1
|
Marlar S, Arnspang EC, Pedersen GA, Koffman JS, Nejsum LN. Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2404-11. [DOI: 10.1016/j.bbamem.2014.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 11/17/2022]
|
2
|
Fluorescence study of drug-carrier interactions in CTAB/PBS buffer model systems. J Colloid Interface Sci 2012; 377:251-61. [PMID: 22520209 DOI: 10.1016/j.jcis.2012.03.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/22/2022]
Abstract
The well-known cationic surfactant hexadecyltrimethylammonium bromide (CTAB) was used as a model carrier to study drug-carrier interactions with fluorescence probes (5-hexadecanoylaminofluorescein (HAF) and 2,10-bis-(3-aminopropyloxy)dibenzo[a,j]perylene-8,16-dione (NIR 628) by applying ensemble as well as single molecule fluorescence techniques. The impact of the probes on the micelle parameters (critical micelle concentration, average aggregation number, hydrodynamic radius) was investigated under physiological conditions. In the presence of additional electrolytes, such as buffer, the critical micelle concentration decreased by a factor of about 10. In contrast, no influence of the probes on the critical micelle concentration and on average aggregation number was observed. The results show that HAF does not affect the characteristics of CTAB micelles. Analyzing fluorescence correlation spectroscopy data and time-resolved anisotropy decays in terms of the "two-step" in combination with the "wobbling-in-cone" model, it was proven that HAF and NIR 628 are differently associated with the micelles. Based on ensemble and single molecule fluorescence experiments, intra- and intermicellar energy transfer process between the two dyes were probed and characterized.
Collapse
|
3
|
Caudron F, Barral Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell 2009; 16:493-506. [PMID: 19386259 DOI: 10.1016/j.devcel.2009.04.003] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells from neurons and epithelial cells to unicellular fungi frequently rely on cellular appendages such as axons, dendritic spines, cilia, and buds for their biology. The emergence and differentiation of these appendages depend on the formation of lateral diffusion barriers at their bases to insulate their membranes from the rest of the cell. Here, we review recent progress regarding the molecular mechanisms and functions of such barriers. This overview underlines the importance and conservation of septin-dependent diffusion barriers, which coordinately compartmentalize both plasmatic and internal membranes. We discuss their role in memory establishment and the control of cellular aging.
Collapse
Affiliation(s)
- Fabrice Caudron
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguéz-Léon J, Wu HM, Cheung AY, Feijó JA. Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. THE PLANT CELL 2008; 20:614-34. [PMID: 18364468 PMCID: PMC2329945 DOI: 10.1105/tpc.106.047423] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 02/13/2008] [Accepted: 02/29/2008] [Indexed: 05/18/2023]
Abstract
Polarized growth in pollen tubes results from exocytosis at the tip and is associated with conspicuous polarization of Ca(2+), H(+), K(+), and Cl(-) -fluxes. Here, we show that cell polarity in Nicotiana tabacum pollen is associated with the exclusion of a novel pollen-specific H(+)-ATPase, Nt AHA, from the growing apex. Nt AHA colocalizes with extracellular H(+) effluxes, which revert to influxes where Nt AHA is absent. Fluorescence recovery after photobleaching analysis showed that Nt AHA moves toward the apex of growing pollen tubes, suggesting that the major mechanism of insertion is not through apical exocytosis. Nt AHA mRNA is also excluded from the tip, suggesting a mechanism of polarization acting at the level of translation. Localized applications of the cation ionophore gramicidin A had no effect where Nt AHA was present but acidified the cytosol and induced reorientation of the pollen tube where Nt AHA was absent. Transgenic pollen overexpressing Nt AHA-GFP developed abnormal callose plugs accompanied by abnormal H(+) flux profiles. Furthermore, there is no net flux of H(+) in defined patches of membrane where callose plugs are to be formed. Taken together, our results suggest that proton dynamics may underlie basic mechanisms of polarity and spatial regulation in growing pollen tubes.
