1
|
Schumacher L, Siemsen K, Appiah C, Rajput S, Heitmann A, Selhuber-Unkel C, Staubitz A. A Co-Polymerizable Linker for the Covalent Attachment of Fibronectin Makes pHEMA Hydrogels Cell-Adhesive. Gels 2022; 8:258. [PMID: 35621556 PMCID: PMC9140594 DOI: 10.3390/gels8050258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Hydrogels are attractive biomaterials because their chemical and mechanical properties can be tailored to mimic those of biological tissues. However, many hydrogels do not allow cell or protein attachment. Therefore, they are post-synthetically functionalized by adding functional groups for protein binding, which then allows cell adhesion in cell culture substrates. However, the degree of functionalization and covalent binding is difficult to analyze in these cases. Moreover, the density of the functional groups and the homogeneity of their distribution is hard to control. This work introduces another strategy for the biofunctionalization of hydrogels: we synthesized a polymerizable linker that serves as a direct junction between the polymeric structure and cell adhesion proteins. This maleimide-containing, polymerizable bio-linker was copolymerized with non-functionalized monomers to produce a bioactive hydrogel based on poly(2-hydroxyethyl methacrylate) (pHEMA). Therefore, the attachment site was only controlled by the polymerization process and was thus uniformly distributed throughout the hydrogel. In this way, the bio-conjugation by a protein-binding thiol-maleimide Michael-type reaction was possible in the entire hydrogel matrix. This approach enabled a straightforward and highly effective biofunctionalization of pHEMA with the adhesion protein fibronectin. The bioactivity of the materials was demonstrated by the successful adhesion of fibroblast cells.
Collapse
Affiliation(s)
- Laura Schumacher
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Katharina Siemsen
- Biocompatible Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany;
| | - Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Sunil Rajput
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, INF 253, D-69120 Heidelberg, Germany;
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, INF 253, D-69120 Heidelberg, Germany;
- Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| |
Collapse
|
2
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 444] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
3
|
β4GALT1 controls β1 integrin function to govern thrombopoiesis and hematopoietic stem cell homeostasis. Nat Commun 2020; 11:356. [PMID: 31953383 PMCID: PMC6968998 DOI: 10.1038/s41467-019-14178-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is critical to megakaryocyte (MK) and thrombopoiesis in the context of gene mutations that affect sialylation and galactosylation. Here, we identify the conserved B4galt1 gene as a critical regulator of thrombopoiesis in MKs. β4GalT1 deficiency increases the number of fully differentiated MKs. However, the resulting lack of glycosylation enhances β1 integrin signaling leading to dysplastic MKs with severely impaired demarcation system formation and thrombopoiesis. Platelets lacking β4GalT1 adhere avidly to β1 integrin ligands laminin, fibronectin, and collagen, while other platelet functions are normal. Impaired thrombopoiesis leads to increased plasma thrombopoietin (TPO) levels and perturbed hematopoietic stem cells (HSCs). Remarkably, β1 integrin deletion, specifically in MKs, restores thrombopoiesis. TPO and CXCL12 regulate β4GalT1 in the MK lineage. Thus, our findings establish a non-redundant role for β4GalT1 in the regulation of β1 integrin function and signaling during thrombopoiesis. Defective thrombopoiesis and lack of β4GalT1 further affect HSC homeostasis.
Collapse
|
4
|
Sharma R, Sharma R, Khaket TP, Dutta C, Chakraborty B, Mukherjee TK. Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell Oncol (Dordr) 2017; 40:199-208. [PMID: 28534212 DOI: 10.1007/s13402-017-0324-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Breast cancer is a notable cause of cancer-related death in women worldwide. Metastasis to distant organs is responsible for ~90% of this death. Breast cells convert to malignant cancer cells after acquiring the capacity of invasion/intravasation into surrounding tissues and, finally, extravasation/metastasis to distant organs (i.e., lymph nodes, lungs, bone, brain). Metastasis to distant organs depends on interactions between disseminated tumor cells (DTCs) and the endothelium of blood vessels present in the tumor microenvironment. Among several known endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) has been found to be involved in this process. It has been shown that VCAM-1 is aberrantly expressed in breast cancer cells and that it can bind to its natural ligand α4β1integrin, also denoted as very late antigen 4 (VLA-4). This binding appears to be responsible for the metastasis of breast cancer cells to lung, bone and brain. The α4β1 integrin - VCAM-1 interaction thus represents a potential therapeutic target for metastatic breast cancer cells. The development of inhibitors of this interaction may be instrumental for the clinical management of breast cancer patients. CONCLUSIONS This study focuses on recent progress on the role of VCAM-1, an important glycoprotein belonging to the immunoglobulin (Ig) superfamily of cell surface adhesion molecules in breast cancer angiogenesis, survival and metastasis. Targeting VCAM-1, expressed on the surface of breast cancer cells, and/or its specific ligand VLA-4/α4β1 integrin, expressed on cells at the site of metastasis, may be a useful strategy to reduce breast cancer cell invasion and metastasis. Various approaches to therapeutically target VCAM-1 and VLA-4 are also discussed.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| | - Rohini Sharma
- Department of Botany, University of Jammu, Jammu, India
| | - Tejinder Pal Khaket
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Chanchala Dutta
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| | - Bornisha Chakraborty
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| | - Tapan Kumar Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India.
