1
|
Naik AR, Formosa BJ, Pulvender RG, Liyanaarachchi AG, Jena BP. vH +-ATPase-induced intracellular acidification is critical to glucose-stimulated insulin secretion in beta cells. Histochem Cell Biol 2020; 153:279-285. [PMID: 31901974 DOI: 10.1007/s00418-019-01841-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Swelling of secretory vesicles is critical for the regulated release of intra-vesicular contents from cells during secretion. At the secretory vesicle membrane of the exocrine pancreas and neurons, GTP-binding G proteins, vH+-ATPase, potassium channels and AQP water channels, are among the players implicated in vesicle volume regulation. Here we report in the endocrine insulin-secreting MIN6 cells, the similar requirement of vH+-ATPase-mediated intracellular acidification on glucose-stimulated insulin release. MIN6 cells exposed to the vH+-ATPase inhibitor Bafilomycin A show decreased acidification of the cytosolic compartment that include insulin-carrying granules. Additionally, a loss of insulin granules near the cell plasma membrane following Bafilomycin A treatment, suggests impaired transport of insulin granules and consequent decrease in glucose-stimulated insulin secretion and accumulation of intracellular insulin. These results suggest that vH+-ATPase-mediated intracellular acidification is required for insulin secretion in beta cells.
Collapse
Affiliation(s)
- Akshata R Naik
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Brent J Formosa
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Rishika G Pulvender
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Asiri G Liyanaarachchi
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,NanoBioScience Institute, Wayne State University, Detroit, MI, 48201, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 E. Canfield, 5245 Scott Hall, Detroit, MI, 48201, USA.
| |
Collapse
|
2
|
Abstract
Ca2+-dependent secretion is a process by which important signaling molecules that are produced within a cell-including proteins and neurotransmitters-are expelled to the extracellular environment. The cellular mechanism that underlies secretion is referred to as exocytosis. Many years of work have revealed that exocytosis in neurons and neuroendocrine cells is tightly coupled to Ca2+ and orchestrated by a series of protein-protein/protein-lipid interactions. Here, we highlight landmark discoveries that have informed our current understanding of the process. We focus principally on reductionist studies performed using powerful model secretory systems and cell-free reconstitution assays. In recent years, molecular cloning and genetics have implicated the involvement of a sizeable number of proteins in exocytosis. We expect reductionist approaches will be central to attempts to resolve their roles. The Journal of General Physiology will continue to be an outlet for much of this work, befitting its tradition of publishing strongly mechanistic, basic research.
Collapse
Affiliation(s)
- Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
3
|
Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains. Sci Rep 2016; 6:30284. [PMID: 27499335 PMCID: PMC4976387 DOI: 10.1038/srep30284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023] Open
Abstract
Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains.
Collapse
|
4
|
Mooney J, Thakur S, Kahng P, Trapani JG, Poccia D. Quantification of exocytosis kinetics by DIC image analysis of cortical lawns. J Chem Biol 2014; 7:43-55. [PMID: 24711858 DOI: 10.1007/s12154-013-0104-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Cortical lawns prepared from sea urchin eggs have offered a robust in vitro system for study of regulated exocytosis and membrane fusion events since their introduction by Vacquier almost 40 years ago (Vacquier in Dev Biol 43:62-74, 1975). Lawns have been imaged by phase contrast, darkfield, differential interference contrast, and electron microscopy. Quantification of exocytosis kinetics has been achieved primarily by light scattering assays. We present simple differential interference contrast image analysis procedures for quantifying the kinetics and extent of exocytosis in cortical lawns using an open vessel that allows rapid solvent equilibration and modification. These preparations maintain the architecture of the original cortices, allow for cytological and immunocytochemical analyses, and permit quantification of variation within and between lawns. When combined, these methods can shed light on factors controlling the rate of secretion in a spatially relevant cellular context. We additionally provide a subroutine for IGOR Pro® that converts raw data from line scans of cortical lawns into kinetic profiles of exocytosis. Rapid image acquisition reveals spatial variations in time of initiation of individual granule fusion events with the plasma membrane not previously reported.
Collapse
Affiliation(s)
- James Mooney
- Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Saumitra Thakur
- Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Peter Kahng
- Department of Biology, Amherst College, Amherst, MA 01002 USA
| | - Josef G Trapani
- Department of Biology, Amherst College, Amherst, MA 01002 USA ; Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Dominic Poccia
- Department of Biology, Amherst College, Amherst, MA 01002 USA ; Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| |
Collapse
|
5
|
Chen W, Tsai PH, Hung Y, Chiou SH, Mou CY. Nonviral cell labeling and differentiation agent for induced pluripotent stem cells based on mesoporous silica nanoparticles. ACS NANO 2013; 7:8423-8440. [PMID: 24063246 DOI: 10.1021/nn401418n] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) is an innovative personalized-regenerative technology, which can transform own-self somatic cells into embryonic stem (ES)-like cells, which have the potential to differentiate into all cell types of three dermal lineages. However, how to quickly, efficiently, and safely produce specific-lineage differentiation from pluripotent-state cells and iPSCs is still an open question. The objective of the present study was to develop a platform of a nonviral gene delivery system of mesoporous silica nanoparticles (MSNs) to rapidly generate iPSC-derived definitive-lineage cells, including endodermal-differentiated cells. We also evaluated the feasibility and efficiency of FITC-conjugated MSNs (FMSNs) for labeling of iPSCs and utilized the multifunctional properties of FMSNs for a suitable carrier for biomolecule delivery. We showed that FMSNs of various surface charges could be efficiently internalized by iPSCs without causing cytotoxicity. The levels of reactive oxygen species and pluripotent status, including in vitro stemness signatures and in vivo teratoma formation, remained unaltered. Notably, positive-charged FMSN enhanced cellular uptake efficiency and retention time. Moreover, when using positive-charged FMSN to deliver hepatocyte nuclear factor 3β (HNF3β) plasmid DNA (pDNA), the treated iPSCs exhibited significantly improved definitive endoderm formation and further quickly differentiated into hepatocyte-like cells with mature functions (low-density lipoprotein uptake and glycogen storage) within 2 weeks in vitro. Double delivery of pHNF3β further improved mRNA expression levels of liver-specific genes. These findings reveal the multiple advantages of FMSNs to serve as ideal vectors not only for stem cell labeling but also for safe gene delivery to promote the production of hepatocyte-like cells from iPSCs.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Abbineni PS, Hibbert JE, Coorssen JR. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms. THE BIOLOGICAL BULLETIN 2013; 224:200-217. [PMID: 23995744 DOI: 10.1086/bblv224n3p200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulated exocytosis is one of the defining features of eukaryotic cells, underlying many conserved and essential functions. Definitively assigning specific roles to proteins and lipids in this fundamental mechanism is most effectively accomplished using a model system in which distinct stages of exocytosis can be effectively separated. Here we discuss the establishment of sea urchin cortical vesicle fusion as a model to study regulated exocytosis-a system in which the docked, release-ready, and late Ca(2+)-triggered steps of exocytosis are isolated and can be quantitatively assessed using the rigorous coupling of functional and molecular assays. We provide an overview of the insights this has provided into conserved molecular mechanisms and how these have led to and integrate with findings from other regulated exocytotic cells.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, School of Medicine, University of Western Sydney, NSW, Australia
| | | | | |
Collapse
|
7
|
Rogasevskaia TP, Coorssen JR. A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. J Chem Biol 2011; 4:117-36. [PMID: 22315653 DOI: 10.1007/s12154-011-0056-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022] Open
Abstract
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca(2+)-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca(2+)-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.