Collapse
Affiliation(s)
- Ana C Certal
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, 2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Adams CL, Chen YT, Smith SJ, Nelson WJ. Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J Cell Biol 1998; 142:1105-19. [PMID: 9722621 PMCID: PMC2132880 DOI: 10.1083/jcb.142.4.1105] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1998] [Revised: 06/01/1998] [Indexed: 02/08/2023] Open
Abstract
Cadherin-mediated adhesion initiates cell reorganization into tissues, but the mechanisms and dynamics of such adhesion are poorly understood. Using time-lapse imaging and photobleach recovery analyses of a fully functional E-cadherin/GFP fusion protein, we define three sequential stages in cell-cell adhesion and provide evidence for mechanisms involving E-cadherin and the actin cytoskeleton in transitions between these stages. In the first stage, membrane contacts between two cells initiate coalescence of a highly mobile, diffuse pool of cell surface E-cadherin into immobile punctate aggregates along contacting membranes. These E-cadherin aggregates are spatially coincident with membrane attachment sites for actin filaments branching off from circumferential actin cables that circumscribe each cell. In the second stage, circumferential actin cables near cell-cell contact sites separate, and the resulting two ends of the cable swing outwards to the perimeter of the contact. Concomitantly, subsets of E-cadherin puncta are also swept to the margins of the contact where they coalesce into large E-cadherin plaques. This reorganization results in the formation of a circumferential actin cable that circumscribes both cells, and is embedded into each E-cadherin plaque at the contact margin. At this stage, the two cells achieve maximum contact, a process referred to as compaction. These changes in E-cadherin and actin distributions are repeated when additional single cells adhere to large groups of cells. The third stage of adhesion occurs as additional cells are added to groups of >3 cells; circumferential actin cables linked to E-cadherin plaques on adjacent cells appear to constrict in a purse-string action, resulting in the further coalescence of individual plaques into the vertices of multicell contacts. The reorganization of E-cadherin and actin results in the condensation of cells into colonies. We propose a model to explain how, through strengthening and compaction, E-cadherin and actin cables coordinate to remodel initial cell-cell contacts to the final condensation of cells into colonies.
Collapse
Affiliation(s)
- C L Adams
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345, USA
| | | | | | | |
Collapse
|
6
|
Paller MS. Lateral mobility of Na,K-ATPase and membrane lipids in renal cells. Importance of cytoskeletal integrity. J Membr Biol 1994; 142:127-35. [PMID: 7707349 DOI: 10.1007/bf00233390] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Because membrane fluidity is an important determinant of membrane function, the lateral diffusion rate (DL) of the membrane protein Na,K-ATPase was determined in intact renal proximal tubule epithelial cells by the technique of fluorescence redistribution after photobleaching (FRAP). In normal cells the DL of Na,K-ATPase in the basal membrane was 3.31 x 10(-10) cm2/sec. Treatment with cytochalasin D to promote actin filament depolymerization caused a sevenfold increase in DL. Exposure of cells to a Ca(2+)-free medium or to hypoxia and reoxygenation, which have similar disruptive effects on the cytoskeleton, also caused increases in DL. Disruption of actin microfilament structure also increased the mobile fraction of Na,K-ATPase. Using a confocal laser microscopic technique only 14.9% of total Na,K-ATPase was observed to reside in the apical membrane domain of normal cells. Microfilament depolymerization caused this fraction to increase to 47.7%. Thus, the translocation of Na,K-ATPase from the basolateral to the apical domain induced by cytoskeletal protein dysfunction was enabled by an increased rate of lateral diffusion of Na,K-ATPase. The behavior of a variety of membrane lipids following actin depolymerization was more heterogeneous. Some lipids showed a similar increase in DL, whereas others showed very little dependence upon the cytoskeleton for lateral restraint.
Collapse
Affiliation(s)
- M S Paller
- Department of Medicine, University of Minnesota, Minneapolis 55455
| |
Collapse
|
7
|
Tocanne JF, Dupou-Cézanne L, Lopez A. Lateral diffusion of lipids in model and natural membranes. Prog Lipid Res 1994; 33:203-37. [PMID: 8022844 DOI: 10.1016/0163-7827(94)90027-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J F Tocanne
- CNRS, Département III: Glycoconjugués et Biomembranes, Toulouse, France
| | | | | |
Collapse
|
8
|
|
9
|
|
10
|
Abstract
Preimplantation development encompasses the "free"-living period of mammalian embryogenesis, which culminates in the formation of a fluid-filled structure, the blastocyst. Cavitation (blastocyst formation) is accompanied by the expression of a novel set of gene products that contribute directly to the attainment of cell polarity with the trophectoderm, which is both the first epithelium of development and the outer cell layer encircling the inner cell mass of the blastocyst. Several of these gene products have been identified and include the tight junction (ZO-1), Na/K-ATPase (alpha and beta subunits), uvomorulin, gap junction (connexin43), and growth factors such as transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF). This review will examine the role(s) of each of these gene products during the onset and progression of blastocyst formation. The trophectodermal tight junctional permeability seal regulates the leakage of blastocoel fluid and also assists in the maintenance of a polarized Na/K-ATPase distribution to the basolateral plasma membrane domain of the mural trophectoderm. The polarized distribution of the Na/K-ATPase plays an integral role in the establishment of a trans-trophectoderm Na+ gradient, which drives the osmotic accumulation of water across the epithelium into the nascent blastocoelic cavity. The cell adhesion provided by uvomorulin is necessary for the establishment of the tight junctional seal, as well as the maintenance of the polarized Na/K-ATPase distribution. Growth factors such as TGF-alpha and EGF stimulate an increase in the rate of blastocoel expansion, which could, in part, be mediated by secondary messengers that result in an increase in Na/K-ATPase activity. Insight into the mechanism of cavitation has, therefore, directly linked blastocyst formation to trophectoderm cell differentiation, which arises through fundamental cell biological processes that are directly involved in the attainment of epithelial cell polarity.
