1
|
Liu N, Kawamura R, Qiang W, Balboula A, Marko JF, Qiao H. Isolation and manipulation of meiotic spindles from mouse oocytes reveals migration regulated by pulling force during asymmetric division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627260. [PMID: 39677774 PMCID: PMC11643109 DOI: 10.1101/2024.12.06.627260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spindles are essential for accurate chromosome segregation in all eukaryotic cells. This study presents a novel approach for isolating fresh mammalian spindles from mouse oocytes, establishing it as a valuable in vitro model system for a wide range of possible studies. Our method enables the investigation of the physical properties and migration force of meiotic spindles in oocytes. We found that the spindle length decreases upon isolation from the oocyte. Combining this observation with direct measurements of spindle mechanics, we examined the forces governing spindle migration during oocyte asymmetric division. Our findings suggest that the spindle migration is regulated by a pulling force and a net tensile force of approximately 680 pN is applied to the spindle in vivo during the migration process. This method, unveiling insights into spindle dynamics, holds promise as a robust model for future investigations into spindle formation and chromosome separation. We also found that the same approach could not isolate spindles from somatic cells, indicative of mammalian oocytes having a unique spindle organization amenable to isolation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryo Kawamura
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Wenan Qiang
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Hino H, Takaki K, Kobe M, Mochida S. Development of luminescent probes for real-time detection of the CDK/PP2A balance during the cell cycle. Genes Cells 2024; 29:1002-1011. [PMID: 39262142 DOI: 10.1111/gtc.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
From a biochemical viewpoint, the cell cycle is controlled by the phosphorylation of cyclin-dependent kinase (CDK) substrates, and the phosphorylation level is determined by the enzymatic balance between CDK and protein phosphatase 2A (PP2A). However, the conventional techniques for analyzing protein phosphorylation using radioisotopes and antibodies involve many operational steps and take days before obtaining results, making them difficult to apply to high-throughput screening and real-time observations. In this study, we developed luminescent probes with a light intensity that changes depending on its phosphorylation state. We modified the Nano-lantern probe (Renilla luciferase-based Ca2+ probe) by introducing a CDK-substrate peptide and a phosphopeptide-binding domain into the luciferase. Our initial trial resulted in new probes that could report the CDK/PP2A balance in a purified system. Further modifications of these probes (replacing the phospho-Ser with phospho-Thr and randomly replacing its surrounding amino acids) improved the dynamic range by up to four-fold, making them practical for use in the Xenopus egg extracts system, where many physiological events can be reproduced. Taken together, our new probes enabled the monitoring of the CDK/PP2A balance in real time, and are applicable to high-throughput systems; the new probes thus appear promising for use in substrate and drug screening.
Collapse
Affiliation(s)
- Hirotsugu Hino
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Kaori Takaki
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Mika Kobe
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Satoru Mochida
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
- Institute of Molecular Embryology and Genetics (IMEG)
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- PRESTO Program, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
3
|
Meneses-Reyes GI, Rodriguez-Bustos DL, Cuevas-Velazquez CL. Macromolecular crowding sensing during osmotic stress in plants. Trends Biochem Sci 2024; 49:480-493. [PMID: 38514274 DOI: 10.1016/j.tibs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
Osmotic stress conditions occur at multiple stages of plant life. Changes in water availability caused by osmotic stress induce alterations in the mechanical properties of the plasma membrane, its interaction with the cell wall, and the concentration of macromolecules in the cytoplasm. We summarize the reported players involved in the sensing mechanisms of osmotic stress in plants. We discuss how changes in macromolecular crowding are perceived intracellularly by intrinsically disordered regions (IDRs) in proteins. Finally, we review methods for dynamically monitoring macromolecular crowding in living cells and discuss why their implementation is required for the discovery of new plant osmosensors. Elucidating the osmosensing mechanisms will be essential for designing strategies to improve plant productivity in the face of climate change.
Collapse
Affiliation(s)
- G I Meneses-Reyes
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D L Rodriguez-Bustos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C L Cuevas-Velazquez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
4
|
Keber FC, Nguyen T, Mariossi A, Brangwynne CP, Wühr M. Evidence for widespread cytoplasmic structuring into mesoscale condensates. Nat Cell Biol 2024; 26:346-352. [PMID: 38424273 PMCID: PMC10981939 DOI: 10.1038/s41556-024-01363-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
Compartmentalization is an essential feature of eukaryotic life and is achieved both via membrane-bound organelles, such as mitochondria, and membrane-less biomolecular condensates, such as the nucleolus. Known biomolecular condensates typically exhibit liquid-like properties and are visualized by microscopy on the scale of ~1 µm (refs. 1,2). They have been studied mostly by microscopy, examining select individual proteins. So far, several dozen biomolecular condensates are known, serving a multitude of functions, for example, in the regulation of transcription3, RNA processing4 or signalling5,6, and their malfunction can cause diseases7,8. However, it remains unclear to what extent biomolecular condensates are utilized in cellular organization and at what length scale they typically form. Here we examine native cytoplasm from Xenopus egg extract on a global scale with quantitative proteomics, filtration, size exclusion and dilution experiments. These assays reveal that at least 18% of the proteome is organized into mesoscale biomolecular condensates at the scale of ~100 nm and appear to be stabilized by RNA or gelation. We confirmed mesoscale sizes via imaging below the diffraction limit by investigating protein permeation into porous substrates with defined pore sizes. Our results show that eukaryotic cytoplasm organizes extensively via biomolecular condensates, but at surprisingly short length scales.
Collapse
Affiliation(s)
- Felix C Keber
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Thao Nguyen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Kitaoka M, Guilloux G, Heald R, Gibeaux R. Preparation of Xenopus borealis and Xenopus tropicalis Egg Extracts for Comparative Cell Biology and Evolutionary Studies. Methods Mol Biol 2024; 2740:169-185. [PMID: 38393476 DOI: 10.1007/978-1-0716-3557-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Cytoplasmic extracts prepared from eggs of the African clawed frog Xenopus laevis are extensively used to study various cellular events including the cell cycle, cytoskeleton dynamics, and cytoplasm organization, as well as the biology of membranous organelles and phase-separated non-membrane-bound structures. Recent development of extracts from eggs of other Xenopus allows interspecies comparisons that provide new insights into morphological and biological size variations and underlying mechanisms across evolution. Here, we describe methods to prepare cytoplasmic extracts from eggs of the allotetraploid Marsabit clawed frog, Xenopus borealis, and the diploid Western clawed frog, Xenopus tropicalis. We detail mixing and "hybrid" experiments that take advantage of the physiological but highly accessible nature of extracts to reveal the evolutionary relationships across species. These new developments create a robust and versatile toolbox to elucidate molecular, cell biological, and evolutionary questions in essential cellular processes.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Whitehead Institute of Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Gabriel Guilloux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France.