Collapse
|
8
|
Cameron RS, Arvan P, Castle JD. Secretory Membranes and the Exocrine Storage Compartment. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Furber KL, Churchward MA, Rogasevskaia TP, Coorssen JR. Identifying critical components of native Ca2+-triggered membrane fusion. Integrating studies of proteins and lipids. Ann N Y Acad Sci 2009; 1152:121-34. [PMID: 19161383 DOI: 10.1111/j.1749-6632.2008.03993.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ca(2+)-triggered membrane fusion is the defining step of exocytosis. Despite realization that the fusion machinery must include lipids and proteins working in concert, only of late has work in the field focused more equally on both these components. Here we use isolated sea urchin egg cortical vesicles (CV), a stage-specific preparation of Ca(2+)-sensitive release-ready vesicles that enables the tight coupling of molecular and functional analyses necessary to dissect molecular mechanisms. The stalk-pore hypothesis proposes that bilayer merger proceeds rapidly via transient, high-negative curvature, intermediate membrane structures. Consistent with this, cholesterol, a major component of the CV membrane, contributes to a critical local negative curvature that supports formation of lipidic fusion intermediates. Following cholesterol depletion, structurally dissimilar lipids having intrinsic negative curvature greater than or equal to cholesterol recover the ability of CV to fuse but do not recover fusion efficiency (Ca(2+) sensitivity and kinetics). Conversely, cholesterol- and sphingomyelin-enriched microdomains regulate the efficiency of the fusion mechanism, presumably by contributing spatial and functional organization of other critical lipids and proteins at the fusion site. Critical proteins are thought to participate in Ca(2+) sensing, initiating membrane deformations, and facilitating fusion pore expansion. Capitalizing on a novel effect of the thiol-reactive reagent iodoacetamide (IA), potentiation of the Ca(2+) sensitivity and kinetics, a fluorescently tagged IA has been used to enhance fusion efficiency and simultaneously label the proteins involved. Isolation of cholesterol-enriched CV membrane fractions, using density gradient centrifugation, is being used to narrow the list of protein candidates potentially critical to the mechanism of fast Ca(2+)-triggered membrane fusion.
Collapse
Affiliation(s)
- Kendra L Furber
- Department of Physiology and Biophysics, University of Calgary, Faculty of Medicine, Calgary, Canada
| | | | | | | |
Collapse
|
10
|
Abstract
The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, kappa, was unknown. It is now possible to measure kappa for phospholipids that form bicontinuous inverted cubic (Q(II)) phases. Here, it is shown that one can estimate kappa for lipids that do not form Q(II) phases by studying the phase behavior of lipid mixtures. The method is used to estimate kappa for several lipid compositions in excess water. The values of kappa are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of k(B)T or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by approximately 30 k(B)T, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of k(B)T. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate energies by altering the elastic constants of the patches of lipid monolayer that form the stalk. Here, it is shown that if peptide binding changes kappa or some other combinations of local elastic constants by only tens of percents, the stalk energy and the energy of catenoidal fusion pores would decrease by tens of k(B)T relative to the pure lipid value. This is comparable to the required mediating effect. The curvature energies of stalks and catenoidal fusion pores have almost the same dependence on monolayer elastic constants as the curvature energies of the rhombohedral and Q(II) phases; respectively. The effects of isolated fusion-relevant peptides on the energies of these intermediates can be determined by studying the effects of the peptides on the stability of rhombohedral and Q(II) phases.
Collapse
|
11
|
Brett CL, Merz AJ. Osmotic regulation of Rab-mediated organelle docking. Curr Biol 2008; 18:1072-7. [PMID: 18619842 DOI: 10.1016/j.cub.2008.06.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Osmotic gradients across organelle and plasma membranes modulate the rates of membrane fission and fusion; sufficiently large gradients can cause membrane rupture [1-6]. Hypotonic gradients applied to living yeast cells trigger prompt (within seconds) swelling and fusion of Saccharomyces cerevisiae vacuoles, whereas hypertonic gradients cause vacuoles to fragment on a slower time scale [7-11]. Here, we analyze the influence of osmotic strength on homotypic fusion of isolated yeast vacuoles. Consistent with previously reported in vivo results, we find that decreases in osmolyte concentration increase the rate and extent of vacuole fusion in vitro, whereas increases in osmolyte concentration prevent fusion. Unexpectedly, our results reveal that osmolytes regulate fusion by inhibiting early Rab-dependent docking or predocking events, not late events. Our experiments reveal an organelle-autonomous pathway that may control organelle surface-to-volume ratio, size, and copy number: Decreasing the osmolyte concentration in the cytoplasmic compartment accelerates Rab-mediated docking and fusion. By altering the relationship between the organelle surface and its enclosed volume, fusion in turn reduces the risk of membrane rupture.
Collapse
Affiliation(s)
- Christopher L Brett
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | |
Collapse
|
12
|
Whalley T, Timmers K, Coorssen J, Bezrukov L, Kingsley DH, Zimmerberg J. Membrane fusion of secretory vesicles of the sea urchin egg in the absence of NSF. J Cell Sci 2005; 117:2345-56. [PMID: 15126634 DOI: 10.1242/jcs.01077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of cytosolic ATPases such as N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) in membrane fusion is controversial. We examined the physiology and biochemistry of ATP and NSF in the cortical system of the echinoderm egg to determine if NSF is an essential factor in membrane fusion during Ca(2+)-triggered exocytosis. Neither exocytosis in vitro, nor homotypic cortical vesicle (CV) fusion required soluble proteins or nucleotides, and both occurred in the presence of non-hydrolyzable analogs of ATP. While sensitive to thiol-specific reagents, CV exocytosis is not restored by the addition of cytosolic NSF, and fusion and NSF function are differentially sensitive to thiol-specific agents. To test participation of tightly bound, non-exchangeable NSF in CV-CV fusion, we cloned the sea urchin homolog and developed a species-specific antibody for western blots and physiological analysis. This antibody was without effect on CV exocytosis or homotypic fusion, despite being functionally inhibitory. NSF is detectable in intact cortices, cortices from which CVs had been removed and isolated CVs treated with ATP-gamma-S and egg cytosol to reveal NSF binding sites. In contrast, isolated CVs, though all capable of Ca(2+)-triggered homotypic fusion, contain less than one hexamer of NSF per CV. Thus NSF is not a required component of the CV fusion machinery.