Collapse
Affiliation(s)
- A J Watson
- Department of Medical Biochemistry, University of Calgary Health Sciences Center, Alberta, Canada
| |
Collapse
|
11
|
Esmann M, Marsh D. Local translational diffusion rates of membranous Na+,K(+)-ATPase measured by saturation transfer ESR spectroscopy. Proc Natl Acad Sci U S A 1992; 89:7606-9. [PMID: 1323847 PMCID: PMC49759 DOI: 10.1073/pnas.89.16.7606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diffusion-controlled Heisenberg spin exchange between spin-labeled Na+,K(+)-ATPase [ATP phosphohydrolase (Na+/K(+)-transporting), EC 3.6.1.37] proteins has been studied by saturation transfer ESR spectroscopy in reconstituted membranes. Na+,K(+)-ATPase from the salt gland of Squalus acanthias was solubilized in a polyoxyethylene ether detergent, octa(ethylene glycol) dodecyl monoether. Part of the solubilized enzyme was covalently spin-labeled with a nitroxide derivative of indanedione and recombined with various proportions of the unlabeled enzyme while the native lipid/protein ratio was maintained. Purified membranes were then reconstituted from the various samples by precipitation with divalent ions. The reciprocal integrated intensities of the saturation transfer ESR spectra were found to increase linearly with the fraction of protein that was spin-labeled, and the gradient of the concentration dependence increased with increasing temperature over the range 4 degrees-25 degrees C. Comparison with theoretical analyses of the effects of weak Heisenberg spin exchange [Marsh, D. & Horváth, L. I. (1992) J. Magn. Reson. 97, 13-26] suggests that the effects on the saturation transfer ESR intensity are attributable to short-range diffusional collisions between the spin-labeled protein molecules. The effective value of the local translational diffusion coefficient is 1.8-2.9 microns2.s-1 at 15 degrees C, depending on the diffusion model used, which is much larger than the values obtained for the long-range diffusion coefficient in cells by photobleaching techniques. The temperature dependence of the translational diffusion is larger than expected but correlates with the anomalous temperature dependence of the rotational diffusion observed in the same system.
Collapse
Affiliation(s)
- M Esmann
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, Federal Republic of Germany
| | | |
Collapse
|
12
|
Stolz DB, Mahoney MG, Jacobson BS. The impenetrability of 5-(N-hexadecanoyl)aminofluoroscein through endothelial cell monolayers is dependent upon its solution properties, not the presence of tight junctions. Biochem Biophys Res Commun 1992; 184:160-6. [PMID: 1567423 DOI: 10.1016/0006-291x(92)91173-n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The solution properties of two fluorescent lipophilic analogues were examined in conjunction with their ability to penetrate the tight junctions of bovine aortic endothelial cell monolayers. 5-(N-dodecanoyl)aminofluoroscein was shown to label both the apical and basolateral plasma membrane domains of confluent monolayers at 4 degrees C and pH 7.3, but 5-(N-hexadecanoyl)aminofluoroscein was shown to label only the apical membrane domain. When used under more soluble conditions at 20 degrees C and pH 8.5, both probes labeled apical and basolateral plasma membrane domains more equally. This indicates that solubility conditions, and not tight junctions, dictate the penetration of 5-(N-hexadecanoyl)aminofluoroscein from the apical to the basolateral plasma membrane domain.
Collapse
Affiliation(s)
- D B Stolz
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
13
|
Barbour S, Edidin M. Cell-specific constraints to the lateral diffusion of a membrane glycoprotein. J Cell Physiol 1992; 150:526-33. [PMID: 1537882 DOI: 10.1002/jcp.1041500313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have previously shown that the lateral diffusion, D, of the class I Major Histocompatibility Complex (MHC) glycoprotein H-2Ld is constrained by its glycosylation, when expressed in mouse L-cells. Removal of one or more of the 3 N-linked oligosaccharides of H-2Ld glycoproteins results in an increase in D. In order to further examine the influence of glycosylation on D, we compared lateral diffusion of H-2Ld expressed in wild-type CHO cells with lateral diffusion of the same molecule expressed in mutant CHO cells with aberrant surface glycosylation. In addition, we compared lateral diffusion of wild-type and unglycosylated H-2Ld antigens in these cells. In contrast to the large effect of glycosylation state on lateral diffusion of H-2Ld in mouse L-cells, there was little effect of glycosylation on lateral diffusion of H-2Ld in any of the CHO cells. This, together with similar results on hamster class I antigens, indicates that the constraints to D of H-2Ld and other class I MHC molecules are different in CHO cells than in L-cells. Measurements of lateral diffusion after treatment of cells with cytochalasin D make it clear that interactions between MHC class I molecules and a cytoskeleton are important in reducing the mobile fraction of diffusing molecules, R, though they cannot be shown to directly affect the diffusion coefficient, D.