| |
Collapse
|
5
|
Álvarez-Santos M, Carbajal V, Tellez-Jiménez O, Martínez-Cordero E, Ruiz V, Hernández-Pando R, Lascurain R, Santibañez-Salgado A, Bazan-Perkins B. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation. J Cell Biochem 2016; 117:2385-96. [PMID: 26969873 DOI: 10.1002/jcb.25536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mayra Álvarez-Santos
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Verónica Carbajal
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Olivia Tellez-Jiménez
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Erasmo Martínez-Cordero
- Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Victor Ruiz
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición, Vasco de Quiroga 15, México DF, 14000, México
| | - Ricardo Lascurain
- Departamento de Bioquímica, Universidad Nacional Autónoma de México, México DF, 70159, Mexico
| | - Alfredo Santibañez-Salgado
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Blanca Bazan-Perkins
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| |
Collapse
|
6
|
Groehler A, Villalta PW, Campbell C, Tretyakova N. Covalent DNA-Protein Cross-Linking by Phosphoramide Mustard and Nornitrogen Mustard in Human Cells. Chem Res Toxicol 2016; 29:190-202. [PMID: 26692166 DOI: 10.1021/acs.chemrestox.5b00430] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
N,N-Bis-(2-chloroethyl)-phosphorodiamidic acid (phosphoramide mustard, PM) and N,N-bis-(2-chloroethyl)-amine (nornitrogen mustard, NOR) are the two biologically active metabolites of cyclophosphamide, a DNA alkylating drug commonly used to treat lymphomas, breast cancer, certain brain cancers, and autoimmune diseases. PM and NOR are reactive bis-electrophiles capable of cross-linking cellular biomolecules to form covalent DNA-DNA and DNA-protein cross-links (DPCs). In the present work, a mass spectrometry-based proteomics approach was employed to characterize PM- and NOR-mediated DNA-protein cross-linking in human cells. Following treatment of human fibrosarcoma cells (HT1080) with cytotoxic concentrations of PM, over 130 proteins were found to be covalently trapped to DNA, including those involved in transcriptional regulation, RNA splicing/processing, chromatin organization, and protein transport. HPLC-ESI(+)-MS/MS analysis of proteolytic digests of DPC-containing DNA from NOR-treated cells revealed a concentration-dependent formation of N-[2-[cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]amine (Cys-NOR-N7G) conjugates, confirming that it cross-links cysteine thiols of proteins to the N7 position of guanines in DNA. Cys-NOR-N7G adduct numbers were higher in NER-deficient xeroderma pigmentosum cells (XPA) as compared with repair proficient cells. Furthermore, both XPA and FANCD2 deficient cells were sensitized to PM treatment as compared to that of wild type cells, suggesting that Fanconi anemia and nucleotide excision repair pathways are involved in the removal of cyclophosphamide-induced DNA damage.
Collapse
Affiliation(s)
- Arnold Groehler
- Department of Medicinal Chemistry, ‡Department of Pharmacology, and §Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Peter W Villalta
- Department of Medicinal Chemistry, ‡Department of Pharmacology, and §Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Colin Campbell
- Department of Medicinal Chemistry, ‡Department of Pharmacology, and §Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, ‡Department of Pharmacology, and §Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Yao W, Yu X, Fang Z, Yin P, Zhao C, Li N, Wang L, Li Z, Zha X. Profilin1 facilitates staurosporine-triggered apoptosis by stabilizing the integrin β1-actin complex in breast cancer cells. J Cell Mol Med 2012; 16:824-35. [PMID: 21692986 PMCID: PMC3822851 DOI: 10.1111/j.1582-4934.2011.01369.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Profilin1 (Pfn1) functions as a tumour suppressor against malignant phenotypes of cancer cells. A minimum level of Pfn1 is critical for the differentiation of human epithelial cells, and its lower expression correlates with the tumourigenesis of breast cancer cells and tissues. However, the molecular mechanisms underlying its anti-tumour action remain largely unknown. In this study, we found that stable expression of ectopic Pfn1 sensitized the breast cancer cell line MDA-MB-468 to apoptosis induced by staurosporine, a widely used natural apoptosis-inducing agent. Pfn1 overexpression could also up-regulate the expression of integrin α5β1, which has been shown to inhibit the transformed phenotype of cancer cells. Furthermore, the Pfn1-facilitated apoptosis induced by staurosporine was blocked in cells attached to a supplementary fibronectin substrate, which serves as a ligand of integrin α5β1. These results suggest that the insufficient fibronectin caused by the integrin α5β1 up-regulation might activate a signalling pathway leading to an increase of cellular apoptosis. Moreover, Pfn1 that primarily functions to promote local superstructure formation involving actin filaments and integrin β1 may contribute to its promotion on apoptosis. Our study indicated a previously uncharacterized role of Pfn1 in mediating staurosporine-inducing apoptosis in breast cancer cells via up-regulating integrin α5β1, and suggested a new target for breast cancer therapy.