Collapse
Affiliation(s)
- Tim Whalley
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
13
|
Smith RM, Baibakov B, Lambert NA, Vogel SS. Low pH inhibits compensatory endocytosis at a step between depolarization and calcium influx. Traffic 2002; 3:397-406. [PMID: 12010458 DOI: 10.1034/j.1600-0854.2002.30603.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell function can be modulated by the insertion and removal of ion channels from the cell surface. The mechanism used to keep channels quiescent prior to delivery to the cell surface is not known. In eggs, cortical vesicle exocytosis inserts voltage-gated calcium channels into the cell surface. Calcium influx through these channels triggers compensatory endocytosis. Secretory vesicles contain high concentrations of calcium and hydrogen ions. We propose that lumenal hydrogen ions inhibit vesicular calcium channel gating prior to exocytosis, discharge of lumenal protons upon vesicle-plasma membrane fusion enables calcium channel gating. Consistent with this hypothesis we find that cortical vesicle lumens are acidic, and exocytosis releases lumenal hydrogen ions. Acidic extracellular pH reversibly blocks endocytosis, and the windows of opportunity for inhibition with a calcium-channel blocker or hydrogen ions are indistinguishable. Calcium ionophore treatment circumvents the low pH block, suggesting that calcium influx, or an upstream step, is obstructed. Inhibition of calcium influx by preventing membrane depolarization is unlikely, as elevation of the extracellular potassium concentration failed to overcome the pH block, and low extracellular pH was found to depolarize the membrane potential. We conclude that low pH inhibits endocytosis at a step between membrane depolarization and calcium influx.
Collapse
Affiliation(s)
- Robert M Smith
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2630, USA
| | | | | | | |
Collapse
|
14
|
Sardet C, Prodon F, Dumollard R, Chang P, Chênevert J. Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 2002; 241:1-23. [PMID: 11784091 DOI: 10.1006/dbio.2001.0474] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christian Sardet
- BioMarCell, UMR 7009 Biologie du Developpement, Villefranche sur Mer, 06230, France.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Although the relationship between exocytosis and calcium is fundamental both to synaptic and nonneuronal secretory function, analysis is problematic because of the temporal and spatial properties of calcium, and the fact that vesicle transport, priming, retrieval, and recycling are coupled. By analyzing the kinetics of sea urchin egg secretory vesicle exocytosis in vitro, the final steps of exocytosis are resolved. These steps are modeled as a three-state system: activated, committed, and fused, where interstate transitions are given by the probabilities that an active fusion complex commits (alpha) and that a committed fusion complex results in fusion, p. The number of committed complexes per vesicle docking site is Poisson distributed with mean n. Experimentally, p and n increase with increasing calcium, whereas alpha and the pn ratio remain constant, reducing the kinetic description to only one calcium-dependent, controlling variable, n. On average, the calcium dependence of the maximum rate (R(max)) and the time to reach R(max) (T(peak)) are described by the calcium dependence of n. Thus, the nonlinear relationship between the free calcium concentration and the rate of exocytosis can be explained solely by the calcium dependence of the distribution of fusion complexes at vesicle docking sites.
Collapse
Affiliation(s)
- P S Blank
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
16
|
Zimmerberg J, Coorssen JR, Vogel SS, Blank PS. Sea urchin egg preparations as systems for the study of calcium-triggered exocytosis. J Physiol 1999; 520 Pt 1:15-21. [PMID: 10517796 PMCID: PMC2269559 DOI: 10.1111/j.1469-7793.1999.00015.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/1999] [Accepted: 08/20/1999] [Indexed: 12/01/2022] Open
Abstract
This paper reviews recent work in our laboratory on the mechanism of calcium-triggered exocytosis. Upon echinoderm egg fertilization, cortical secretory vesicle exocytosis is massive and synchronous. By combining physiological and molecular analyses with a variety of purified membrane isolates containing secretory vesicles that fuse to the plasma membrane or each other, we have characterized the final steps of this calcium-triggered exocytosis. Our kinetic analysis led to a functional definition of the fusion complex whose activation by calcium follows Poisson statistics. The properties of this complex are compared with the properties of the heterotrimeric SNARE protein complex that is present in the cortical vesicle system. Our data do not support the hypothesis that this particular heterotrimeric complex is by itself the biological fusogen.
Collapse
Affiliation(s)
- J Zimmerberg
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA.
| | | | | | | |
Collapse
|
17
|
Avery J, Jahn R, Edwardson JM. Reconstitution of regulated exocytosis in cell-free systems: a critical appraisal. Annu Rev Physiol 1999; 61:777-807. [PMID: 10099710 DOI: 10.1146/annurev.physiol.61.1.777] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulated exocytosis involves the tightly controlled fusion of a transport vesicle with the plasma membrane. It includes processes as diverse as the release of neurotransmitters from presynaptic nerve endings and the sperm-triggered deposition of a barrier preventing polyspermy in oocytes. Cell-free model systems have been developed for studying the biochemical events underlying exocytosis. They range from semi-intact permeabilized cells to the reconstitution of membrane fusion from isolated secretory vesicles and their target plasma membranes. Interest in such cell-free systems has recently been reinvigorated by new evidence suggesting that membrane fusion is mediated by a basic mechanism common to all intracellular fusion events. In this chapter, we review some of the literature in the light of these new developments and attempt to provide a critical discussion of the strengths and limitations of the various cell-free systems.
Collapse
Affiliation(s)
- J Avery
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | |
Collapse
|
18
|
Coorssen JR, Blank PS, Tahara M, Zimmerberg J. Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J Cell Biol 1998; 143:1845-57. [PMID: 9864359 PMCID: PMC2175215 DOI: 10.1083/jcb.143.7.1845] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cortical vesicles (CV) possess components critical to the mechanism of exocytosis. The homotypic fusion of CV centrifuged or settled into contact has a sigmoidal Ca2+ activity curve comparable to exocytosis (CV-PM fusion). Here we show that Sr2+ and Ba2+ also trigger CV-CV fusion, and agents affecting different steps of exocytotic fusion block Ca2+, Sr2+, and Ba2+-triggered CV-CV fusion. The maximal number of active fusion complexes per vesicle, <n\>Max, was quantified by NEM inhibition of fusion, showing that CV-CV fusion satisfies many criteria of a mathematical analysis developed for exocytosis. Both <n\>Max and the Ca2+ sensitivity of fusion complex activation were comparable to that determined for CV-PM fusion. Using Ca2+-induced SNARE complex disruption, we have analyzed the relationship between membrane fusion (CV-CV and CV-PM) and the SNARE complex. Fusion and complex disruption have different sensitivities to Ca2+, Sr2+, and Ba2+, the complex remains Ca2+- sensitive on fusion-incompetent CV, and disruption does not correlate with the quantified activation of fusion complexes. Under conditions which disrupt the SNARE complex, CV on the PM remain docked and fusion competent, and isolated CV still dock and fuse, but with a markedly reduced Ca2+ sensitivity. Thus, in this system, neither the formation, presence, nor disruption of the SNARE complex is essential to the Ca2+-triggered fusion of exocytotic membranes. Therefore the SNARE complex alone cannot be the universal minimal fusion machine for intracellular fusion. We suggest that this complex modulates the Ca2+ sensitivity of fusion.