Collapse
Affiliation(s)
- S Barbour
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
14
|
Abstract
The cell surface membrane is the boundary between a cell and its environment. In case of polarized epithelial cells, the apical plasma membrane is frequently the boundary between an organism and its environment. The plasmalemma possesses the elements that endow a cell with the capacity to converse with its environment. Plasmalemmal receptor and transducer proteins allow the cell to recognize and respond to various external influences. Membrane-associated proteins anchor cells to their substrata and mediate their integration into tissues. Many properties of a given cell type may be attributed to the protein composition of its plasma membrane. Most cells go to large lengths to control the nature and distribution of polypeptides that populate their plasmalemmas. Cells regulate the expression of genes encoding plasma membrane proteins. Proteins destined for the insertion into the plasma membrane pass through a complex system of processing organelles prior to arriving at their site of ultimate functional residence. Each of these organelles makes a unique contribution to the maturation of these proteins as they transit through them. This chapter discusses the postsynthetic steps involved in the biogenesis of plasma membrane proteins. The chapter discusses some of the events common to all plasmalemmal polypeptides, with special emphasis on those that contribute directly to the character of the cell surface. The chapter then discusses the specializations, associated with cell types, possessing differentiated cell surface sub-domains. The chapter highlights some of the important and fascinating questions confronting investigators interested in the cell biology of the plasma membrane.
Collapse
|
15
|
Abstract
The spectrin network on the cytoplasmic surface of the erythrocyte membrane is modeled as a triangular lattice of spectrin tetramers. This network obstructs lateral diffusion of proteins and provides mechanical reinforcement to the membrane. These effects are treated in a systematic and unified manner in terms of a percolation model. The diffusion coefficient is obtained as a function of the fraction of normal spectrin tetramers for both static and fluctuating barriers. The elasticity of the network is calculated as a function of the fraction of normal spectrin and the ratio of bending to stretching energies. For static barriers, elasticity and lateral diffusion are incompatible: if a network is connected enough to be elastic, it is connected enough to block long-range lateral diffusion. The elasticity and the force required for mechanical breakdown go to zero at the percolation threshold; experimental evidence suggests the existence of a stability threshold at or near the percolation threshold. The model is qualitatively applicable to other cells with membrane skeletons, such as epithelial cells, in which localization of membrane proteins is essential to differentiation.
Collapse
Affiliation(s)
- M J Saxton
- Plant Growth Laboratory, University of California, Davis 95616
| |
Collapse
|
16
|
Verrey F, Gilbert T, Mellow T, Proulx G, Drickamer K. Endocytosis via coated pits mediated by glycoprotein receptor in which the cytoplasmic tail is replaced by unrelated sequences. CELL REGULATION 1990; 1:471-86. [PMID: 1963794 PMCID: PMC361546 DOI: 10.1091/mbc.1.6.471] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rat 6 fibroblast cell lines expressing wild-type chicken liver glycoprotein receptor (CHL) or chimeric receptors with alternate cytoplasmic tails were produced to study the role of the cytoplasmic tail in mediating receptor localization in coated pits and endocytosis of ligand. Cells expressing CHL or cells expressing a hybrid receptor that contains the cytoplasmic tail of the asialoglycoprotein receptor display high-efficiency endocytosis of N-acetylglucosamine-conjugated bovine serum albumin in experiments designed to measure an initial internalization step, as well as in studies of continuous uptake and degradation. Substitution of the cytoplasmic tail by the equivalent domain of rat Na,K-ATPase beta subunit or by a stretch of Xenopus laevis globin beta chain does not abolish endocytosis but decreases the endocytosis rate constant from 15%-16%/min to 2.4% and 6.5%/min, respectively. Electron microscopy was used to visualize the glycoprotein binding sites at the surface of Rat 6 cells transfected with the various receptors. The percentage of receptors found in coated areas ranged from 32% for CHL to 9% for the Na,K-ATPase hybrid, indicating that clustering in coated pits correlates with efficiency of endocytosis. We concluded that replacement of the CHL cytoplasmic tail with unrelated sequences does not prevent, but decreases to varying extents, coated-pit localization and endocytosis efficiency. The construct with NH2-terminal globin tail lacks a signal for high-efficiency localization in coated pits but nevertheless is directed to the pits by an alternative mechanism.