Collapse
Affiliation(s)
- Wantong Yao
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo R, Cheng L, Zhao Y, Zhang J, Liu C, Zhou H, Jia L. Glycogenes mediate the invasive properties and chemosensitivity of human hepatocarcinoma cells. Int J Biochem Cell Biol 2012; 45:347-58. [PMID: 23103836 DOI: 10.1016/j.biocel.2012.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/23/2012] [Accepted: 10/16/2012] [Indexed: 12/28/2022]
Abstract
Aberrant cell-surface glycosylation patterns are present on tumors and have been linked to tumor progression. This study aimed to identify the alterations of glycogene and N-glycan involved in tumor invasion, tumorigenicity and drug resistance in MHCC97-H and MHCC97-L human hepatocarcinoma cell lines, which have high, low metastatic potential, respectively. Using real-time PCR for quantification of glycogene and FITC-lectin binding for glycan profiling, we found that the expression of glycogenes and glycan profiling were different in MHCC97-H cells, as compared to those in MHCC97-L cells. We silenced the expression levels of glycogenes MGAT3 and MGAT5, which were over-expressed in MHCC97-L and MHCC97-H cells. Knockdown of MGAT3 expression promoted MHCC97-L cells invasion and increased resistance to 5-fluorouracil in vitro. The silencing of MGAT5 in MHCC97-H cells inhibited invasion and increased sensitivity to 5-fluorouracil in vitro. Further analysis of the N-glycan regulation by tunicamycin application or PNGase F treatment in MHCC97-H and MHCC97-L cells showed partial inhibition of N-glycan glycosylation, decreased invasion, tumorigenicity and increased sensitivity to 5-fluorouracil both in vitro and in vivo. These findings suggest that alterations of glycogene and N-glycan in human hepatocarcinoma cells correlate with tumor invasion, tumorigenicity and sensitivity to chemotherapeutic drug, and have significant implications for the development of treatment strategies.
Collapse
Affiliation(s)
- Rui Guo
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Effects of ofloxacin on integrin expression on epiphyseal mouse chondrocytes in vitro. Toxicol In Vitro 2012; 9:107-16. [PMID: 20650069 DOI: 10.1016/0887-2333(94)00198-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/1994] [Indexed: 11/22/2022]
Abstract
Quinolone-induced arthropathy is an important toxic effect in immature animals that has led to restrictions of the therapeutic use of these antimicrobial agents. The effects of ofloxacin on epiphyseal chondrocytes from 17-day-old mouse foetuses were studied in vitro. Adhesion of the cells to culture dishes was impaired in a concentration-dependent manner and was first perceptible at a concentration of 10 mg ofloxacin/litre medium. A closer analysis by immunomorphological methods showed that the expression of several integrin receptors (beta1, alpha3, alpha5beta1, alphavbeta3) on the chondrocytes was reduced. Again, first alterations occurred at the rather low concentration of 10 mg ofloxacin/litre medium, and at 30 mg ofloxacin/litre medium alpha3- and alpha5beta1 integrins were demonstrable on 50% or less of the cultured cells. Based on these findings in vitro, a new hypothesis for the mechanism of the chondrotoxicity of quinolones is proposed: the ability of these antimicrobials to form chelate complexes with divalent cations could explain why the integrin receptors on chondrocytes are altered after quinolone exposure, since it is well known that the function of the integrin receptor depends on calcium or magnesium ions. Further investigations are under way to study the effects of quinolones on integrin receptors in cartilage in more detail.
Collapse
|
10
|
Rapuano BE, Lee JJE, MacDonald DE. Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to α(5) β(1) integrins in osteoblasts. Eur J Oral Sci 2012; 120:185-94. [PMID: 22607334 DOI: 10.1111/j.1600-0722.2012.954.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our laboratory has previously demonstrated that heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of a titanium alloy (Ti6Al4V) increased the net negative charge of the alloy's surface oxide and the attachment of osteoblastic cells to adsorbed fibronectin. The purpose of the current study was to investigate the biological mechanism by which these surface pretreatments enhance the capacity of fibronectin to stimulate osteoblastic cell attachment. Each pretreatment was found to increase the binding (measured by ELISA) of a monoclonal anti-fibronectin Ig to the central integrin-binding domain of adsorbed fibronectin, and to increase the antibody's inhibition of osteogenic cell attachment (measured by hexosaminidase assay). Pretreatments also increased the binding (measured by ELISA) of anti-integrin IgG's to the α(5) and β(1) integrin subunits that became attached to fibronectin during cell incubation. These findings suggest that negatively charged surface oxides of Ti6Al4V cause conformational changes in fibronectin that increase the availability of its integrin-binding domain to α(5) β(1) integrins.
Collapse
Affiliation(s)
- Bruce E Rapuano
- Hospital for Special Surgery affiliated with the Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
11
|
Holmes RS, Rout UK. Comparative studies of vertebrate Beta integrin genes and proteins: ancient genes in vertebrate evolution. Biomolecules 2011; 1:3-31. [PMID: 24970121 PMCID: PMC4030831 DOI: 10.3390/biom1010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/14/2011] [Accepted: 08/15/2011] [Indexed: 12/31/2022] Open
Abstract
Intregins are heterodimeric α- and β-subunit containing membrane receptor proteins which serve various cell adhesion roles in tissue repair, hemostasis, immune response, embryogenesis and metastasis. At least 18 α- (ITA or ITGA) and 8 β-integrin subunits (ITB or ITGB) are encoded on mammalian genomes. Comparative ITB amino acid sequences and protein structures and ITB gene locations were examined using data from several vertebrate genome projects. Vertebrate ITB genes usually contained 13-16 coding exons and encoded protein subunits with ~800 amino acids, whereas vertebrate ITB4 genes contained 36-39 coding exons and encoded larger proteins with ~1800 amino acids. The ITB sequences exhibited several conserved domains including signal peptide, extracellular β-integrin, β-tail domain and integrin β-cytoplasmic domains. Sequence alignments of the integrin β-cytoplasmic domains revealed highly conserved regions possibly for performing essential functions and its maintenance during vertebrate evolution. With the exception of the human ITB8 sequence, the other ITB sequences shared a predicted 19 residue α-helix for this region. Potential sites for regulating human ITB gene expression were identified which included CpG islands, transcription factor binding sites and microRNA binding sites within the 3'-UTR of human ITB genes. Phylogenetic analyses examined the relationships of vertebrate beta-integrin genes which were consistent with four major groups: 1: ITB1, ITB2, ITB7; 2: ITB3, ITB5, ITB6; 3: ITB4; and 4: ITB8 and a common evolutionary origin from an ancestral gene, prior to the appearance of fish during vertebrate evolution. The phylogenetic analyses revealed that ITB4 is the most likely primordial form of the vertebrate β integrin subunit encoding genes, that is the only β subunit expressed as a constituent of the sole integrin receptor 'α6β4' in the hemidesmosomes of unicellular organisms.