Collapse
Affiliation(s)
- J R Coorssen
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
19
|
Tahara M, Coorssen JR, Timmers K, Blank PS, Whalley T, Scheller R, Zimmerberg J. Calcium can disrupt the SNARE protein complex on sea urchin egg secretory vesicles without irreversibly blocking fusion. J Biol Chem 1998; 273:33667-73. [PMID: 9837952 DOI: 10.1074/jbc.273.50.33667] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homotypic fusion of sea urchin egg cortical vesicles (CV) is a system in which to correlate the biochemistry and physiology of membrane fusion. Homologues of vesicle-associated membrane protein (VAMP), syntaxin, and SNAP-25 were identified in CV membranes. A VAMP and syntaxin immunoreactive band at a higher apparent molecular mass (approximately 70 kDa) was detected; extraction and analysis confirmed that the band contained VAMP, SNAP-25, and syntaxin. This complex was also identified by immunoprecipitation and by sucrose gradient analysis. VAMP in the complex was insensitive to proteolysis by tetanus toxin. All criteria identify the SNARE complex as that described in other secretory systems. Complexes exist pre-formed on individual CV membranes and form between contacting CV. Most notably, CV SNARE complexes are disrupted in response to [Ca2+]free that trigger maximal fusion. N-Ethylmaleimide, which blocks fusion at or before the Ca2+-triggering step, blocks complex disruption by Ca2+. However, disruption is not blocked by lysophosphatidylcholine, which transiently arrests a late stage of fusion. Since removal of lysophosphatidylcholine from Ca2+-treated CV is known to allow fusion, complex disruption occurs independently from the membrane fusion step. As Ca2+ disrupts rather than stabilizes the complex, the presumably coiled-coil SNARE interactions are not needed at the time of fusion. These findings rule out models of fusion in which SNARE complex formation goes to completion ("zippers-up") after Ca2+ binding removes a "fusion-clamp."
Collapse
Affiliation(s)
- M Tahara
- Laboratory of Cellular and Molecular Biophysics, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Blank PS, Cho MS, Vogel SS, Kaplan D, Kang A, Malley J, Zimmerberg J. Submaximal responses in calcium-triggered exocytosis are explained by differences in the calcium sensitivity of individual secretory vesicles. J Gen Physiol 1998; 112:559-67. [PMID: 9806965 PMCID: PMC2229435 DOI: 10.1085/jgp.112.5.559] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A graded response to calcium is the defining feature of calcium-regulated exocytosis. That is, there exist calcium concentrations that elicit submaximal exocytotic responses in which only a fraction of the available population of secretory vesicles fuse. The role of calcium-dependent inactivation in defining the calcium sensitivity of sea urchin egg secretory vesicle exocytosis in vitro was examined. The cessation of fusion in the continued presence of calcium was not due to calcium-dependent inactivation. Rather, the calcium sensitivity of individual vesicles within a population of exocytotic vesicles is heterogeneous. Any specific calcium concentration above threshold triggered subpopulations of vesicles to fuse and the size of the subpopulations was dependent upon the magnitude of the calcium stimulus. The existence of multiple, stable subpopulations of vesicles is consistent with a fusion process that requires the action of an even greater number of calcium ions than the numbers suggested by models based on the assumption of a homogeneous vesicle population.
Collapse
Affiliation(s)
- P S Blank
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Chestkov VV, Radko SP, Cho MS, Chrambach A, Vogel SS. Reconstitution of calcium-triggered membrane fusion using "reserve" granules. J Biol Chem 1998; 273:2445-51. [PMID: 9442095 DOI: 10.1074/jbc.273.4.2445] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcium-gated secretion of proteins involves the transfer of "reserve" granules, exocytotic vesicles that are cytoplasmic and, hence, plasma membrane-naive, from the cell interior to the surface membrane where they dock prior to fusion. Docking and subsequent priming steps are thought to require cytoplasmic factors. These steps are believed to induce fusion competence. We have tested this hypothesis by isolating reserve granules from sea urchin eggs and determining under which conditions these granules will fuse. We find that isolated reserve granules, lacking soluble cofactors, support calcium-dependent membrane fusion in vitro. Preincubation with adenosine 5'-3-O-(thio)triphosphate and guanosine 5'-3-O-(thio)triphosphate did not prevent fusion. Thus, isolated reserve granules have all the necessary components required for calcium-gated fusion prior to docking.
Collapse
Affiliation(s)
- V V Chestkov
- Medical Genetics Center, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
22
|
Matese JC, Black S, McClay DR. Regulated exocytosis and sequential construction of the extracellular matrix surrounding the sea urchin zygote. Dev Biol 1997; 186:16-26. [PMID: 9188749 DOI: 10.1006/dbio.1997.8585] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
After fertilization most eggs become surrounded by a complex extracellular matrix. This study examines those matrix assembly processes that are triggered by fertilization of the sea urchin egg. The study uses antibodies that identify five different storage compartments in the egg. These compartments release their protein contents in a highly regulated fashion to assemble and modify the extraembryonic layers. The exocytosis sequence begins with a fertilization wave that progresses from the site of sperm entry and elevates the fertilization envelope above a water-filled perivitelline space. The immediate surface of the zygote then becomes covered by a newly secreted hyaline layer. Prior to fertilization some of the antigens are localized to cortical granules. Others are found in "basal laminar vesicles" that are released in a wave beginning at about 30 sec, or roughly at the same time as cortical granule exocytosis. The remaining antigens are exocytosed with a rather precise timing, but with a delay of several to tens of minutes relative to the first wave of exocytosis. "Apical vesicles," so named because antigens from this class are preferentially exocytosed toward the apical cell surface of polarized cells, include antigens that are exocytosed beginning at about 5 min postfertilization. The fourth compartment, named "echinonectin vesicles" release echinonectin, a protein that is deposited to the inner side of the hyaline layer. Surface staining of echinonectin is first detected about 10-15 min following sperm contact. Finally, maternal cadherin, which is stored in yet a fifth distinct compartment, is not detected on the surface until at least 30 min following fertilization. The data are also consistent with the notion that the tightly regulated timing of exocytosis contributes to the ordered assembly of the hyaline layer and elevation of the fertilization envelope. Finally, two of the vesicle classes continue to exocytose after the cells become polarized. In polarized cells apical and basal laminar antigens are trafficked toward opposite sides of the same cell after passing through the same trans-Golgi network-like compartment.
Collapse
Affiliation(s)
- J C Matese
- Developmental, Cell and Molecular Biology Group, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
23
|
Vogel SS, Blank PS, Zimmerberg J. Poisson-distributed active fusion complexes underlie the control of the rate and extent of exocytosis by calcium. J Cell Biol 1996; 134:329-38. [PMID: 8707819 PMCID: PMC2120878 DOI: 10.1083/jcb.134.2.329] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have investigated the consequences of having multiple fusion complexes on exocytotic granules, and have identified a new principle for interpreting the calcium dependence of calcium-triggered exocytosis. Strikingly different physiological responses to calcium are expected when active fusion complexes are distributed between granules in a deterministic or probabilistic manner. We have modeled these differences, and compared them with the calcium dependence of sea urchin egg cortical granule exocytosis. From the calcium dependence of cortical granule exocytosis, and from the exposure time and concentration dependence of N-ethylmaleimide inhibition, we determined that cortical granules do have spare active fusion complexes that are randomly distributed as a Poisson process among the population of granules. At high calcium concentrations, docking sites have on average nine active fusion complexes.