Collapse
Affiliation(s)
- F Verrey
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|
17
|
Magnusson KE, Gustafsson M, Holmgren K, Johansson B. Small intestinal differentiation in human colon carcinoma HT29 cells has distinct effects on the lateral diffusion of lipids (ganglioside GM1) and proteins (HLA class 1, HLA class 2, and neoplastic epithelial antigens) in the apical cell membrane. J Cell Physiol 1990; 143:381-90. [PMID: 2332458 DOI: 10.1002/jcp.1041430224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have studied the effect of maturation to small intestinal-like epithelial cells of the human colonic carcinoma cell line HT29 on the lateral mobility of different representative membrane components (lipid, proteins), as assessed with fluorescence recovery after photobleaching (FRAP). Maturation was induced in vitro in the HT29 cells by replacing glucose (Glu) with galactose (Gal) in the growth medium (DMEM) during a 21-day period. Scanning electron microscopy revealed an increased number of microvilli in the apical cell membrane, and enzyme analyses (alkaline phosphatase, aminopeptidase) in combination with aqueous countercurrent distribution, indicated that maturation was induced with DMEM-Gal. In comparison to control cells grown in DMEM-Glu medium, the more small intestinal-like cells grown in DMEM-Gal displayed no alteration of the lateral mobility of either cholera toxin (B subunit)-labelled ganglioside GM1 (diffusion coefficient, D [x 10(8)] = 0.8-0.9 cm2s-1; mobile fraction, R = 50-60%) or antibody-stained Class 2 histocompatibility (HLA-DR) antigen (D [x 10(9)] = 2 cm2s-1; R = 60-70%). However, antibody-labelled beta 2-microglobulin of HLA Class 1 antigen displayed increased mobility in HT29-Gal cells; D was x 1.4 and R x 1.8 larger in the HT29-Gal cells. By contrast, the mobility of a neoplastic antigen was reduced; D and R were x0.60 and x0.69 of the values seen in HT29-Glu cells. It is thus concluded that DMEM-Gal-induced differentiation in confluent HT29 cells is accompanied by specific rather than general effects on the lateral mobility of different membrane components.
Collapse
Affiliation(s)
- K E Magnusson
- Department of Medical Microbiology, Faculty of Health Sciences, University of Linköping, Sweden
| | | | | | | |
Collapse
|
18
|
Abstract
It is shown that investigating the lateral motion of lipids in biological membranes can provide useful information on membrane lateral organization. After labeling membranes with extrinsic or intrinsic lipophilic fluorescent probes, fluorescence recovery after photobleaching experiments strongly suggests that specialized cells like spermatozoa, eggs and epithelia exhibit surface membrane regionalization or macrocompartmentation and that lateral microheterogeneities or lipid microdomains exist in the plasma membrane of many cellular systems.
Collapse
Affiliation(s)
- J F Tocanne
- Centre de Recherche de Biochimie et Génétique Cellulaires du CNRS, Toulouse, France
| | | | | | | |
Collapse
|
19
|
Madreperla SA, Edidin M, Adler R. Na+,K+-adenosine triphosphatase polarity in retinal photoreceptors: a role for cytoskeletal attachments. J Cell Biol 1989; 109:1483-93. [PMID: 2551908 PMCID: PMC2115788 DOI: 10.1083/jcb.109.4.1483] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have used isolated embryonic photoreceptor cells as a model system with which to examine the mechanisms responsible for the development and maintenance of asymmetric Na+,K+-ATPase (ATPase) distribution. Photoreceptor precursors, which appear round and process free at culture onset, develop structural and molecular properties similar to those of photoreceptor cells in vivo. ATPase, recognized by an anti-ATPase antibody, is distributed over the entire surface of round photoreceptor precursors. As the cells develop, ATPase becomes progressively concentrated in the inner segment (where it is found in cells of the intact retina). This phenomenon occurs in cells developing in the absence of intercellular contacts. The development of ATPase polarity correlates with a decrease in the fraction of ATPase molecules that are mobile in the membrane (as determined by fluorescence photobleaching recovery), as well as with an increase in the fraction of ATPase that remains associated with the cells after detergent extraction. The magnitudes of the mobile ATPase fractions agree well with those of the detergent-extractable fractions in both the immature and developed photoreceptors. The distribution of alpha spectrin and ATPase-immunoreactive materials appeared qualitatively similar, and quantitative image analysis showed similar gradients of spectrin and Na+,K+-ATPase immunofluorescence along the long axis of elongated photoreceptors. Moreover, detergent extractability of alpha spectrin and the ATPase showed similar modifications in response to changes in pH or KCl concentration. ATPase detergent-extractable and mobile fractions were not changed in cultures treated with cytoskeletal inhibitors such as nocodazole. These data are consistent with a role for an asymmetrically distributed, spectrin-containing subcortical cytoskeleton in the preferential accumulation of Na+,K+-ATPase in the photoreceptor inner segment.