| |
Collapse
|
6
|
Liu J, Zhang C. Xenopus cell-free extracts and their applications in cell biology study. BIOPHYSICS REPORTS 2023; 9:195-205. [PMID: 38516620 PMCID: PMC10951473 DOI: 10.52601/bpr.2023.230016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 03/23/2024] Open
Abstract
Xenopus has proven to be a remarkably versatile model organism in the realm of biological research for numerous years, owing to its straightforward maintenance in laboratory settings and its abundant provision of ample-sized oocytes, eggs, and embryos. The cell cycle of these oocytes, eggs, and early embryos exhibits synchrony, and extracts derived from these cells serve various research purposes. Many fundamental concepts in biochemistry, cell biology, and development have been elucidated through the use of cell-free extracts derived from Xenopus cells. Over the past few decades, a wide array of cell-free extracts has been prepared from oocytes, eggs, and early embryos of different Xenopus species at varying cell cycle stages. Each of these extracts possesses distinct characteristics. This review provides a concise overview of the Xenopus species employed in laboratory research, the diverse types of cell-free extracts available, and their respective properties. Furthermore, this review delves into the extensive investigation of spindle assembly in Xenopus egg extracts, underscoring the versatility and potency of these cell-free systems in the realm of cell biology.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Fukuda Y, Shintomi K, Yamaguchi K, Fujiwara Y, Okada Y. Solubilization of Mouse Sperm Chromatin for Sequencing Analyses Using a Chaperon Protein. Methods Mol Biol 2023; 2577:161-173. [PMID: 36173572 DOI: 10.1007/978-1-0716-2724-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sperm chromatin compaction is physiologically essential for sperm to acquire the fertility. However, this unique structure composed of protamines makes us unable to solubilize the chromatin due to its resistance to sonication and enzymes usually used for chromatin fragmentation in somatic cells. Even when intense enzymatic treatment is applied, it appears to solubilize only certain portions of sperm chromatin presumably because of the heterogeneous properties. To overcome this issue, we previously developed a method to treat the sperm with recombinant nucleoplasmin, a protamine remover in fertilized embryos, followed by sonication. The nucleoplasmin treatment dramatically increased the efficiency of sperm chromatin solubilization, while a relatively large amount of recombinant nucleoplasmin was required. Here, we describe an improvement of nucleoplasmin method with a less amount of recombinant protein and a shorter reaction time.
Collapse
Affiliation(s)
- Yuko Fukuda
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | | | - Kosuke Yamaguchi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Fujiwara
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Tan T, Wu C, Liu B, Pan BF, Hawke DH, Su Z, Liu S, Zhang W, Wang R, Lin SH, Kuang J. Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators. Mol Biol Cell 2022; 33:ar115. [PMID: 35976701 PMCID: PMC9635296 DOI: 10.1091/mbc.e22-04-0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The term M-phase supershift denotes the phosphorylation-dependent substantial increase in the apparent molecular weight of numerous proteins of varied biological functions during M-phase induction. Although the M-phase supershift of multiple key mitotic regulators has been attributed to the multisite phosphorylation catalyzed by the Cdk1/cyclin B/Cks complex, this view is challenged by multiple lines of paradoxical observations. To solve this problem, we reconstituted the M-phase supershift of Xenopus Cdc25C, Myt1, Wee1A, APC3, and Greatwall in Xenopus egg extracts and characterized the supershift-producing phosphorylations. Our results demonstrate that their M-phase supershifts are each due to simultaneous phosphorylation of a considerable portion of S/T/Y residues in a long intrinsically disordered region that is enriched in both S/T residues and S/TP motifs. Although the major mitotic kinases in Xenopus egg extracts, Cdk1, MAPK, Plx1, and RSK2, are able to phosphorylate the five mitotic regulators, they are neither sufficient nor required to produce the M-phase supershift. Accordingly, inhibition of the four major mitotic kinase activities in Xenopus oocytes did not inhibit the M-phase supershift in okadaic acid-induced oocyte maturation. These findings indicate that the M-phase supershift is produced by a previously unrecognized category of mitotic phosphorylation that likely plays important roles in M-phase induction.
Collapse
Affiliation(s)
- Tan Tan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, The University of South China, Hengyang, Hunan 421001, China
| | - Chuanfen Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Boye Liu
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education
| | - Bih-Fang Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - David H. Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Zehao Su
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuaishuai Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruoning Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
9
|
Shintomi K. Making Mitotic Chromosomes in a Test Tube. EPIGENOMES 2022; 6:20. [PMID: 35893016 PMCID: PMC9326633 DOI: 10.3390/epigenomes6030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| |
Collapse
|
10
|
Uzbekov R, Prigent C. A Journey through Time on the Discovery of Cell Cycle Regulation. Cells 2022; 11:cells11040704. [PMID: 35203358 PMCID: PMC8870340 DOI: 10.3390/cells11040704] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
All living organisms on Earth are made up of cells, which are the functional unit of life. Eukaryotic organisms can consist of a single cell (unicellular) or a group of either identical or different cells (multicellular). Biologists have always been fascinated by how a single cell, such as an egg, can give rise to an entire organism, such as the human body, composed of billions of cells, including hundreds of different cell types. This is made possible by cell division, whereby a single cell divides to form two cells. During a symmetric cell division, a mother cell produces two daughter cells, while an asymmetric cell division results in a mother and a daughter cell that have different fates (different morphologies, cellular compositions, replicative potentials, and/or capacities to differentiate). In biology, the cell cycle refers to the sequence of events that a cell must go through in order to divide. These events, which always occur in the same order, define the different stages of the cell cycle: G1, S, G2, and M. What is fascinating about the cell cycle is its universality, and the main reason for this is that the genetic information of the cell is encoded by exactly the same molecular entity with exactly the same structure: the DNA double helix. Since both daughter cells always inherit their genetic information from their parent cell, the underlying fundamentals of the cell cycle—DNA replication and chromosome segregation—are shared by all organisms. This review goes back in time to provide a historical summary of the main discoveries that led to the current understanding of how cells divide and how cell division is regulated to remain highly reproducible.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Faculté de Médecine, Université de Tours, 10, Boulevard Tonnellé, 37032 Tours, France;
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye Gory 73, 119992 Moscow, Russia
| | - Claude Prigent
- Centre de Recherche de Biologie Cellulaire de Montpellier, University of Montpellier, Centre Nationale de le Recherche Scientifique, CEDEX 05, 34293 Montpellier, France
- Correspondence:
| |
Collapse
|
11
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
The Cytoskeleton and Its Roles in Self-Organization Phenomena: Insights from Xenopus Egg Extracts. Cells 2021; 10:cells10092197. [PMID: 34571847 PMCID: PMC8465277 DOI: 10.3390/cells10092197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/11/2023] Open
Abstract
Self-organization of and by the cytoskeleton is central to the biology of the cell. Since their introduction in the early 1980s, cytoplasmic extracts derived from the eggs of the African clawed-frog, Xenopus laevis, have flourished as a major experimental system to study the various facets of cytoskeleton-dependent self-organization. Over the years, the many investigations that have used these extracts uniquely benefited from their simplified cell cycle, large experimental volumes, biochemical tractability and cell-free nature. Here, we review the contributions of egg extracts to our understanding of the cytoplasmic aspects of self-organization by the microtubule and the actomyosin cytoskeletons as well as the importance of cytoskeletal filaments in organizing nuclear structure and function.