Collapse
Affiliation(s)
- S S Vogel
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
24
|
Vogel SS, Beushausen S, Lester DS. Application of a membrane fusion assay for rapid drug screening. Pharm Res 1995; 12:1417-22. [PMID: 8584473 DOI: 10.1023/a:1016258615076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE The purpose of this study is to develop an in vitro assay for screening drug and their effects on membrane fusion and lysis of intracellular organelles. METHODS A 96-well microtiter-dish turbidimetric assay using membrane components of the eggs of sea urchins, a marine invertebrate, was applied to monitor granule fusion and/or lysis. RESULTS Of 18 drugs screened, 16 had no effect. One antineoplastic drug, tamoxifen, disrupted intracellular membranes in a calcium independent manner. Taxol, another antineoplastic drug, specifically inhibited calcium triggered exocytosis. CONCLUSIONS This assay is inexpensive, simple, rapid, and does not require the sacrifice of animal life. It has the potential to identify drugs that are membrane active, as well as those which specifically perturb events involved in the secretion process.
Collapse
Affiliation(s)
- S S Vogel
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
25
|
Terasaki M. Visualization of exocytosis during sea urchin egg fertilization using confocal microscopy. J Cell Sci 1995; 108 ( Pt 6):2293-300. [PMID: 7673349 DOI: 10.1242/jcs.108.6.2293] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Ca2+ wave at fertilization triggers cortical granule exocytosis in sea urchin eggs. New methods for visualizing exocytosis of individual cortical granules were developed using fluorescent probes and confocal microscopy. Electron microscopy previously provided evidence that cortical granule exocytosis results in the formation of long-lived depressions in the cell surface. Fluorescent dextran or ovalbumin in the sea water seemed to label these depressions and appeared by confocal microscopy as disks. FM 1–43, a water-soluble fluorescent dye which labels membranes in contact with the sea water, seemed to label the membrane of these depressions and appeared as rings. In double-labeling experiments, the disk and ring labeling by the two types of fluorescent dyes were coincident to within 0.5 second. The fluorescent labeling is coincident with the disappearance of cortical granules by transmitted light microscopy, demonstrating that the labeling corresponds to cortical granule exocytosis. Fluorescent labeling was simultaneous with an expansion of the space occupied by the cortical granule, and labeling by the fluorescent dextran was found to take 0.1-0.2 second. These results are consistent with, and reinforce the previous electron microscopic evidence for, long-lived depressions formed by exocytosis; in addition, the new methods provide new ways to investigate cortical granule exocytosis in living eggs. The fluorescence labeling methods were used with the Ca2+ indicator Ca Green-dextran to test if Ca2+ and cortical granule exocytosis are closely related spatially and temporally. In any given region of the cortex, Ca2+ increased relatively slowly.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Terasaki
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Affiliation(s)
- M Whitaker
- Department of Physiology, University College London, United Kingdom
| |
Collapse
|
27
|
Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74455-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Structure-activity relationships for unsaturated dialdehydes 8∗. Comparative effects of 10 sesquiterpenoids on the sea urchin gamete fertilization. Toxicol In Vitro 1993; 7:205-12. [DOI: 10.1016/0887-2333(93)90002-m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/1992] [Revised: 11/12/1992] [Indexed: 11/19/2022]
|
29
|
Chernomordik LV, Vogel SS, Sokoloff A, Onaran HO, Leikina EA, Zimmerberg J. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett 1993; 318:71-6. [PMID: 8436229 DOI: 10.1016/0014-5793(93)81330-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Membrane fusion in exocytosis, intracellular trafficking, and enveloped viral infection is thought to be mediated by specialized proteins acting to merge membrane lipid bilayers. We now show that one class of naturally-occurring phospholipids, lysolipids, inhibits fusion between cell membranes, organelles, and between organelles and plasma membrane. Inhibition was reversible, did not correlate with lysis, and could be attributed to the molecular shape of lysolipids rather than to any specific chemical moiety. Fusion was arrested at a stage preceding fusion pore formation. Our results are consistent with the hypothesis that biological fusion, irrespective of trigger, involves the formation of a highly bent intermediate between membranes, the fusion stalk.
Collapse
Affiliation(s)
- L V Chernomordik
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
30
|
Zimmerberg J. Simultaneous electrical and optical measurements of individual membrane fusion events during exocytosis. Methods Enzymol 1993; 221:99-112. [PMID: 8361389 DOI: 10.1016/0076-6879(93)21010-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J Zimmerberg
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
Vogel SS, Zimmerberg J. Proteins on exocytic vesicles mediate calcium-triggered fusion. Proc Natl Acad Sci U S A 1992; 89:4749-53. [PMID: 1584814 PMCID: PMC49161 DOI: 10.1073/pnas.89.10.4749] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In many exocytic systems, micromolar concentrations of intracellular Ca2+ trigger fusion. We find that aggregates of secretory granules isolated from sea urchin eggs fuse together when perfused with greater than or equal to 10 microM free Ca2+. Mixing of membrane components was demonstrated by transfer of fluorescent lipophilic dye, and melding of granule contents was seen with differential interference microscopy. A technique based upon light scattering was developed to conveniently detect fusion. Two protein modifiers, trypsin and N-ethylmaleimide, inhibit granule-granule fusion at concentrations similar to those that inhibit granule-plasma membrane fusion. We suggest that molecular machinery sufficient for Ca(2+)-triggered fusion resides on secretory granules as purified and that at least some of these essential components are proteinaceous.
Collapse
Affiliation(s)
- S S Vogel
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
32
|
Abstract
1. Measurements of membrane capacitance and intracellular Ca2+ concentration, [Ca2+]i, were used to examine the Ca2+ dependence of secretion in single adrenal chromaffin cells. 2. Intracellular dialysis of Ca2+, through a patch pipette, promoted secretion; the rate of secretion increased monotonically as [Ca2+]i was elevated, while the total amount of secretion reached a maximum at 1.5 microM-Ca2+ and declined at high [Ca2+]i. 3. Release of Ca2+ from internal stores, using bradykinin or ionomycin, transiently elevated [Ca2+]i and the rate of secretion. 4. Considering responses to both Ca2+ dialysis and release from internal stores, it appears that the rate of secretion increases over a range of [Ca2+]i levels above 0.2 microM and saturates at concentrations greater than 10 microM, if at all. Secretion appears to have a Hill coefficient for Ca2+ of about 2. At [Ca2+]i greater than 1-2 microM, prolonged elevation of [Ca2+]i, via dialysis, produced lower rates of secretion than transient elevation of [Ca2+]i caused by release from internal stores. This may have been caused by a depletion of readily releasable chromaffin granules during prolonged elevation of [Ca2+]i. 5. Brief depolarizing pulses produced transient rises in both [Ca2+]i and the rate of secretion. The ability of these pulses to evoke secretion 'washed out' during prolonged intracellular dialysis, due to both reduced Ca2+ influx and a diminished ability of the cell to secrete in response to a given Ca2+ load. 6. The kinetics of the secretory response depended upon the size of the depolarization-induced Ca2+ load; small rises in [Ca2+]i increased membrane capacitance only during the depolarization, while larger rises in [Ca2+]i produced increases both during and following the depolarization. The secretory responses that outlasted the depolarization appeared to be due to persistent elevation of [Ca2+]i. Secretory responses were sometimes followed by a slower decline in membrane capacitance, probably due to endocytosis of membrane. 7. Comparison of the rates of secretion measured during depolarization to those produced by Ca2+ dialysis or release from internal stores suggests that [Ca2+]i at secretory sites can exceed 10 microM during depolarization. The spatially averaged measurements of [Ca2+]i indicate much smaller levels of [Ca2+]i; thus, there must be pronounced spatial gradients of [Ca2+]i during depolarization.