Collapse
Affiliation(s)
- S A Madreperla
- Wilmer Institute, School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
20
|
Molitoris BA, Falk SA, Dahl RH. Ischemia-induced loss of epithelial polarity. Role of the tight junction. J Clin Invest 1989; 84:1334-9. [PMID: 2551926 PMCID: PMC329795 DOI: 10.1172/jci114302] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In proximal tubular cells ischemia is known to result in the redistribution of apical and basolateral domain-specific lipids and proteins into the alternate surface membrane domain. Since tight junctions are required for the maintenance of surface membrane polarity, the effect of ischemia on tight junction functional integrity was investigated. In vivo microperfusion of early loops of proximal tubules with ruthenium red (0.2%) in glutaraldehyde (2%) was used to gain selective access to and outline the apical surface membrane. Under control situations ruthenium red penetrated less than 10% of the tight junctions. After 5, 15, and 30 min of ischemia, however, there was a successive stepwise increase in tight junction penetration by ruthenium red to 29, 50, and 62%, respectively. This was associated with the rapid duration-dependent redistribution of basolateral membrane domain-specific lipids and NaK-ATPase into the apical membrane domain. Taken together, these data indicate that during ischemia proximal tubule tight junctions open, which in turn leads to the lateral intramembranous diffusion of membrane components into the alternate surface membrane domain.
Collapse
Affiliation(s)
- B A Molitoris
- Department of Medicine, University of Colorado Medical Center, Denver
| | | | | |
Collapse
|
21
|
Abstract
Polarized epithelial cells play fundamental roles in the ontogeny and function of a variety of tissues and organs in mammals. The morphogenesis of a sheet of polarized epithelial cells (the trophectoderm) is the first overt sign of cellular differentiation in early embryonic development. In the adult, polarized epithelial cells line all body cavities and occur in tissues that carry out specialized vectorial transport functions of absorption and secretion. The generation of this phenotype is a multistage process requiring extracellular cues and the reorganization of proteins in the cytoplasm and on the plasma membrane; once established, the phenotype is maintained by the segregation and retention of specific proteins and lipids in distinct apical and basal-lateral plasma membrane domains.
Collapse
Affiliation(s)
- E Rodriguez-Boulan
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
22
|
Molitoris BA, Chan LK, Shapiro JI, Conger JD, Falk SA. Loss of epithelial polarity: a novel hypothesis for reduced proximal tubule Na+ transport following ischemic injury. J Membr Biol 1989; 107:119-27. [PMID: 2541248 DOI: 10.1007/bf01871717] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ischemia results in the marked reduction of renal proximal tubule function which is manifested by decreased Na+ and H2O reabsorption. In the present studies the possibility that altered Na+ and H2O reabsorption were due to ischemia-induced loss of surface membrane polarity was investigated. Following 15 min of renal ischemia and 2 hr of reperfusion, proximal tubule cellular ultrastructure was normal. However, abnormal redistribution of NaK-ATPase to the apical membrane domain was observed and large alterations in apical membrane lipid composition consistent with loss of surface membrane polarity were noted. These changes were associated with large decreases in Na+ (37.4 vs. 23.0%, P less than 0.01) and H2O (48.6 vs. 36.9%, P less than 0.01) reabsorption at a time when cellular morphology, apical Na+ permeability, Na+-coupled cotransport, intracellular pH and single nephron filtration rates were normal. We propose that the abnormal redistribution of NaK-ATPase to the apical membrane domain is in part responsible for reduced Na+ and H2O reabsorption following ischemic injury.
Collapse
Affiliation(s)
- B A Molitoris
- Department of Medicine, Veterans Administration Medical Center, Denver, Colorado
| | | | | | | | | |
Collapse
|
23
|
Fuchs R, Schmid S, Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A 1989; 86:539-43. [PMID: 2536167 PMCID: PMC286507 DOI: 10.1073/pnas.86.2.539] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endosomes maintain a slightly acidic internal pH, which is directly responsible for their ability to ensure proper sorting of incoming receptors and ligands during endocytosis. At least two distinct subpopulations of endosomes can be distinguished, designated "early" and "late" on the basis of their kinetics of labeling with endocytic tracers. The subpopulations differ not only in their functions (rapid receptor recycling and transport to lysosomes, respectively) but also in their capacities for acidification in intact cells and in vitro. To investigate the possible basis for pH regulation in endosomes, we have studied the transport properties and ion permeabilities of early and late endosomes isolated from Chinese hamster ovary cells. Using endosomes selectively labeled with pH-sensitive endocytic tracers, we found that ATP-dependent acidification is electrogenic, being accompanied by the generation of an interior-positive membrane potential which opposes further acidification. While membrane potential and, consequently, acidification was controlled by the influx of permeant anions and efflux of protons and alkali cations, acidification was further modulated in Na+ and K+-containing buffers by the ouabain- and vanadate-sensitive Na+,K+-ATPase, which appears to be a functional component of the endosomal membrane. The data suggest that electrogenic Na+ transport due to Na+,K+-ATPase activity contributes to the interior-positive membrane potential, thereby reducing ATP-dependent H+ transport. Importantly, inhibition of acidification by Na+,K+-ATPase activity was found only in early endosomes, consistent with their limited acidification capacity relative to late endosomes and lysosomes.