Collapse
|
13
|
Abstract
Life emerges from complicated and sophisticated chemical networks comprising numerous biomolecules (e.g., nucleic acids, proteins, sugars, and lipids) and chemical reactions catalyzed by enzymes. Dysregulation of these chemical networks is linked to the emergence of diseases. Our research goal is to develop abiotic chemical catalysts that can intervene into life's chemical networks by complementing, surrogating, or exceeding enzymes in living cells or multicellular organisms such as animals or plants. Mending dysregulated networks in pathological states by the chemical catalysts will lead to a new medicinal strategy, catalysis medicine. This research direction will also advance catalysis science, because highly active and selective chemical catalysts must be developed to promote the intended reactions in a complex mixture of life in aqueous solution at body temperature.Epigenetics exists at the crossroads of chemistry, biology, and medicine and is a suitable field to pursue this idea. Post-translational modifications (PTMs) of histones epigenetically regulate chromatin functions and gene transcription and are intimately related to various diseases. Investigating the functions and cross-talk of histone PTMs is crucial for mechanistic elucidation of diseases and their treatments. We launched a program to develop chemical catalysts enabling endogenous histone modifications in living cells without relying on enzymes. We reported two types of chemical catalyst systems so far for synthetic histone acylation. The first system comprised a DNA-binding oligo-4-dimethylaminopyridine (DMAP) catalyst and a phenyl ester acyl donor, PAc-gly. This system promoted histone hyperacetylation in Xenopus laevis sperm chromatin. Using the thus-synthesized hyperacetylated sperm chromatin, we found a novel relationship between histone acetylation and DNA replication. The second system involved a histone-binding catalyst, LANA-DSH, composed of a catalytic motif (DSH) and a histone-binding peptide ligand (LANA), and thioester acyl donors, including endogenous acyl-CoA. This system regioselectively (i.e., selectively to a lysine residue at a specific position) acylated lysine 120 of histone H2B (H2BK120), a lysine residue proximal to the DSH motif defined by binding of the LANA ligand to a nucleosome substrate. This catalyst system was optimized to achieve H2BK120-selective acetylation in living cells without genetic manipulation. The synthetically introduced H2BK120Ac inhibited enzyme-catalyzed ubiquitination at the same lysine residue, acting as a protecting group. H2BK120Ub is a mark recognized by methyltransferase that plays an essential role in mixed-lineage leukemia (MLL)-rearranged leukemia, suggesting the potential of the catalyst system as an epigenetic tool and a cancer therapy. We also discuss the prospects of chemical catalyst-promoted synthetic epigenetics for future PTM studies and therapeutic uses.
Collapse
Affiliation(s)
- Tamiko Nozaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Matsumoto S, Sugimoto N. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Top Curr Chem (Cham) 2021; 379:17. [PMID: 33782792 DOI: 10.1007/s41061-021-00329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The right-handed double-helical B-form structure (B-form duplex) has been widely recognized as the canonical structure of nucleic acids since it was first proposed by James Watson and Francis Crick in 1953. This B-form duplex model has a monochronic and static structure and codes genetic information within a sequence. Interestingly, DNA and RNA can form various non-canonical structures, such as hairpin loops, left-handed helices, triplexes, tetraplexes of G-quadruplex and i-motif, and branched junctions, in addition to the canonical structure. The formation of non-canonical structures depends not only on sequence but also on the surrounding environment. Importantly, these non-canonical structures may exhibit a wide variety of biological roles by changing their structures and stabilities in response to the surrounding environments, which undergo vast changes at specific locations and at specific times in cells. Here, we review recent progress regarding the interesting behaviors and functions of nucleic acids controlled by molecularly crowded cellular conditions. New insights gained from recent studies suggest that nucleic acids not only code genetic information in sequences but also have unknown functions regarding their structures and stabilities through drastic structural changes in cellular environments.
Collapse
Affiliation(s)
- Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan. .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
15
|
Thole JF, Fadero TC, Bonin JP, Stadmiller SS, Giudice JA, Pielak GJ. Danio rerio Oocytes for Eukaryotic In-Cell NMR. Biochemistry 2021; 60:451-459. [PMID: 33534998 DOI: 10.1021/acs.biochem.0c00922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding how the crowded and complex cellular milieu affects protein stability and dynamics has only recently become possible by using techniques such as in-cell nuclear magnetic resonance. However, the combination of stabilizing and destabilizing interactions makes simple predictions difficult. Here we show the potential of Danio rerio oocytes as an in-cell nuclear magnetic resonance model that can be widely used to measure protein stability and dynamics. We demonstrate that in eukaryotic oocytes, which are 3-6-fold less crowded than other cell types, attractive chemical interactions still dominate effects on protein stability and slow tumbling times, compared to the effects of dilute buffer.