Collapse
Affiliation(s)
- G J Augustine
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
33
|
Brodwick MS, Curran M, Edwards C. Effects of osmotic stress on mast cell vesicles of the beige mouse. J Membr Biol 1992; 126:159-69. [PMID: 1593615 DOI: 10.1007/bf00231914] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The large size of the vesicles of beige mouse peritoneal mast cells (4 microns in diameter) facilitated the direct observation of the individual osmotic behavior of vesicles. The vesicle diameter increased as much as 73% when intact cells were perfused with a 10 mM pH buffer solution; the swelling of the vesicle membranes exceeded that of the insoluble vesicle gel matrix, which resulted in the formation of a clear space between the optically dense gel matrix and the vesicle membrane. Hypertonic solutions shrank intact vesicles of lysed cells in a nonideal manner, suggesting a limit to the compressibility of the gel matrix. The nonideality at high osmotic strengths can be adequately explained as the consequence of an excluded volume and/or a three-dimensional gel-matrix spring. The observed osmotic activity of the vesicles implies that the great majority of the histamine known to be present is reversibly bound to the gel matrix. This binding allows vesicles to store a large quantity of transmitter without doing osmotic work. The large size of the vesicles also facilitated the measurement of the kinetics of release as a collection of individual fusion events. Capacitance measurements in beige mast cells revealed little difference in the kinetics of release in hypotonic, isotonic, and hypertonic solutions, thus eliminating certain classes of models based on the osmotic theory of exocytosis for mast cells.
Collapse
Affiliation(s)
- M S Brodwick
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
34
|
Abstract
Cortical granule exocytosis in sea urchins was studied using hyperosmotic and polymer-containing seawater to halt granule matrix dispersal. Addition of Na2SO4-containing seawater (2.5 osmole/kg) to Strongylocentrotus purpuratus eggs 10 to 40 sec after insemination resulted in arrest of the exocytic wave during propagation. EM examination of these eggs revealed that matrix disassembly occurred in distinct stages. In the earliest stage, granule-plasma membrane fusion had occurred, but the matrix remained completely intact. This early stage was observed in hyperosmotic media, either ionic or nonionic, suggesting that matrix hydration is required for disassembly and exocytic pore widening, but not for membrane fusion. Subsequent stages, in which partially disassembled matrices remained within omega-configured pockets, were captured by activating eggs in 30% dextran in seawater. Stability of these intermediates stages required the presence of Ca2+ and Mg2+; in the absence of divalent cations the matrices completely disassembled and the exocytic pockets flattened. Divalent cations appeared to prevent fragmentation of the matrix lamellae. Late stages of matrix disassembly, in which the lamellae fragmented and formed small particles, were inhibited by media of high ionic strength. Hyperosmolality alone, provided by sucrose, was unable to halt these late stages suggesting that water availability does not play an important role once a critical point in matrix dispersal has been reached.
Collapse
Affiliation(s)
- C J Merkle
- Department of Zoology, Arizona State University, Tempe 85287-1501
| | | |
Collapse
|
35
|
Abstract
45Ca2+ uptake in isolated rat parotid secretory granules was examined in the presence of oxalate. Uptake of calcium was dependent on time, with the maximum occurring at 15 min. The uptake of calcium was dependent on adenosine-5'-triphosphate (ATP), and substitution of ATP with beta, gamma-methylene-ATP did not stimulate calcium uptake. Enzyme marker analysis indicated that mitochondria accounted for no greater than 3.0 +/- 0.2% of the observed ATP-dependent calcium uptake. Calcium uptake was blocked by the ATPase inhibitors tributyltin, IC50 = 12.2 +/- 0.6 nmol/L and 4-acetamido-4'-isothiocyano-2,2'-stilbene disulphonic acid (SITS), IC50 = 3.0 +/- 0.3 mumol/L. These results indicate that in the parotid secretory granule there is a calcium uptake mechanism that is dependent on the hydrolysis of ATP and is suppressed by two inhibitors of granule ATPase.
Collapse
Affiliation(s)
- J E Porter
- Department of Pharamcology, Creighton University School of Medicine, Omaha, Nebraska 68178
| | | | | |
Collapse
|
36
|
Affiliation(s)
- D E Chandler
- Department of Zoology, Arizona State University, Tempe 85287
| |
Collapse
|
37
|
Vogel SS, Delaney K, Zimmerberg J. The sea urchin cortical reaction. A model system for studying the final steps of calcium-triggered vesicle fusion. Ann N Y Acad Sci 1991; 635:35-44. [PMID: 1741591 DOI: 10.1111/j.1749-6632.1991.tb36479.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S S Vogel
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
38
|
Lew DJ, Simon SM. Characterization of constitutive exocytosis in the yeast Saccharomyces cerevisiae. J Membr Biol 1991; 123:261-8. [PMID: 1744905 DOI: 10.1007/bf01870409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Constitutive exocytosis was investigated in the yeast Saccharomyces cerevisiae using temperature-sensitive mutant (sec) strains which do not allow vesicle fusion to the plasma membrane at the restrictive temperature. Secretory vesicles were accumulated in the cell at the restrictive temperature and then protein synthesis was blocked with cycloheximide. Upon returning the cells to the permissive temperature the contents of the accumulated vesicles were secreted. This allowed the study of constitutive exocytosis independent of the processes responsible for vesicular biosynthesis. Neither the kinetics nor magnitude of exocytosis were affected by removal of external Ca2+ or perturbations of cytosolic Ca2+. This suggests that in those systems where calcium is required for exocytosis it is a regulatory molecule and not part of the mechanism of membrane fusion. Release occurred over a very broad range of pH and in media with different ionic compositions, suggesting that ionic and potential gradients across the plasma membrane play no role in exocytosis in yeast. High osmolarity inhibited the rate, but not the extent, of release. A novel inhibitory effect of azide was detected which occurred only at low pH. Vanadate also inhibited release in a pH-independent manner. Secretion occurred at the same rate in cells with or without accumulated vesicles. This infers a rate-limiting step following vesicle accumulation, perhaps a limiting number of release sites on the plasma membrane.