Collapse
Affiliation(s)
- R Fuchs
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
24
|
Balint E, Aszalos A, Grimley PM. Alpha interferon accelerates lateral diffusion of Daudi cell surface differentiation antigens: measurement by fluorescence redistribution after photobleaching. Biochem Biophys Res Commun 1988; 157:808-15. [PMID: 2462420 DOI: 10.1016/s0006-291x(88)80321-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lateral diffusion coefficients (D) of two surface differentiation antigens (sIgM and Bp35) were determined on interferon-sensitive (-IFs) or resistant (-IFr) Daudi cells by fluorescence photobleaching, using monospecific FITC-anti-IgM or PE-anti-Leu 16 probes. For untreated Daudi -IFs, mean (D) were 5.8 and 5.3 (x10(-10) cm2/sec). These increased, to 11 and 7.9 x 10(-10) cm2/sec (p less than 0.001) within 30 min after binding of recombinant IFN-a (80 to 800 U/10(6) cells), but decreased by up to 4-fold after Con A Mean (D) of identical surface antigens on Daudi-IFr were 8.2 and 9.4 x 10(-10) cm2/sec; and were not altered by IFN-a. Mean (D) of a lipid analog was up to 40-fold higher than for surface proteins and statistically identical in Daudi-IFs and Daudi-IFr. Rapid acceleration by IFN-a of surface protein lateral diffusion in Daudi-IFs obviously could facilitate anti-proliferative signal transduction; by contrast, a baseline increase of (D) in Daudi-IFr was evidently associated with their refractory state.
Collapse
Affiliation(s)
- E Balint
- Department of Pathology, F. Edward Hebert Medical School, USUHS, Bethesda, Maryland 20814
| | | | | |
Collapse
|
25
|
Salas PJ, Vega-Salas DE, Hochman J, Rodriguez-Boulan E, Edidin M. Selective anchoring in the specific plasma membrane domain: a role in epithelial cell polarity. J Cell Biol 1988; 107:2363-76. [PMID: 3198691 PMCID: PMC2115698 DOI: 10.1083/jcb.107.6.2363] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have studied the role of restrictions to lateral mobility in the segregation of proteins to apical and basolateral domains of MDCK epithelial cells. Radioimmunoassay and semiquantitative video analysis of immunofluorescence on frozen sections showed that one apical and three basolateral glycoproteins, defined by monoclonal antibodies and binding of beta-2-microglobulin, were incompletely extracted with 0.5% Triton X-100 in a buffer that preserves the cortical cytoskeleton (Fey, E. G., K. M. Wan, and S. Penman. 1984. J. Cell Biol. 98:1973-1984; Nelson, W. T. and P. J. Veshnock. 1986. J. Cell Biol. 103:1751-1766). The marker proteins were preferentially extracted from the "incorrect" domain (i.e., the apical domain for a basolateral marker), indicating that the cytoskeletal anchoring was most effective on the "correct" domain. The two basolateral markers were unpolarized and almost completely extractable in cells prevented from establishing cell-cell contacts by incubation in low Ca++ medium, while an apical marker was only extracted from the basal surface under the same conditions. Procedures were developed to apply fluorescent probes to either the apical or the basolateral surface of live cells grown on native collagen gels. Fluorescence recovery after photobleaching of predominantly basolateral antigens showed a large percent of cells (28-52%) with no recoverable fluorescence on the basal domain but normal fluorescence recovery on the apical surface of most cells (92-100%). Diffusion coefficients in cells with normal fluorescence recovery were in the order of 1.1 x 10(-9) cm2/s in the apical domain and 0.6-0.9 x 10(-9) cm2/s in the basal surface, but the difference was not significant. The data from both techniques indicate (a) the existence of mobile and immobile protein fractions in both plasma membrane domains, and (b) that linkage to a domain specific submembrane cytoskeleton plays an important role in the maintenance of epithelial cell surface polarity.
Collapse
Affiliation(s)
- P J Salas
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021
| | | | | | | | | |
Collapse
|
26
|
Gustafsson M, Sundqvist T, Magnusson KE. Lateral diffusion of the secretory component (SC) in the basolateral membrane of the human colon carcinoma cell line HT29 assessed with fluorescence recovery after photobleaching. J Cell Physiol 1988; 137:608-11. [PMID: 3192635 DOI: 10.1002/jcp.1041370332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The lateral diffusion of the secretory component (SC), acting as a receptor for dimeric IgA in the basolateral side of intestinal epithelial cells, was studied in the human colonic carcinoma cell line HT29. The HT29 cells were grown in Dulbecco's modified Eagle's medium in which galactose had been substituted for glucose to promote development of small intestine-like cells, with a distinct separation of the basolateral side from the apical surface. The SC was stained with rhodamine-labeled polyclonal anti-human SC rabbit antibodies (Ig) or Fab fragments, and the lateral mobility was assessed with the fluorescence recovery after photobleaching technique. The average lateral diffusion was consistent with a diffusion constant of 7.7 +/- 2.0 (mean value +/- SD; n = 29) and 7.1 +/- 2.3 (n = 30) x 10(-10) cm2s-1 for Ig-and Fab-labeled receptors, respectively, which is slower than lipid diffusion but is similar to that found for other membrane receptors. The corresponding values for the fraction of mobile receptors were 66 +/- 13% and 71 +/- 12%, respectively. Cells were labeled from the top of the culture plate, and cells adjacent to a mechanically made rift or a natural opening in the cell monolayer were labeled more strongly, confirming the microscope-based impression that the basolateral surface primarily harboured the SC receptor.
