the transdermal research on this important class of drugs.
Collapse
Affiliation(s)
- Mohammed Aqil
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, New Delhi-110062, India.
| | | | | |
Collapse
|
15
|
Satturwar PM, Fulzele SV, Dorle AK. Evaluation of polymerized rosin for the formulation and development of transdermal drug delivery system: a technical note. AAPS PharmSciTech 2005; 6:E649-54. [PMID: 16408867 PMCID: PMC2750614 DOI: 10.1208/pt060481] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Prashant M Satturwar
- Department of Pharmaceutical Sciences, Nagpur University Campus, Amravati Road, Nagpur-440033, India.
| | | | | |
Collapse
|
16
|
El-Nabarawi MA. Modulation of Tenoxicam Release from Hydrophilic Matrix: Modulator Membrane versus Rate-Controlling Membrane. Chem Pharm Bull (Tokyo) 2005; 53:1083-7. [PMID: 16141572 DOI: 10.1248/cpb.53.1083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper describes the preparation of two layered device comprising of tenoxicam containing layer and a drug free membrane layer based on Geomatrix Technology. Our device based on bilaminated films which produced by a casting/solvent evaporation technique. The drug-hydroxypropyl methylcellulose (HPMC) layer was covered by drug free membrane layer composed of a mixture of different ratios of HPMC and ethyl cellulose (EC). The prepared devices were evaluated for thickness, weight, drug content uniformity, water absorption capacity and in-vitro drug release. The films were also evaluated for appearance, smoothness and transparency. The influence of drug free membrane layer composition and thickness on the drug release pattern was studied on 12 devices (D1 to D12). The results indicate that, the release of drug from HPMC matrixes without the drug free membrane layer was fast and follows diffusion controlled mechanism. The release of drug from the devices D1, D4, D9 and D12 follow the same mechanism, while the release of drug from other devices become linear with time (zero order) and extended for long time especially when thickness and the ratio of EC was increased in the drug free membrane layer. From this study it is concluded that, changing the geometry of drug layer by addition of drug free membrane layer and changing its composition and thickness plays an important role in determining whether the drug free membrane layer is rate-controlling or modulator membrane. Hence it can facilitate the development of different pharmaceutical products with different release pattern.
Collapse
|
17
|
Amnuaikit C, Ikeuchi I, Ogawara KI, Higaki K, Kimura T. Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use. Int J Pharm 2005; 289:167-78. [PMID: 15652209 DOI: 10.1016/j.ijpharm.2004.11.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 10/30/2004] [Accepted: 11/07/2004] [Indexed: 11/26/2022]
Abstract
To develop the suitable film formulations of propranolol hydrochloride (PPL) containing enhancers for transdermal use, polymeric film formulations were prepared by employing ethyl cellulose (EC) and polyvinyl pyrrolidone (PVP) as a film former, and dibutyl phthalate (DBP) as a plasticizer. Terpenes such as menthol and cineole, and propylene glycol (PG) were also employed as a chemical enhancer to improve the skin penetration of PPL. The film preparations were characterized in physical properties such as uniformity of drug content, thickness and moisture uptake capacity. Release and skin permeation kinetics of PPL from film preparations were examined in the in vitro studies using a Franz-type diffusion cell. The uniformity of drug content was evidenced by the low S.D. values for each film preparation. The moisture uptake capacity and drug release rate increased with the increase of PVP in each preparation. Enhancers examined in the present study also increased the moisture uptake capacity and release rate of PPL from the film preparations. Increasing the concentration of PPL from 1 to 2 mg/cm2 in the film enhanced the release rate of PPL, while no effect of enhancer concentrations on the release rate from the film preparations was observed. In vitro skin permeation study showed that cineole was the most promising enhancer among the enhancers examined in the present study and suggested that the suitable compositions of film preparation would be EC:PVP:PPL=6:3:4 with 10% (w/w) cineole and 7:2:4 with 10% (w/w) PG and cineole, which provided high skin permeation rates at 93.81+/-11.56 and 54.51+/-0.52 microg/cm2/h, respectively.
Collapse
Affiliation(s)
- Chomchan Amnuaikit
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|