Collapse
Affiliation(s)
- D J Lew
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | |
Collapse
|
39
|
Hart NH, Collins GC. An electron-microscope and freeze-fracture study of the egg cortex of Brachydanio rerio. Cell Tissue Res 1991; 265:317-28. [PMID: 1934030 DOI: 10.1007/bf00398079] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have examined the cortex of the teleost (Brachydanio rerio) egg before and during exocytosis of cortical granules by scanning, transmission, and freeze-fracture electron microscopy. In the unactivated egg, the P-face of the plasma membrane exhibits a random distribution of intramembranous particles, showing a density of 959/micron2 and an average diameter of 8 nm. Particles over P- and E-faces of the membranes of cortical granules are substantially larger and display a significantly lower density. An anastomosing cortical endoplasmic reticulum forms close associations with both the plasma membrane of the egg and the membranes of cortical granules. Exocytosis begins with cortical granules pushing up beneath the plasma membrane to form dome-shaped swellings, coupled with an apparent clearing of particles from the site of contact between the apposed membranes. A depression in the particle-free plasma membrane appears to mark sites of fusion and pore formation between cortical granules and plasma membranes. Profiles of exocytotic vesicles undergo a predictable sequence of morphological change, but maintain their identity in the egg surface during this transformation. Coated vesicles form at sites of cortical granule breakdown. Differences in particle density between cortical granules and egg plasma membranes persist during transformation of the exocytotic profiles. This suggests that constituents of the 2 membrane domains remain segregated and do not intermix rapidly, lending support to the view that the process of membrane retrieval is selective (i.e., cortical granule membrane is removed).
Collapse
Affiliation(s)
- N H Hart
- Department of Biological Sciences, Nelson Biology Laboratories, Piscataway, NJ 08855-1059
| | | |
Collapse
|
40
|
Chandler DE. Multiple intracellular signals coordinate structural dynamics in the sea urchin egg cortex at fertilization. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1991; 17:266-93. [PMID: 2045962 DOI: 10.1002/jemt.1060170304] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fertilization of the sea urchin egg is accompanied by a sequence of structural changes in the egg cortex that include exocytosis, endocytosis, and microvillar growth. This architectural reorganization is coordinated by two intracellular signals: a rapid, transient rise in cytosolic free calcium and a slower, longer lasting increase in cytoplasmic pH. In this report we provide ultrastructural views of these events in quick-frozen eggs and discuss their relationship to the calcium and pH signals.
Collapse
Affiliation(s)
- D E Chandler
- Department of Zoology, Arizona State University, Tempe 85287
| |
Collapse
|
41
|
Monck JR, Oberhauser AF, Alvarez de Toledo G, Fernandez JM. Is swelling of the secretory granule matrix the force that dilates the exocytotic fusion pore? Biophys J 1991; 59:39-47. [PMID: 2015389 PMCID: PMC1281116 DOI: 10.1016/s0006-3495(91)82196-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The swelling of the secretory granule matrix which follows fusion has been proposed as the driving force for the rapid expansion of the fusion pore necessary for exocytosis. To test this hypothesis, we have combined simultaneous measurements of secretory granule swelling using videomicroscopy with patch clamp measurements of the time course of the exocytotic fusion pore in mast cells from the beige mouse. We show that isotonic acidic histamine solutions are able to inhibit swelling of the secretory granule matrix both in purified secretory granules lysed by electroporation and in intact cells stimulated to exocytose by guanine nucleotides. In contrast to the inhibitory effects on granule swelling, the rate of expansion of the exocytotic fusion pore is unaffected. Therefore, as the rate of granule swelling was more than 20 times slower under these conditions, swelling of the secretory granule matrix due to water entry through the fusion pore cannot be the force responsible for the characteristic rapid expansion of the exocytotic fusion pore. We suggest that tension in the secretory granule membrane, which has recently been demonstrated in fused secretory granules, might be the force that drives the irreversible expansion of the fusion pore.
Collapse
Affiliation(s)
- J R Monck
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | |
Collapse
|
42
|
Jackson RC, Modern PA. Reassociation of cortical secretory vesicles with sea urchin egg plasma membrane: assessment of binding specificity. J Membr Biol 1990; 115:83-93. [PMID: 2335810 DOI: 10.1007/bf01869108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An assay has been developed for quantitating the reassociation of cortical secretory vesicles (CVs) with fragments of sea urchin egg plasma membrane attached to glass slides (PM lawns). Binding of S. pupuratus CVs to homologous PM lawns increased with time and CV concentration. The observation that CV binding was blocked by chymotrypsin digestion of the PM fragments suggested that a PM protein(s) is required for reassociation. The possibility that the extent of CV lysis that occurred during CV preparation (15.4 +/- 3.8% as assessed by ovoperoxidase assay) influenced reassociation was investigated by determining the effect of CV content proteins (isolated as fertilization product) on binding. Various concentrations of fertilization product (up to equivalent amounts of fertilization product and CV protein) had no effect on CV binding. The specificity of binding was investigated by assessing the ability of CVs to bind to PM lawns prepared from human red blood cells, and by determining the ability of heterologous vesicles to bind to egg PM fragments. PM lawns from HRBCs did not support CV binding; however, PM lawns prepared from the eggs of several species of sea urchin did bind S. pupuratus CVs. Vesicles from a partially purified preparation of yolk platelets bound to egg PM lawns with low efficiency (1/7 that of CVs), but immunofluorescence analysis with an anti-hyalin monoclonal antibody demonstrated that 74 +/- 9% of the bound vesicles were CVs that contaminated the yolk platelet preparation. Dioleoylphosphatidyl choline liposomes were also unable to bind to egg PM lawns. These results are consistent with hypothesis that CV binding to egg PM lawns is a specific, protein-mediated event.
Collapse
Affiliation(s)
- R C Jackson
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | |
Collapse
|
43
|
Plattner H. Regulation of membrane fusion during exocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 1990; 119:197-286. [PMID: 2695484 DOI: 10.1016/s0074-7696(08)60652-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- H Plattner
- Faculty of Biology, University of Konstanz, Federal Republic of Germany
| |
Collapse
|
44
|
Parnas H, Parnas I, Segel LA. On the contribution of mathematical models to the understanding of neurotransmitter release. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1990; 32:1-50. [PMID: 1981883 DOI: 10.1016/s0074-7742(08)60579-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Parnas
- Department of Neurobiology, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
45
|
Merkle CJ, Chandler DE. Hyperosmolality inhibits exocytosis in sea urchin eggs by formation of a granule-free zone and arrest of pore widening. J Membr Biol 1989; 112:223-32. [PMID: 2515283 DOI: 10.1007/bf01870953] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hyperosmolality is known to inhibit membrane fusion during exocytosis. In this study cortical granule exocytosis in sea urchin eggs is used as a model system to determine at what step this inhibition occurs. Strongylocentrotus purpuratus eggs were incubated in hyperosmotic seawater (Na2SO4, sucrose or sodium HEPES used as osmoticants), the eggs activated with 20 microM A23187 to trigger exocytosis, and then quick frozen or chemically fixed for electron microscopy. Thin sections and freeze-fracture replicas show that at high osmolality (2.31 osmol/kg), there is a decrease in cortical granule size, a 90% reduction in granule-plasma membrane fusion, and formation of a granule-free zone between the plasma membrane and cortical granules. This zone averages 0.64 micron in thickness and prevents the majority of granules from docking at the plasma membrane. The remaining granules (approximately 10%) exhibit early stages of fusion which appear to have been stabilized; the matrix of these granules remains intact. We conclude that exocytosis is blocked by two separate mechanisms. First, the granule-free zone prevents granule-plasma membrane contact required for fusion. Second, in cases where fusion does occur, opening of the pocket and dispersal of the granule contents are slowed in hyperosmotic media.