Collapse
Affiliation(s)
- M Gustafsson
- Department of Medical Microbiology, Faculty of Health Sciences, University of Linköping, Sweden
| | | | | |
Collapse
|
27
|
Molitoris BA, Hoilien CA, Dahl R, Ahnen DJ, Wilson PD, Kim J. Characterization of ischemia-induced loss of epithelial polarity. J Membr Biol 1988; 106:233-42. [PMID: 2468776 DOI: 10.1007/bf01872161] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Total renal ischemia for various time intervals (0-50 min) resulted in the rapid and duration-dependent redistribution of polarized membrane lipids and proteins in renal proximal tubule cells. Following only 15 min of ischemia, apical membrane enrichment of NaK-ATPase, normally a basolateral membrane (BLM) enzyme, had increased (1.6 +/- 0.6 vs. 2.9 +/- 1.2, P less than 0.01). In vivo histochemical localization of NaK-ATPase showed reaction product throughout the apical microvillar region. PTH-stimulatable adenylate cyclase, another BLM protein, was also found in ischemic but not control apical membrane fractions. One dimensional SDS-PAGE showed four bands, present in control BLM and ischemic apical membranes, which could not be found in control apical membrane fractions. Immunohistochemical localization of leucine aminopeptidase (LAP) showed the enzyme was limited to the apical domain in control cells. Following ischemic injury (50 min), LAP staining could be seen within the cell and along the BLM. Following 24 hr of reperfusion, the BLM distribution of LAP was further enhanced. With cellular recovery from ischemic injury (5 days), LAP was again only visualized in the apical membrane. Duration-dependent alterations in apical and BLM lipids were also observed. Apical sphingomyelin and phosphatidylserine and the cholesterol-to-phospholipid ratio decreased rapidly while apical phosphatidylcholine and phosphatidylinositol increased. Taken together, these results indicate renal ischemia causes rapid duration-dependent reversible loss of surface membrane polarity in proximal tubule cells.
Collapse
Affiliation(s)
- B A Molitoris
- Department of Medicine, University of Colorado Medical Center, Denver
| | | | | | | | | | | |
Collapse
|
28
|
Sutherland E, Dixon BS, Leffert HL, Skally H, Zaccaro L, Simon FR. Biochemical localization of hepatic surface-membrane Na+,K+-ATPase activity depends on membrane lipid fluidity. Proc Natl Acad Sci U S A 1988; 85:8673-7. [PMID: 2847169 PMCID: PMC282522 DOI: 10.1073/pnas.85.22.8673] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Membrane proteins of transporting epithelia are often distributed between apical and basolateral surfaces to produce a functionally polarized cell. The distribution of Na+,K+-ATPase [ATP phosphohydrolase (Na+/K+-transporting), EC 3.6.1.37] between apical and basolateral membranes of hepatocytes has been controversial. Because Na+,K+-ATPase activity is fluidity dependent and the physiochemical properties of the apical membrane reduces its fluidity, we investigated whether altering membrane fluidity might uncover cryptic Na+,K+-ATPase in bile canalicular (apical) surface fractions free of detectable Na+,K+-ATPase and glucagon-stimulated adenylate cyclase activities. Apical fractions exhibited higher diphenylhexatriene-fluorescence polarization values when compared with sinusoidal (basolateral) membrane fractions. When 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)octanoate (A2C) was added to each fraction, Na+,K+-ATPase, but not glucagon-stimulated adenylate cyclase activity, was activated in the apical fraction. In contrast, further activation of both enzymes was not seen in sinusoidal fractions. The A2C-induced increase in apical Na+,K+-ATPase approached 75% of the sinusoidal level. Parallel increases in apical Na+,K+-ATPase were produced by benzyl alcohol and Triton WR-1339. All three fluidizing agents decreased the order component of membrane fluidity. Na+,K+-ATPase activity in each subfraction was identically inhibited by the monoclonal antibody 9-A5, a specific inhibitor of this enzyme. These findings suggest that hepatic Na+,K+-ATPase is distributed in both surface membranes but functions more efficiently and, perhaps, specifically in the sinusoidal membranes because of their higher bulk lipid fluidity.
Collapse
Affiliation(s)
- E Sutherland
- Department of Medicine, University of Colorado School of Medicine, Denver 80262
| | | | | | | | | | | |
Collapse
|
29
|
|