Collapse
Affiliation(s)
- Roger S Holmes
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, 4111QLD, Australia.
| | - Ujjwal K Rout
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS 38677, USA.
| |
Collapse
|
12
|
Bohgaki M, Matsumoto M, Atsumi T, Kondo T, Yasuda S, Horita T, Nakayama KI, Okumura F, Hatakeyama S, Koike T. Plasma gelsolin facilitates interaction between β2 glycoprotein I and α5β1 integrin. J Cell Mol Med 2011; 15:141-51. [PMID: 19840195 PMCID: PMC3822501 DOI: 10.1111/j.1582-4934.2009.00940.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antiphospholipid syndrome (APS) is characterized by thrombosis and the presence of antiphospholipid antibodies (aPL) that directly recognizes plasma β2-glycoprotein I (β2GPI). Tissue factor (TF), the major initiator of the extrinsic coagulation system, is induced on monocytes by aPL in vitro, explaining in part the pathophysiology in APS. We previously reported that the mitogen-activated protein kinase (MAPK) pathway plays an important role in aPL-induced TF expression on monocytes. In this study, we identified plasma gelsolin as a protein associated with β2GPI by using immunoaffinity chromatography and mass spectrometric analysis. An in vivo binding assay showed that endogenous β2GPI interacts with plasma gelsolin, which binds to integrin a5β1 through fibronectin. The tethering of β2GPI to monoclonal anti-β2GPI autoantibody on the cell surface was enhanced in the presence of plasma gelsolin. Immunoblot analysis demonstrated that p38 MAPK protein was phosphorylated by monoclonal anti-β2GPI antibody treatment, and its phosphorylation was attenuated in the presence of anti-integrin a5β1 antibody. Furthermore, focal adhesion kinase, a downstream molecule of the fibronectin-integrin signalling pathway, was phosphorylated by anti-β2GPI antibody treatment. These results indicate that molecules including gelsolin and integrin are involved in the anti-β2GPI antibody-induced MAPK pathway on monocytes and that integrin is a possible therapeutic target to modify a prothrombotic state in patients with APS.
Collapse
Affiliation(s)
- Miyuki Bohgaki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang D, Kobayashi T, Kojima T, Kanenishi K, Hagiwara Y, Abe M, Okura H, Hamano Y, Sun G, Maeda M, Jishage KI, Noda T, Hino O. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice. Cancer Sci 2011; 102:720-7. [PMID: 21205090 DOI: 10.1111/j.1349-7006.2011.01846.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway.
Collapse
Affiliation(s)
- Danqing Zhang
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu X, Ahn JH, Tam P, Yu EJ, Batra S, Cram EJ, Lee M. Analysis of conserved residues in the betapat-3 cytoplasmic tail reveals important functions of integrin in multiple tissues. Dev Dyn 2010; 239:763-72. [PMID: 20063417 DOI: 10.1002/dvdy.22205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Integrin cytoplasmic tails contain motifs that link extracellular information to cell behavior such as cell migration and contraction. To investigate the cell functions mediated by the conserved motifs, we created mutations in the Caenorhabditis elegans betapat-3 cytoplasmic tail. The beta1D (799FK800), NPXY, tryptophan (784W), and threonine (797TT798) motifs were disrupted to identify their functions in vivo. Animals expressing integrins with disrupted NPXY motifs were viable, but displayed distal tip cell migration and ovulation defects. The conserved threonines were required for gonad migration and contraction as well as tail morphogenesis, whereas disruption of the beta1D and tryptophan motifs produced only mild defects. To abolish multiple conserved motifs, a beta1C-like variant, which results in a frameshift, was constructed. The betapat-3(beta1C) transgenic animals showed cold-sensitive larval arrests and defective muscle structure and gonad migration and contraction. Our study suggests that the conserved NPXY and TT motifs play important roles in the tissue-specific function of integrin.