Collapse
Affiliation(s)
- C J Merkle
- Department of Zoology, Arizona State University, Tempe 85287
| | | |
Collapse
|
46
|
Yokosawa H, Toratani S, Inadome Y, Ishii SI. Phorbol Ester Induces Elevation of the Vitelline Coat of Eggs of the Ascidian Halocynthia roretzi. (phorbol ester/ascidian egg/vitelline coat/trypsin-like enzyme/calmodulin). Dev Growth Differ 1989. [DOI: 10.1111/j.1440-169x.1989.00543.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Chandler DE, Whitaker M, Zimmerberg J. High molecular weight polymers block cortical granule exocytosis in sea urchin eggs at the level of granule matrix disassembly. J Biophys Biochem Cytol 1989; 109:1269-78. [PMID: 2475509 PMCID: PMC2115766 DOI: 10.1083/jcb.109.3.1269] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, we have shown that high molecular weight polymers inhibit cortical granule exocytosis at total osmolalities only slightly higher than that of sea water (Whitaker, M., and J. Zimmerberg. 1987. J. Physiol. 389:527-539). In this study, we visualize the step at which this inhibition occurs. Lytechinus pictus and Strongylocentrotus purpuratus eggs were exposed to 0.8 M stachyose or 40% (wt/vol) dextran (average molecular mass of 10 kD) in artificial sea water, activated with 60 microM of the calcium ionophore A23187, and then either fixed with glutaraldehyde and embedded or quick-frozen and freeze-fractured. Stachyose (2.6 osmol/kg) appears to inhibit cortical granule exocytosis by eliciting formation of a granule-free zone (GFZ) in the egg cortex which pushes granules away from the plasma membrane thus preventing their fusion. In contrast, 40% dextran (1.58 osmol/kg) does not result in a GFZ and cortical granules undergo fusion. In some specimens, the pores joining granule and plasma membranes are relatively small; in other cases, the exocytotic pocket has been stabilized in an omega configuration and the granule matrix remains intact. These observations suggest that high molecular weight polymers block exocytosis because of their inability to enter the granule matrix: they retard the water entry that is needed for matrix dispersal.
Collapse
Affiliation(s)
- D E Chandler
- Department of Zoology, Arizona State University, Tempe 85287
| | | | | |
Collapse
|
48
|
Vater CA, Jackson RC. Purification and characterization of a cortical secretory vesicle membrane fraction. Dev Biol 1989; 135:111-23. [PMID: 2767332 DOI: 10.1016/0012-1606(89)90162-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A membrane fraction has been prepared by sucrose density gradient fractionation of purified cortical secretory vesicles from the eggs of the sea urchin Strongylocentrotus purpuratus. The purified cortical vesicle membrane fraction has a phospholipid to protein ratio of 1.76 and exhibits a morphology typical of biological membranes as seen by electron microscopy. The protein composition of the purified membranes was analyzed by SDS-polyacrylamide gel electrophoresis and shown to be distinct from that of eggs, cell surface complex, cortical vesicles, fertilization product, and yolk platelets. Alkaline extraction (pH 11.0) of peripheral membrane proteins increased the phospholipid to protein ratio to 2.55 and removed several polypeptides. Immunoblot analysis of the isolated cortical vesicle membrane fraction revealed low levels of contamination with two major cortical vesicle content proteins. Fractions enriched in egg plasma membranes and yolk platelet membranes also have been isolated and compared with the cortical vesicle membranes by SDS-polyacrylamide gel electrophoresis. The protein compositions of the three membrane fractions were found to contain very little overlap, indicating that the cortical vesicle membrane preparation is relatively free of contamination from these likely noncortical vesicle sources of membrane. Both the plasma membrane and cortical vesicle membrane samples were found by immunoblotting to contain actin.
Collapse
Affiliation(s)
- C A Vater
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | |
Collapse
|
49
|
Bonder EM, Fishkind DJ, Cotran NM, Begg DA. The cortical actin-membrane cytoskeleton of unfertilized sea urchin eggs: analysis of the spatial organization and relationship of filamentous actin, nonfilamentous actin, and egg spectrin. Dev Biol 1989; 134:327-41. [PMID: 2663573 DOI: 10.1016/0012-1606(89)90105-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Whole mounts, cryosections, and isolated cortices of unfertilized sea urchin eggs were probed with fluorescent phalloidin, anti-actin and anti-egg spectrin antibodies to investigate the organizational state of the cortically associated actin-membrane cytoskeleton. Filamentous actin and egg spectrin were localized to the plasma membrane, within microvillar and nonmicrovillar domains. The nonmicrovillar filamentous actin was located immediately subjacent to the microvilli forming an extensive interconnecting network along the inner surface of the plasma membrane. The organization of this filamentous actin network precisely correlated with the positioning of the underlying cortical granules. The cortical cytoplasm did not contain any detectable filamentous actin, but instead contained a sequestered domain of nonfilamentous actin. Spectrin was localized to the cytoplasmic surface of the plasma membrane with concentrated foci co-localized with the filamentous actin present in microvilli. Spectrin was also observed to coat the surfaces of cortical granules as well as other populations of intracellular vesicles. On the basis of light microscopic morphology, intracellular distribution, and co-isolation with the egg cortex, some of these spectrin-coated organelles represent acidic vesicles. Identification of an elaborate organization of inter-related domains of actin (filamentous and nonfilamentous) and spectrin forming the cortical membrane cytoskeleton provides insight into the fundamental mechanisms for early membrane restructuring during embryogenesis. Additionally, the localization of spectrin to the surface of intracellular vesicles is indicative of its newly identified functional roles in membrane trafficking, membrane biogenesis and cellular differentiation.
Collapse
Affiliation(s)
- E M Bonder
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
50
|
Egger M, Donath E, Spangenberg P, Bimmler M, Glaser R, Till U. Human platelet electrorotation change induced by activation: inducer specificity and correlation to serotonin release. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 972:265-76. [PMID: 3143424 DOI: 10.1016/0167-4889(88)90201-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electrorotation of single platelets was compared with [14C]serotonin release, aggregation and electron microscopy. Activation of washed and degranulated platelets was induced by thrombin, arachidonic acid, collagen, adrenaline, platelet activation factor (PAF), ADP and A23187. A strong correlation between electrorotation decrease and serotonin release was found. Electrorotation did not correlate with aggregation. It was concluded that an increase of the specific conductivity of the platelet membrane by three orders of magnitude (approx. 1.0.10(-7) S.m-1 to 1.0.10(-4) S.m-1) upon activation was responsible for the observed decrease of anti-field rotation and the shift of the first characteristic frequency towards higher values. Electrorotation allowed for time-dependent measurements of activation. Characteristic activation times in the order of minutes were found. There was the following sequence of activators classified by increasing activation time constants: A23187 was the fastest followed by thrombin, collagen, PAF, arachidonic acid, adrenaline, and ADP.
Collapse
Affiliation(s)
- M Egger
- Sektion Biologie, Bereich Biophysik, Humboldt-Universität zu Berlin, G.D.R
| | | | | | | | | | | |
Collapse
|