Collapse
Affiliation(s)
- Joseph F Thole
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tanner C Fadero
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey P Bonin
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha S Stadmiller
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan A Giudice
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary J Pielak
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Guilloux G, Gibeaux R. Mechanisms of spindle assembly and size control. Biol Cell 2020; 112:369-382. [PMID: 32762076 DOI: 10.1111/boc.202000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
The spindle is crucial for cell division by allowing the faithful segregation of replicated chromosomes to daughter cells. Proper segregation is ensured only if microtubules (MTs) and hundreds of other associated factors interact to assemble this complex structure with the appropriate architecture and size. In this review, we describe the latest view of spindle organisation as well as the molecular gradients and mechanisms underlying MT nucleation and spindle assembly. We then discuss the overlapping physical and molecular constraints that dictate spindle morphology, concluding with a focus on spindle size regulation.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
17
|
Miller KE, Brownlee C, Heald R. The power of amphibians to elucidate mechanisms of size control and scaling. Exp Cell Res 2020; 392:112036. [PMID: 32343955 PMCID: PMC7246146 DOI: 10.1016/j.yexcr.2020.112036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023]
Abstract
Size is a fundamental feature of biology that affects physiology at all levels, from the organism to organs and tissues to cells and subcellular structures. How size is determined at these different levels, and how biological structures scale to fit together and function properly are important open questions. Historically, amphibian systems have been extremely valuable to describe scaling phenomena, as they occupy some of the extremes in biological size and are amenable to manipulations that alter genome and cell size. More recently, the application of biochemical, biophysical, and embryological techniques to amphibians has provided insight into the molecular mechanisms underlying scaling of subcellular structures to cell size, as well as how perturbation of normal size scaling impacts other aspects of cell and organism physiology.
Collapse
Affiliation(s)
- Kelly E Miller
- Department of Molecular and Cell Biology, University of California, CA, 94720, Berkeley, USA
| | - Christopher Brownlee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8651, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, CA, 94720, Berkeley, USA.
| |
Collapse
|
18
|
Kajino H, Nagatani T, Oi M, Kujirai T, Kurumizaka H, Nishiyama A, Nakanishi M, Yamatsugu K, Kawashima SA, Kanai M. Synthetic hyperacetylation of nucleosomal histones. RSC Chem Biol 2020; 1:56-59. [PMID: 34458748 PMCID: PMC8341002 DOI: 10.1039/d0cb00029a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022] Open
Abstract
We report combinations of a DMAP-based catalyst and phenyl acetate with optimal electron density as a new chemical system for high-yield, selective synthetic acetylation of histone lysine residues. The utility of this chemical system as a unique biologic tool is demonstrated by applying it to Xenopus laevis sperm chromatin. A chemical catalyst system enabling high-yielding and comprehensive lysine acetylation of nucleosomal histones was developed as an epigenetics tool.![]()
Collapse
Affiliation(s)
- Hidetoshi Kajino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Tomomi Nagatani
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo 4-6-1 Shiroganedai Minato-ku Tokyo 108-8639 Japan
| | - Miku Oi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-0032 Japan.,JST-ERATO, KURUMIZAKA Chromatin Atlas 1-1-1 Yayoi Bunkyo-ku Tokyo 113-0032 Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-0032 Japan.,JST-ERATO, KURUMIZAKA Chromatin Atlas 1-1-1 Yayoi Bunkyo-ku Tokyo 113-0032 Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo 4-6-1 Shiroganedai Minato-ku Tokyo 108-8639 Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo 4-6-1 Shiroganedai Minato-ku Tokyo 108-8639 Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
19
|
Relevance and Regulation of Cell Density. Trends Cell Biol 2020; 30:213-225. [PMID: 31980346 DOI: 10.1016/j.tcb.2019.12.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023]
Abstract
Cell density shows very little variation within a given cell type. For example, in humans variability in cell density among cells of a given cell type is 100 times smaller than variation in cell mass. This tight control indicates that maintenance of a cell type-specific cell density is important for cell function. Indeed, pathological conditions such as cellular senescence are accompanied by changes in cell density. Despite the apparent importance of cell-type-specific density, we know little about how cell density affects cell function, how it is controlled, and how it sometimes changes as part of a developmental process or in response to changes in the environment. The recent development of new technologies to accurately measure the cell density of single cells in suspension and in tissues is likely to provide answers to these important questions.
Collapse
|
20
|
Bisht J, LeValley P, Noren B, McBride R, Kharkar P, Kloxin A, Gatlin J, Oakey J. Light-inducible activation of cell cycle progression in Xenopus egg extracts under microfluidic confinement. LAB ON A CHIP 2019; 19:3499-3511. [PMID: 31544194 PMCID: PMC7819639 DOI: 10.1039/c9lc00569b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-free Xenopus egg extract is a widely used and biochemically tractable model system that allows recapitulation and elucidation of fundamental cellular processes. Recently, the introduction of microfluidic extract manipulation has enabled compartmentalization of bulk extract and a newfound ability to study organelles on length scales that recapitulate key features of cellular morphology. While the microfluidic confinement of extracts has produced a compelling platform for the in vitro study of cell processes at physiologically-relevant length scales, it also imposes experimental limitations by restricting dynamic control over extract properties. Here, we introduce photodegradable polyethylene glycol (PEG) hydrogels as a vehicle to passively and selectively manipulate extract composition through the release of proteins encapsulated within the hydrogel matrix. Photopatterned PEG hydrogels, passive to both extract and encapsulated proteins, serve as protein depots within microfluidic channels, which are subsequently flooded with extract. Illumination by ultraviolet light (UV) degrades the hydrogel structures and releases encapsulated protein. We show that an engineered fluorescent protein with a nuclear localization signal (GST-GFP-NLS) retains its ability to localize within nearby nuclei following UV-induced release from hydrogel structures. When diffusion is considered, the kinetics of nuclear accumulation are similar to those in experiments utilizing conventional, bulk fluid handling. Similarly, the release of recombinant cyclin B Δ90, a mutant form of the master cell cycle regulator cyclin B which lacks the canonical destruction box, was able to induce the expected cell cycle transition from interphase to mitosis. This transition was confirmed by the observation of nuclear envelope breakdown (NEBD), a phenomenological hallmark of mitosis, and the induction of mitosis-specific biochemical markers. This approach to extract manipulation presents a versatile and customizable route to regulating the spatial and temporal dynamics of cellular events in microfluidically confined cell-free extracts.
Collapse
Affiliation(s)
- Jitender Bisht
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Paige LeValley
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Benjamin Noren
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Prathamesh Kharkar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - April Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Jesse Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
21
|
Gibeaux R, Heald R. The Use of Cell-Free Xenopus Extracts to Investigate Cytoplasmic Events. Cold Spring Harb Protoc 2019; 2019:pdb.top097048. [PMID: 29980587 DOI: 10.1101/pdb.top097048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experiments using cytoplasmic extracts prepared from Xenopus eggs have made important contributions to our understanding of the cell cycle, the cytoskeleton, and cytoplasmic membrane systems. Here we introduce the extract system and describe methods for visualizing and manipulating diverse cytoplasmic processes, and for assaying the functions, dynamics, and stability of individual factors. These in vitro approaches uniquely enable investigation of events at specific cell cycle states, including the assembly of actin- and microtubule-based structures, and the formation of the endoplasmic reticulum. Maternal stockpiles in extracts recapitulate diverse processes in the near absence of gene expression, and this biochemical system combined with microscopy empowers a wide range of mechanistic investigations.