Collapse
Affiliation(s)
- Xiaojian Xu
- Department of Biology, Baylor University, Waco, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther 2010; 12:R204. [PMID: 21050432 PMCID: PMC3046510 DOI: 10.1186/ar3179] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 11/04/2010] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Epratuzumab, a humanized anti-CD22 monoclonal antibody, is under investigation as a therapeutic antibody in non-Hodgkin's lymphoma and systemic lupus erythematosus (SLE), but its mechanism of action on B-cells remains elusive. Treatment of SLE patients with epratuzumab leads to a reduction of circulating CD27(negative) B-cells, although epratuzumab is weakly cytotoxic to B-cells in vitro. Therefore, potential effects of epratuzumab on adhesion molecule expression and the migration of B-cells have been evaluated. METHODS Epratuzumab binding specificity and the surface expression of adhesion molecules (CD62L, β7 integrin and β1 integrin) after culture with epratuzumab was studied on B-cell subsets of SLE patients by flow cytometry. In addition, in vitro transwell migration assays were performed to analyze the effects of epratuzumab on migration towards different chemokines such as CXCL12, CXCL13 or to CXCR3 ligands, and to assess the functional consequences of altered adhesion molecule expression. RESULTS Epratuzumab binding was considerably higher on B-cells relative to other cell types assessed. No binding of epratuzumab was observed on T-cells, while weak non-specific binding of epratuzumab on monocytes was noted. On B-cells, binding of epratuzumab was particularly enhanced on CD27(negative) B-cells compared to CD27(positive) B-cells, primarily related to a higher expression of CD22 on CD27(negative) B-cells. Moreover, epratuzumab binding led to a decrease in the cell surface expression of CD62L and β7 integrin, while the expression of β1 integrin was enhanced. The effects on the pattern of adhesion molecule expression observed with epratuzumab were principally confined to a fraction of the CD27(negative) B-cell subpopulation and were associated with enhanced spontaneous migration of B-cells. Furthermore, epratuzumab also enhanced the migration of CD27(negative) B-cells towards the chemokine CXCL12. CONCLUSIONS The current data suggest that epratuzumab has effects on the expression of the adhesion molecules CD62L, β7 integrin and β1 integrin as well as on migration towards CXCL12, primarily of CD27(negative) B-cells. Therefore, induced changes in migration appear to be part of the mechanism of action of epratuzumab and are consistent with the observation that CD27(negative) B-cells were found to be preferentially reduced in the peripheral blood under treatment.
Collapse
|
16
|
Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun 2010; 78:4523-31. [PMID: 20713621 DOI: 10.1128/iai.00439-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with Helicobacter pylori cag pathogenicity island (cagPAI)-positive strains is associated with more destructive tissue damage and an increased risk of severe disease. The cagPAI encodes a type IV secretion system (TFSS) that delivers the bacterial effector molecules CagA and peptidoglycan into the host cell cytoplasm, thereby inducing responses in host cells. It was previously shown that interactions between CagL, present on the TFSS pilus, and host α(5)β(1) integrin molecules were critical for CagA translocation and the induction of cytoskeletal rearrangements in epithelial cells. As the α(5)β(1) integrin is found in cholesterol-rich microdomains (known as lipid rafts), we hypothesized that these domains may also be involved in the induction of proinflammatory responses mediated by NOD1 recognition of H. pylori peptidoglycan. Indeed, not only did methyl-β-cyclodextrin depletion of cholesterol from cultured epithelial cells have a significant effect on the levels of NF-κB and interleukin-8 (IL-8) responses induced by H. pylori bacteria with an intact TFSS (P < 0.05), but it also interfered with TFSS-mediated peptidoglycan delivery to cells. Both of these effects could be restored by cholesterol replenishment of the cells. Furthermore, we demonstrated for the first time the involvement of α(5)β(1) integrin in the induction of proinflammatory responses by H. pylori. Taking the results together, we propose that α(5)β(1) integrin, which is associated with cholesterol-rich microdomains at the host cell surface, is required for NOD1 recognition of peptidoglycan and subsequent induction of NF-κB-dependent responses to H. pylori. These data implicate cholesterol-rich microdomains as a novel platform for TFSS-dependent delivery of bacterial products to cytosolic pathogen recognition molecules.
Collapse
|
17
|
Grzesiak JJ, Vargas F, Bouvet M. Divalent cations modulate alpha2beta1 integrin-mediated malignancy in a novel 3-dimensional in vitro model of pancreatic cancer. Pancreas 2010; 39:904-12. [PMID: 20182393 PMCID: PMC2888635 DOI: 10.1097/mpa.0b013e3181ce60a3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We previously showed that divalent cations regulate alpha2beta1 integrin-mediated pancreatic cancer cell interactions with type I collagen in 2 dimensions (2D), including cell adhesion, migration, and proliferation. Presently, we examined divalent cation-dependent alpha2beta1 integrin-mediated pancreatic cancer cell adhesion and proliferation on type I collagen in a novel 3D in vitro model. METHODS Cell attachment, proliferation, and antibody inhibition assays on type I collagen in both 2D and 3D, and microscopy and immunoblotting were used for these studies. RESULTS As in 2D, cell attachment on type I collagen in 3D is Mg-dependent and inhibited by Ca. Proliferation in 3D is also Mg-dependent, but maximal when Mg is present at concentrations that promote maximal cell adhesion and Ca is present at concentrations less than Mg. Immunoblotting studies demonstrate that the divalent cation-dependent changes in cell-cell adhesion observed on type I collagen in both 2D and 3D are associated with the changes in E-cadherin and beta-catenin expression. Antibody inhibition assays indicate further that the alpha2beta1 integrin specifically mediates proliferation on type I collagen in 3D under altered divalent cation conditions. CONCLUSIONS Divalent cation shifts could activate alpha2beta1 integrin-mediated malignancy in the type I collagen-rich 3D tumor microenvironment of pancreatic cancer.