Collapse
Affiliation(s)
- Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
22
|
French BT, Straight AF. The Power of Xenopus Egg Extract for Reconstitution of Centromere and Kinetochore Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:59-84. [PMID: 28840233 DOI: 10.1007/978-3-319-58592-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Faithful transmission of genetic information during cell division requires attachment of chromosomes to the mitotic spindle via the kinetochore. In vitro reconstitution studies are beginning to uncover how the kinetochore is assembled upon the underlying centromere, how the kinetochore couples chromosome movement to microtubule dynamics, and how cells ensure the site of kinetochore assembly is maintained from one generation to the next. Here we give special emphasis to advances made in Xenopus egg extract, which provides a unique, biochemically tractable in vitro system that affords the complexity of cytoplasm and nucleoplasm to permit reconstitution of the dynamic, cell cycle-regulated functions of the centromere and kinetochore.
Collapse
Affiliation(s)
- Bradley T French
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA.
| |
Collapse
|
23
|
Abstract
Amphibian oocytes and embryos are classical models to study cellular and developmental processes. For these studies, it is often advantageous to visualize protein organization. However, the large size and yolk distribution make imaging of deep structures in amphibian zygotes challenging. Here we describe in detail immunofluorescence (IF) protocols for imaging microtubule assemblies in early amphibian development. We developed these protocols to elucidate how the cell division machinery adapts to drastic changes in embryonic cell sizes. We describe how to image mitotic spindles, microtubule asters, chromosomes, and nuclei in whole-mount embryos, even when they are hundreds of micrometers removed from the embryo's surface. Though the described methods were optimized for microtubule assemblies, they have also proven useful for the visualization of other proteins.
Collapse
|
24
|
Heim A, Tischer T, Mayer TU. Calcineurin promotes APC/C activation at meiotic exit by acting on both XErp1 and Cdc20. EMBO Rep 2018; 19:embr.201846433. [PMID: 30373936 DOI: 10.15252/embr.201846433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 11/09/2022] Open
Abstract
Vertebrate oocytes await fertilization arrested at metaphase of the second meiotic division. Fertilization triggers a transient calcium wave, which induces the activation of the anaphase-promoting complex/cyclosome (APC/C) and its co-activator Cdc20 resulting in the destruction of cyclin B and hence meiotic exit. Two calcium-dependent enzymes are implicated in fertilization-induced APC/CC dc20 activation: calcium-/calmodulin-dependent kinase type II (CaMKII) and calcineurin (CaN). While the role of CaMKII in targeting the APC/C inhibitor XErp1/Emi2 for destruction is well-established, it remained elusive how CaN affects APC/CC dc20 activation. Here, we discover that CaN contributes to APC/CC dc20 activation in Xenopus laevis oocytes by two independent but interrelated mechanisms. First, it facilitates the degradation of XErp1 by dephosphorylating it at a site that is part of a phosphorylation-dependent recruiting motif for PP2A-B'56, which antagonizes inhibitory phosphorylation of XErp1. Second, it dephosphorylates Cdc20 at an inhibitory site, thereby supporting its APC/C-activating function. Thus, our comprehensive analysis reveals that CaN contributes to timely APC/C activation at fertilization by both negatively regulating the APC/C inhibitory activity of XErp1 and positively regulating the APC/C-activating function of Cdc20.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Thomas U Mayer
- Department of Biology, University of Konstanz, Konstanz, Germany .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
25
|
Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D, Poterewicz G, Chung JK, Plitzko JM, Groves JT, Jacobs-Wagner C, Engel BD, Holt LJ. mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell 2018. [PMID: 29937223 DOI: 10.1016/j.cell.2018.1005.1042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Macromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation.
Collapse
Affiliation(s)
- M Delarue
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - S Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - I V Surovtsev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA
| | - S Pinglay
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - K J Kennedy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - M Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J I Gutierrez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - D Sang
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G Poterewicz
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - J K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA
| | - J M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - C Jacobs-Wagner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06511, USA
| | - B D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - L J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
26
|
Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D, Poterewicz G, Chung JK, Plitzko JM, Groves JT, Jacobs-Wagner C, Engel BD, Holt LJ. mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell 2018; 174:338-349.e20. [PMID: 29937223 PMCID: PMC10080728 DOI: 10.1016/j.cell.2018.05.042] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Macromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation.
Collapse
Affiliation(s)
- M Delarue
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - S Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - I V Surovtsev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA
| | - S Pinglay
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - K J Kennedy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - M Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J I Gutierrez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - D Sang
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G Poterewicz
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - J K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA
| | - J M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - C Jacobs-Wagner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06511, USA
| | - B D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - L J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
27
|
Good MC, Heald R. Preparation of Cellular Extracts from Xenopus Eggs and Embryos. Cold Spring Harb Protoc 2018; 2018:pdb.prot097055. [PMID: 29437998 DOI: 10.1101/pdb.prot097055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-free cytoplasmic extracts prepared from Xenopus eggs have been used extensively to recapitulate and characterize intracellular events in vitro. Egg extracts can be induced to transit the cell cycle and reconstitute assembly of dynamic structures including the interphase nucleus and the mitotic spindle. In this protocol, methods are described for preparing crude cytoplasmic extracts from Xenopus eggs and embryos that are arrested in metaphase of the cell cycle. The basic protocol uses unfertilized Xenopus laevis eggs, which are crushed by centrifugation in the presence of EGTA to preserve the natural cytostatic factor (CSF) activity that maintains high levels of Cdk1/cyclin B kinase and metaphase arrest. In the second method, the basic procedure is adapted for Xenopus tropicalis eggs with minor modifications to accommodate differences in frog size, timing of egg laying, and temperature and salt sensitivity. The third variation takes advantage of the synchronous divisions of fertilized X. laevis eggs to generate extracts from embryos, which are arrested in metaphase by the addition of nondegradable cyclin B and an inhibitor of the anaphase-promoting complex (APC) that together stabilize Cdk1/cyclin B kinase activity. Because they are obtained in much smaller amounts and their cell cycles are less perfectly synchronized, extracts prepared from embryos are less robust than egg extracts. X. laevis egg extracts have been used to study a wide range of cellular processes. In contrast, X. tropicalis egg extracts and X. laevis embryo extracts have been used primarily to characterize molecular mechanisms regulating spindle and nuclear size.
Collapse
Affiliation(s)
- Matthew C Good
- Department of Cellular and Developmental Biology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
28
|
Hazel JW, Gatlin JC. Isolation and Demembranation of Xenopus Sperm Nuclei. Cold Spring Harb Protoc 2018; 2018:pdb.prot099044. [PMID: 29438000 DOI: 10.1101/pdb.prot099044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The inherent experimental advantages of intact amphibian eggs have been exploited for several decades to advance our understanding of fundamental developmental processes and the cell cycle. Characterization of these processes at the molecular level has been greatly advanced by the use of cell-free extracts, which permit the development of biochemically tractable approaches. Demembranated Xenopus laevis sperm nuclei have been used with cell-free extracts to recapitulate cell cycle progression and to control the cell cycle state of the egg extract. This system has become an invaluable and widely used tool for studies of cell cycle regulation and many downstream events. Here, we describe a protocol, derived in part from other published protocols and modified over time, for the preparation of Xenopus sperm nuclei that can be used in a variety of in vitro assays.
Collapse
Affiliation(s)
- James W Hazel
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
29
|
Guan Y, Li Z, Wang S, Barnes PM, Liu X, Xu H, Jin M, Liu AP, Yang Q. A robust and tunable mitotic oscillator in artificial cells. eLife 2018; 7:33549. [PMID: 29620527 PMCID: PMC5922972 DOI: 10.7554/elife.33549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/04/2018] [Indexed: 11/16/2022] Open
Abstract
Single-cell analysis is pivotal to deciphering complex phenomena like heterogeneity, bistability, and asynchronous oscillations, where a population ensemble cannot represent individual behaviors. Bulk cell-free systems, despite having unique advantages of manipulation and characterization of biochemical networks, lack the essential single-cell information to understand a class of out-of-steady-state dynamics including cell cycles. Here, by encapsulating Xenopus egg extracts in water-in-oil microemulsions, we developed artificial cells that are adjustable in sizes and periods, sustain mitotic oscillations for over 30 cycles, and function in forms from the simplest cytoplasmic-only to the more complicated ones involving nuclear dynamics, mimicking real cells. Such innate flexibility and robustness make it key to studying clock properties like tunability and stochasticity. Our results also highlight energy as an important regulator of cell cycles. We demonstrate a simple, powerful, and likely generalizable strategy of integrating strengths of single-cell approaches into conventional in vitro systems to study complex clock functions.
Collapse
Affiliation(s)
- Ye Guan
- Department of Biophysics, University of Michigan, Ann Arbor, United States.,Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Zhengda Li
- Department of Biophysics, University of Michigan, Ann Arbor, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Shiyuan Wang
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Patrick M Barnes
- Department of Physics, University of Michigan, Ann Arbor, United States
| | - Xuwen Liu
- Department of Physics, University of Science and Technology of China, Hefei Shi, China
| | - Haotian Xu
- Department of Computer Science, Wayne State University, Detroit, United States
| | - Minjun Jin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Allen P Liu
- Department of Biophysics, University of Michigan, Ann Arbor, United States.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, United States
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States.,Department of Physics, University of Michigan, Ann Arbor, United States
| |
Collapse
|
30
|
de-Carvalho J, Deshpande O, Nabais C, Telley IA. A cell-free system of Drosophila egg explants supporting native mitotic cycles. Methods Cell Biol 2018; 144:233-257. [DOI: 10.1016/bs.mcb.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Shintomi K, Hirano T. Mitotic Chromosome Assembly In Vitro: Functional Cross Talk between Nucleosomes and Condensins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:157-164. [PMID: 29118204 DOI: 10.1101/sqb.2017.82.033639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mitotic chromosome is a macromolecular assembly that ensures error-free transmission of the genome during cell division. It has long been a big mystery how long stretches of DNA might be folded into rod-shaped chromosomes or how such an elaborate process might be accomplished at a mechanistic level. Cell-free extracts made from frog eggs offer a unique opportunity to address these questions by enabling mitotic chromosomes to be assembled in a test tube. Moreover, the core part of the chromosome assembly reaction can now be reconstituted with a limited number of purified factors. A combination of these in vitro assays makes it possible not only to prepare a complete list of proteins required for chromosome assembly but also to dissect functions of individual proteins and their cooperation with unparalleled clarity. Emerging lines of evidence underscore the paramount importance of condensins in building mitotic chromosomes and shed new light on the functional cross talk between nucleosomes and condensins in this process.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
32
|
Abstract
Background Self-sustained oscillations are a ubiquitous and vital phenomenon in living systems. From primitive single-cellular bacteria to the most sophisticated organisms, periodicities have been observed in a broad spectrum of biological processes such as neuron firing, heart beats, cell cycles, circadian rhythms, etc. Defects in these oscillators can cause diseases from insomnia to cancer. Elucidating their fundamental mechanisms is of great significance to diseases, and yet challenging, due to the complexity and diversity of these oscillators. Results Approaches in quantitative systems biology and synthetic biology have been most effective by simplifying the systems to contain only the most essential regulators. Here, we will review major progress that has been made in understanding biological oscillators using these approaches. The quantitative systems biology approach allows for identification of the essential components of an oscillator in an endogenous system. The synthetic biology approach makes use of the knowledge to design the simplest, de novo oscillators in both live cells and cell-free systems. These synthetic oscillators are tractable to further detailed analysis and manipulations. Conclusion With the recent development of biological and computational tools, both approaches have made significant achievements.
Collapse
|
33
|
Bermudez JG, Chen H, Einstein LC, Good MC. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts. Genesis 2017; 55. [PMID: 28132422 DOI: 10.1002/dvg.23013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/11/2022]
Abstract
Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery.
Collapse
Affiliation(s)
- Jessica G Bermudez
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Hui Chen
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Lily C Einstein
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Matthew C Good
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104.,Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
34
|
Hasley A, Chavez S, Danilchik M, Wühr M, Pelegri F. Vertebrate Embryonic Cleavage Pattern Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:117-171. [PMID: 27975272 PMCID: PMC6500441 DOI: 10.1007/978-3-319-46095-6_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.