Collapse
Affiliation(s)
- John J Grzesiak
- From the Department of Surgery, VA San Diego Healthcare System and the University of California, San Diego, San Diego, CA 92161, USA
| | | | | |
Collapse
|
18
|
She S, Xu B, He M, Lan X, Wang Q. Nm23-H1 suppresses hepatocarcinoma cell adhesion and migration on fibronectin by modulating glycosylation of integrin beta1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:93. [PMID: 20618991 PMCID: PMC2909969 DOI: 10.1186/1756-9966-29-93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/11/2010] [Indexed: 12/15/2022]
Abstract
Background Nm23 gene was isolated as a metastatic suppressor gene. The antimetastatic effect of Nm23 has been an enigma for more than 10 years. Little is known about its molecular mechanisms. In this study we overexpressed Nm23-H1 in H7721 cells and observed reduction of cell adhesion, migration and extension of actin stress fibers in cells stimulated by fibronectin (Fn). Methods pcDNA3/Nm23-H1 was introduced into H7721 cells, and expression of Nm23-H1 was monitored by RT-PCR and western blot. Cell adhesion, actin extension and wound-induced migration assays were done on dishes coated with fibronectin. Phosphorylation of focal adhesion kinase (FAK) and total amount of integrin alpha5 and beta1 in Nm23-H1 transfected cells and control cells were measured by western blot. Flow cytometry was used to detect expression of surface alpha5 and beta1 integrin. N-glycosylation inhibitor tunicamycin was used to deglycosylate the integrin beta1 subunit. Results Overexpression of nm23-H1 in H7721 cells reduced cell adhesion, migration and extension of actin stress fibers on dishes coated with Fn. Phosphorylation of FAK in Nm23-H1 transfected cells was also attenuated. Integrin alpha5 and beta1 gene messages were unaltered in nm23-H1 overexpressed cells as detected by RT-PCR. However, while cell surface integrin alpha5 was unchanged, surface expression of beta1 integrin was downregulated. Western blot also showed that the total amounts of integrin alpha5 and beta1 were unaltered, but the level of mature integrin beta1 isoform was decreased significantly. Furthermore, partially glycosylated precursor beta1 was increased, which indicated that the impaired glycosylation of integrin beta1 precursor might contribute to the loss of cell surface integrin beta1 in nm23-H1 overexpressed cells. Conclusion These results suggest that by modulating glycosylation of integrin beta1, nm23-H1 down-regulates integrin beta1 subunit on cell surface and mediates intracellular signaling and subsequent suppression of the invasive process, including cell adhesion and migration.
Collapse
Affiliation(s)
- Shangyang She
- Clinical Laboratory, Guangxi Maternal and Child Health Hospital, Nanning 530003, China
| | | | | | | | | |
Collapse
|
19
|
Bialkowska K, Ma YQ, Bledzka K, Sossey-Alaoui K, Izem L, Zhang X, Malinin N, Qin J, Byzova T, Plow EF. The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell. J Biol Chem 2010; 285:18640-9. [PMID: 20378539 PMCID: PMC2881789 DOI: 10.1074/jbc.m109.085746] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/16/2010] [Indexed: 01/10/2023] Open
Abstract
Integrin activation is crucial for numerous cellular responses, including cell adhesion, migration, and survival. Recent studies in mice have specifically emphasized the vital role of kindlin-3 in integrin activation. Kindlin-3 deficiency in humans also has now been documented and includes symptoms of bleeding, frequent infections, and osteopetrosis, which are consequences of an inability to activate beta1, beta2, and beta3 integrins. To date, kindlin-3 was thought to be restricted to hematopoietic cells. In this article, we demonstrate that kindlin-3 is present in human endothelial cells derived from various anatomical origins. The mRNA and protein for KINDLIN-3 was detected in endothelial cells by reverse transcription-PCR and Western blots. When subjected to sequencing by mass spectrometry, the protein was identified as authentic kindlin-3 and unequivocally distinguished from KINDLIN-1 and KINDLIN-2 or any other known protein. By quantitative real time PCR, the level of kindlin-3 in endothelial cells was 20-50% of that of kindlin-2. Using knockdown approaches, we show that kindlin-3 plays a role in integrin-mediated adhesion of endothelial cells. This function depends upon the integrin and substrate and is distinct from that of kindlin-2. Formation of tube-like structures in Matrigel also was impaired by kindlin-3 knockdown. Mechanistically, the distinct functions of the kindlins can be traced to differences in their subcellular localization in integrin-containing adhesion structures. Thus, the prevailing view that individual kindlins exert their functions in a cell type-specific manner must now be modified to consider distinct functions of the different family members within the same cell type.
Collapse
Affiliation(s)
- Katarzyna Bialkowska
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| | - Yan-Qing Ma
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| | - Kamila Bledzka
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| | - Khalid Sossey-Alaoui
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| | - Lahoucine Izem
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xiaoxia Zhang
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| | - Nikolay Malinin
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| | - Jun Qin
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| | - Tatiana Byzova
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| | - Edward F. Plow
- From the Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology and
| |
Collapse
|
20
|
Groot AJ, El Khattabi M, Sachs N, van der Groep P, van der Wall E, van Diest PJ, Sonnenberg A, Verrips CT, Vooijs M. Reverse proteomic antibody screening identifies anti adhesive VHH targeting VLA-3. Mol Immunol 2009; 46:2022-8. [PMID: 19359042 DOI: 10.1016/j.molimm.2009.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 12/16/2022]
Abstract
Therapeutic approaches aimed at targeting tumor surface markers using monoclonal antibodies provide a powerful strategy in cancer treatment. Here we report selection of single variable domains (VHH) of llama heavy chain antibodies, using a VHH-phage-display library. A reverse proteomic approach was used to identify the cognate proteins recognized by enriched VHH on HeLa cells. One of these VHH bound the integrin alpha 3 beta 1 (VLA-3) and was further characterized. Most interestingly, this VHH could inhibit VLA-3 mediated cell-matrix adhesion. Our approach provides a fast and efficient method to screen for novel cell surface markers on normal and tumor cells that may find diagnostic or therapeutic application in disease management or treatment.