Collapse
Affiliation(s)
- Andrew Hasley
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Shawn Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Michael Danilchik
- Department of Integrative Biosciences, L499, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Martin Wühr
- Department of Molecular Biology & The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Icahn Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
35
|
McIntosh JR, Hays T. A Brief History of Research on Mitotic Mechanisms. BIOLOGY 2016; 5:E55. [PMID: 28009830 PMCID: PMC5192435 DOI: 10.3390/biology5040055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022]
Abstract
This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Thomas Hays
- Department of Genetics, Cell Biology and Development, Medical School and College of Biological Sciences, University of Minnesota, Saint Paul, MN 55455, USA.
| |
Collapse
|
36
|
Lee-Liu D, Méndez-Olivos EE, Muñoz R, Larraín J. The African clawed frog Xenopus laevis: A model organism to study regeneration of the central nervous system. Neurosci Lett 2016; 652:82-93. [PMID: 27693567 DOI: 10.1016/j.neulet.2016.09.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
While an injury to the central nervous system (CNS) in humans and mammals is irreversible, amphibians and teleost fish have the capacity to fully regenerate after severe injury to the CNS. Xenopus laevis has a high potential to regenerate the brain and spinal cord during larval stages (47-54), and loses this capacity during metamorphosis. The optic nerve has the capacity to regenerate throughout the frog's lifespan. Here, we review CNS regeneration in frogs, with a focus in X. laevis, but also provide some information about X. tropicalis and other frogs. We start with an overview of the anatomy of the Xenopus CNS, including the main supraspinal tracts that emerge from the brain stem, which play a key role in motor control and are highly conserved across vertebrates. We follow with the advantages of using Xenopus, a classical laboratory model organism, with increasing availability of genetic tools like transgenesis and genome editing, and genomic sequences for both X. laevis and X. tropicalis. Most importantly, Xenopus provides the possibility to perform intra-species comparative experiments between regenerative and non-regenerative stages that allow the identification of which factors are permissive for neural regeneration, and/or which are inhibitory. We aim to provide sufficient evidence supporting how useful Xenopus can be to obtain insights into our understanding of CNS regeneration, which, complemented with studies in mammalian vertebrate model systems, can provide a collaborative road towards finding novel therapeutic approaches for injuries to the CNS.
Collapse
Affiliation(s)
- Dasfne Lee-Liu
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Emilio E Méndez-Olivos
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Rosana Muñoz
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
37
|
Gillespie PJ, Neusiedler J, Creavin K, Chadha GS, Blow JJ. Cell Cycle Synchronization in Xenopus Egg Extracts. Methods Mol Biol 2016; 1342:101-47. [PMID: 26254920 DOI: 10.1007/978-1-4939-2957-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Peter J Gillespie
- Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
38
|
Forbes DJ, Travesa A, Nord MS, Bernis C. Reprint of "Nuclear transport factors: global regulation of mitosis". Curr Opin Cell Biol 2015. [PMID: 26196321 DOI: 10.1016/j.ceb.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator – the γ-TuRC complex – and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.
Collapse
Affiliation(s)
- Douglass J Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States.
| | - Anna Travesa
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Matthew S Nord
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| |
Collapse
|
39
|
Moiseeva O, Lessard F, Acevedo-Aquino M, Vernier M, Tsantrizos YS, Ferbeyre G. Mutant lamin A links prophase to a p53 independent senescence program. Cell Cycle 2015; 14:2408-21. [PMID: 26029982 DOI: 10.1080/15384101.2015.1053671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Expression of oncogenes or short telomeres can trigger an anticancer response known as cellular senescence activating the p53 and RB tumor suppressor pathways. This mechanism is switched off in most tumor cells by mutations in p53 and RB signaling pathways. Surprisingly, p53 disabled tumor cells could be forced into senescence by expression of a mutant allele of the nuclear envelope protein lamin A. The pro-senescence lamin A mutant contains a deletion in the sequence required for processing by the protease ZMPSTE24 leading to accumulation of farnesylated lamin A in the nuclear envelope. In addition, the serine at position 22, a target for CDK1-dependent phosphorylation, was mutated to alanine, preventing CDK1-catalyzed nuclear envelope disassembly. The accumulation of this mutant lamin A compromised prophase to prometaphase transition leading to invaginations of the nuclear lamina, nuclear fragmentation and impaired chromosome condensation. Cells exited this impaired mitosis without cytokinesis and re-replicated their DNA ultimately arresting in interphase as polyploid cells with features of cellular senescence including increased expression of inflammatory gene products and a significant reduction of tumorigenicity in vivo.
Collapse
Affiliation(s)
- Olga Moiseeva
- a Département de Biochimie ; Université de Montréal ; C.P. 6128; Succ. Center-Ville; Montréal , QC Canada
| | | | | | | | | | | |
Collapse
|
40
|
Forbes DJ, Travesa A, Nord MS, Bernis C. Nuclear transport factors: global regulation of mitosis. Curr Opin Cell Biol 2015; 35:78-90. [PMID: 25982429 DOI: 10.1016/j.ceb.2015.04.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/01/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator - the γ-TuRC complex - and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.
Collapse
Affiliation(s)
- Douglass J Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States.
| | - Anna Travesa
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Matthew S Nord
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| | - Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States
| |
Collapse
|
41
|
Ma L, Aslanian A, Sun H, Jin M, Shi Y, Yates JR, Hunter T. Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system. Mol Cell Proteomics 2014; 13:1659-75. [PMID: 24797264 DOI: 10.1074/mcp.m113.035626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Post-translational modification by SUMO is a highly conserved pathway in eukaryotes that plays very important regulatory roles in many cellular processes. Deregulation of the SUMO pathway contributes to the development and progression of many diseases including cancer. Therefore, identifying additional SUMO substrates and studying how their cellular and biological functions are regulated by sumoylation should provide new insights. Our studies showed that sumoylation activity was significant in Xenopus egg extracts, and that a high level of sumoylation was associated with sperm chromatin when SUMO was incubated with Xenopus egg extracts. By isolating SUMO-conjugated substrates using His-tagged SUMO1 or SUMO2 proteins under denaturing conditions, we identified 346 proteins by mass spectrometry analysis that were not present in control pull-downs. Among them, 167 proteins were identified from interphase egg extracts, 86 proteins from mitotic phase egg extracts, and 93 proteins from both. Thirty-three proteins were pulled down by SUMO1, 85 proteins by SUMO2, and 228 proteins by both. We validated the sumoylation of five candidates, CKB, ATXN10, BTF3, HABP4, and BZW1, by co-transfecting them along with SUMO in HEK293T cells. Gene ontology analysis showed that SUMO substrates identified in this study were involved in diverse biological processes. Additionally, SUMO substrates identified from different cell cycle stages or pulled down by different SUMO homologs were enriched for distinct cellular components and functional categories. Our results comprehensively profile the sumoylation occurring in the Xenopus egg extract system.
Collapse
Affiliation(s)
- Li Ma
- From the ‡Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Aaron Aslanian
- From the ‡Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA; §Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Huaiyu Sun
- From the ‡Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Mingji Jin
- From the ‡Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yu Shi
- From the ‡Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - John R Yates
- §Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Tony Hunter
- From the ‡Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
42
|
Bernis C, Swift-Taylor B, Nord M, Carmona S, Chook YM, Forbes DJ. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration. Mol Biol Cell 2014; 25:992-1009. [PMID: 24478460 PMCID: PMC3967982 DOI: 10.1091/mbc.e13-08-0506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transportin-specific molecular tools are used to show that the mitotic cell contains importin β and transportin “global positioning system” pathways that are mechanistically parallel. Transportin works to control where the spindle, nuclear membrane, and nuclear pores are formed by directly affecting assembly factor function. The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel.
Collapse
Affiliation(s)
- Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego, La Jolla, CA 92093-0347 Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | | | | | | | | | | |
Collapse
|
43
|
Bernis C, Forbes DJ. Analysis of nuclear reconstitution, nuclear envelope assembly, and nuclear pore assembly using Xenopus in vitro assays. Methods Cell Biol 2014; 122:165-91. [PMID: 24857730 DOI: 10.1016/b978-0-12-417160-2.00008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The large and complex eukaryotic nucleus is the arbiter of DNA replication, RNA transcription, splicing, and ribosome assembly. With the advent of in vitro nuclear reconstitution extracts derived from Xenopus eggs in the 1980s, it became possible to assemble multiple nuclei in vitro around added DNA or chromatin substrates. Such reconstituted nuclei contain a nuclear lamina, double nuclear membranes, nuclear pores, and are competent for DNA replication and nuclear import. In vitro nuclear reconstitution has allowed the assembly of "wild-type" and "biochemically mutant" nuclei in which the impact of individual components can be assessed. Here, we describe protocols for preparation of the nuclear reconstitution extract, nuclear reconstitution in vitro, assessment of nuclear membrane integrity, and a more specialized assay for nuclear pore assembly into preformed pore-free nuclear intermediates.
Collapse
Affiliation(s)
- Cyril Bernis
- Cell and Developmental Biology, University of California, San Diego, California, USA
| | - Douglass J Forbes
- Cell and Developmental Biology, University of California, San Diego, California, USA
| |
Collapse
|
44
|
Tranfield EM, Heiligenstein X, Peristere I, Antony C. Correlative Light and Electron Microscopy for a Free-Floating Spindle in Xenopus laevis Egg Extracts. Methods Cell Biol 2014; 124:111-28. [DOI: 10.1016/b978-0-12-801075-4.00006-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Neumann S, Noegel AA. Nesprins in Cell Stability and Migration. CANCER BIOLOGY AND THE NUCLEAR ENVELOPE 2014; 773:491-504. [DOI: 10.1007/978-1-4899-8032-8_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Telley IA, Gáspár I, Ephrussi A, Surrey T. A single Drosophila embryo extract for the study of mitosis ex vivo. Nat Protoc 2013; 8:310-24. [PMID: 23329004 DOI: 10.1038/nprot.2013.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spindle assembly and chromosome segregation rely on a complex interplay of biochemical and mechanical processes. Analysis of this interplay requires precise manipulation of endogenous cellular components and high-resolution visualization. Here we provide a protocol for generating an extract from individual Drosophila syncytial embryos that supports repeated mitotic nuclear divisions with native characteristics. In contrast to the large-scale, metaphase-arrested Xenopus egg extract system, this assay enables the serial generation of extracts from single embryos of a genetically tractable organism, and each extract contains dozens of autonomously dividing nuclei that can be prepared and imaged within 60-90 min after embryo collection. We describe the microscopy setup and micropipette production that facilitate single-embryo manipulation, the preparation of embryos and the steps for making functional extracts that allow time-lapse microscopy of mitotic divisions ex vivo. The assay enables a unique combination of genetic, biochemical, optical and mechanical manipulations of the mitotic machinery.
Collapse
Affiliation(s)
- Ivo A Telley
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | | | | | | |
Collapse
|
47
|
Abstract
The processes underlying the large-scale reorganisation of chromatin in mitosis that form compact mitotic chromosomes and ensure the fidelity of chromosome segregation during cell division still remain obscure. The chromosomal condensin complex is a major molecular effector of chromosome condensation and segregation in diverse organisms ranging from bacteria to humans. Condensin is a large, evolutionarily conserved, multisubunit protein assembly composed of dimers of the structural maintenance of chromosomes (SMC) family of ATPases, clasped into topologically closed rings by accessory subunits. Condensin binds to DNA dynamically, in a poorly understood cycle of ATP-modulated conformational changes, and exhibits the ability to positively supercoil DNA. During mitosis, condensin is phosphorylated by the cyclin-dependent kinase (CDK), Polo and Aurora B kinases in a manner that correlates with changes in its localisation, dynamics and supercoiling activity. Here we review the reported architecture, biochemical activities and regulators of condensin. We compare models of bacterial and eukaryotic condensins in order to uncover conserved mechanistic principles of condensin action and to propose a model for mitotic chromosome condensation.
Collapse
Affiliation(s)
- Rahul Thadani
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | |
Collapse
|
48
|
Zuleger N, Kerr ARW, Schirmer EC. Many mechanisms, one entrance: membrane protein translocation into the nucleus. Cell Mol Life Sci 2012; 69:2205-16. [PMID: 22327555 PMCID: PMC11114554 DOI: 10.1007/s00018-012-0929-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/08/2012] [Accepted: 01/17/2012] [Indexed: 12/14/2022]
Abstract
The inner nuclear membrane harbors a unique set of membrane proteins, many of which interact with nuclear intermediate filaments and chromatin components and thus play an important role in nuclear organization and gene expression regulation. These membrane proteins have to be constantly transported into the nucleus from their sites of synthesis in the ER to match the growth of the nuclear membrane during interphase. Many mechanisms have evolved to enable translocation of these proteins to the nucleus. The full range of mechanisms goes from rare autophagy events to regulated translocation using the nuclear pore complexes. Though mechanisms involving nuclear pores are predominant, within this group an enormous mechanistic range is observed from free diffusion through the peripheral channels to many distinct mechanisms involving different nucleoporins and other components of the soluble protein transport machinery in the central channels. This review aims to provide a comprehensive insight into this mechanistic diversity.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Alastair R. W. Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Eric C. Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| |
Collapse
|
49
|
Affiliation(s)
- James L Maller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|
50
|
Abstract
Diverse cell types have been used to study various aspects of mitosis. Early investigators focused primarily on cells that were suited to morphological studies. More recently, experimental systems have been developed to study both morphology and the molecular basis of chromosome motion and cell-cycle regulation. This article briefly reviews cell types that have been used to study mitosis in live cells. It then discusses cell lines that have been used to examine mitosis in cultured mammalian cells and summarizes the methods that are used to culture and study these cells.
Collapse
|