Collapse
Affiliation(s)
- Arjan J Groot
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Grzesiak JJ, Bouvet M. Activation of the alpha2beta1 integrin-mediated malignant phenotype on type I collagen in pancreatic cancer cells by shifts in the concentrations of extracellular Mg2+ and Ca2+. Int J Cancer 2008; 122:2199-209. [PMID: 18224679 DOI: 10.1002/ijc.23368] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The authors have previously demonstrated that alpha(2)beta(1) integrin-mediated pancreatic cancer cell adhesion to Type I collagen is Mg(2+)-dependent, inhibited by Ca(2+), and that this integrin, purified from cell lysates using Type I-collagen-sepharose in Mg(2+), can be eluted with Ca(2+). In the present study, the authors examined the divalent cation-dependency of alpha(2)beta(1) integrin-mediated pancreatic cancer cell adhesion, migration and proliferation on Type I collagen, an extracellular matrix protein shown to be highly up-regulated, and to promote the malignant phenotype in vitro and in vivo. The results indicate that cells attach to Type I collagen maximally when Mg(2+) is greater than 1 mM, and that addition of increasing concentrations of Ca(2+) reduces this adhesion. These effects are reversible, in that previous cell attachment in Mg(2+) can be reversed by adding Ca(2+), and vice versa. They also demonstrate that pancreatic cancer cells migrate and proliferate on Type I collagen in Mg(2+) alone, but maximally when Mg(2+) is present at concentrations that promote maximal cell adhesion and Ca(2+) is present at concentrations less than Mg(2+). Cell adhesion and proliferation assays, as well as affinity chromatography on Type I collagen using anti-integrin function-blocking monoclonal antibodies indicate that the effects of these divalent cation shifts are mediated specifically by the alpha(2)beta(1) integrin. As pancreatic juice contains over 1,200-fold more Mg(2+) than Ca(2+) and solid tumors are characterized by increased magnesium load, these data indicate that such pathophysiological divalent cation shifts could be involved in the activation of the alpha(2)beta(1) integrin-mediated malignant phenotype on Type I collagen in the pancreatic cancer.
Collapse
Affiliation(s)
- John J Grzesiak
- Department of Surgery, VA San Diego Healthcare System and the University of California, San Diego, CA, USA
| | | |
Collapse
|
23
|
Zou K, Hosono T, Nakamura T, Shiraishi H, Maeda T, Komano H, Yanagisawa K, Michikawa M. Novel role of presenilins in maturation and transport of integrin beta 1. Biochemistry 2008; 47:3370-8. [PMID: 18293935 DOI: 10.1021/bi7014508] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Presenilins (PSs) play important roles in modulating the trafficking and maturation of several membrane proteins. However, the target membrane proteins whose trafficking and maturation are regulated by PS are largely unknown. By characterizing PS-deficient fibroblasts, we found that integrin beta1 maturation is promoted markedly in PS1 and PS2 double-deficient fibroblasts and moderately in PS1- or PS2-deficient fibroblasts; in contrast, nicastrin maturation is completely inhibited in PS1 and PS2 double-deficient fibroblasts. Subcellular fractionation analysis demonstrated that integrin beta1 maturation is promoted in the Golgi apparatus. The mature integrin beta1 with an increased expression level was delivered to the cell surface, which resulted in an increased cell surface expression level of mature integrin beta1 in PS1 and PS2 double-deficient fibroblasts. PS1 and PS2 double-deficient fibroblasts exhibited an enhanced ability to adhere to culture dishes coated with integrin beta1 ligands, namely, fibronectin and laminin. The inhibition of gamma-secretase activity enhances neither integrin beta1 maturation nor the adhesion of wild-type cells. Moreover, PS deficiency also promoted the maturation of integrins alpha3 and alpha5 and the cell surface expression of integrin alpha3. Integrins alpha3 and alpha5 were coimmunoprecipitated with integrin beta1, suggesting the formation of the functional heterodimers integrins alpha3beta1 and alpha5beta1. Note that integrin beta1 exhibited features opposite those of nicastrin in terms of maturation and trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus in PS1 and PS2 double-deficient fibroblasts. Our results therefore suggest that PS regulates the maturation of membrane proteins in opposite directions and cell adhesion by modulating integrin maturation.
Collapse
Affiliation(s)
- Kun Zou
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, NCGG, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pierschbacher MD, Dedhar S, Ruoslahti E, Argraves S, Suzuki S. An adhesion variant of the MG-63 osteosarcoma cell line displays an osteoblast-like phenotype. CIBA FOUNDATION SYMPOSIUM 2007; 136:131-41. [PMID: 3068006 DOI: 10.1002/9780470513637.ch9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MG-63 human osteosarcoma cells were selected for attachment and growth in increasing concentrations of a synthetic peptide containing the cell attachment-promoting Arg-Gly-Asp (RGD) sequence derived from the cell-binding region of fibronectin. Cells capable of attachment and growth in 5 mM concentrations of a peptide having the sequence Gly-Arg-Gly-Asp-Ser-Pro overproduce the cell surface receptor for fibronectin. No increase in fibronectin receptor gene copy number was detected by Southern blot analysis. The peptide-resistant MG-63.3A cells look very different from the MG-63 cells and resemble osteocytes. The resistant cells also grow more slowly than MG-63 cells. The enhanced expression of the fibronectin receptor on the resistant cells indicates that cells can regulate the amount of this receptor on their surface in response to environmental factors and that this may affect the phenotypic properties of the cell. MG-63.3A cells differ from MG-63 cells in their ability to form a calcified matrix in vitro and in their increased synthesis of type I collagen. The MG-63.3A cells synthesize 50-100-fold less prostaglandin E2, a mediator of bone resorption, than MG-63 cells. There is an overall down-regulation of chondroitin sulphate proteoglycans in MG-63.3A cells. These results are consistent with the hypothesis that such proteoglycans interfere with calcium phosphate deposition and with the observation that chondroitin sulphate is increased in a wide variety of neoplasms but is absent or in small amounts in normal tissue. We conclude that MG-63.3A cells represent a more differentiated cell type with osteoblast-like properties.
Collapse
Affiliation(s)
- M D Pierschbacher
- Cancer Research Center, La Jolla Cancer Research Foundation, California 92037
| | | | | | | | | |
Collapse
|
25
|
Jee BK, Lee JY, Lim Y, Lee KH, Jo YH. Effect of KAI1/CD82 on the beta1 integrin maturation in highly migratory carcinoma cells. Biochem Biophys Res Commun 2007; 359:703-8. [PMID: 17560548 DOI: 10.1016/j.bbrc.2007.05.159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
The KAI1/CD82 protein has been documented as the tumor metastasis suppressor in many types of human cancers. KAI1/CD82 regulates cell motility and invasiveness; however, the mechanism by which this occurs remains to be fully established. Several studies have shown that KAI1/CD82 modulates integrin-dependent signaling. It was suggested that KAI1/CD82 might function to attenuate the beta1 integrin function of inducing cellular migration. A wound-healing and modified Boyden chamber assays were performed to investigate the mechanism of the KAI1/CD82-mediated inhibition of cell migration. It was found that the migratory ability of H1299/CD82 was inhibited. The immunoblotting and biotinylation assays revealed that H1299/CD82 showed significantly decreased expression of the mature form of beta1, which was functional at the cell surface. It was confirmed that KAI1/CD82 regulates the maturation of the beta1 integrin using CD82-specific si-RNA. These results support a model in which KAI1/CD82 attenuates the maturation of the beta1 integrin precursor and thereby suppresses cell migration.
Collapse
Affiliation(s)
- Bo Keun Jee
- Neuroscience Genome Research Center, The Catholic University of Korea, 505 Banpo-dong, Socho-ku, Seoul 137-701, Republic of Korea
| | | | | | | | | |
Collapse
|
26
|
Chen X, Jiang J, Yang J, Chen C, Sun M, Wei Y, Guang X, Gu J. Down-regulation of the expression of β1,4-galactosyltransferase V promotes integrin β1 maturation. Biochem Biophys Res Commun 2006; 343:910-6. [PMID: 16564504 DOI: 10.1016/j.bbrc.2006.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/08/2006] [Indexed: 11/26/2022]
Abstract
In previous study, we have shown that beta1,4-galactosyltransferase V (GalT V) functions as a positive growth regulator in glioma. Here, we reported that down-regulation of the expression of GalT V in SHG44 cells by transfection with antisense cDNA specifically up-regulated the expression of cell surface integrin beta1 without the change of its mRNA, and with integrin beta1 125 kDa mature form increased and 105 kDa precursor form decreased. It is well known that the N-glycans of integrins modulate the location and functions of integrins. The SHG44 cells transfected with antisense cDNA of GalT V demonstrated decreased Golgi localization of integrin beta1, strengthened the interaction between integrin alpha5 and beta1 subunit, and enhanced the adhesion ability to fibronectin and the level of focal adhesion kinase phosphorylation. Our results suggested that the down-regulation of the expression of GalT V could promote the expression of cell surface integrin beta1 and subsequently inhibit glioma malignant phenotype.
Collapse
Affiliation(s)
- Xiaoning Chen
- Key Laboratory of Medical Molecular Virology Ministry of Education and Health, Gene Research Center, Shanghai Medical College and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
van der Voort van Zyp J, Conway WC, Thamilselvan V, Polin L, Basson MD. Divalent cations influence colon cancer cell adhesion in a murine transplantable tumor model. Am J Surg 2005; 190:701-707. [PMID: 16226943 DOI: 10.1016/j.amjsurg.2005.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cancer cells adhere principally by integrins, matrix receptors that may be influenced by divalent cations. Surgical wound fluid is high in Mg2+ and low in Ca2+. We hypothesized that Mg+ and Mn2+ promote perioperative adhesion of shed cancer cells to surgical sites and that washing surgical wounds with Ca2+ inhibits implantation. METHODS We tested our hypothesis in a murine colon 26 adenocarcinoma model. We added 10 mmol/L CaCl2, 0.25 mmol/L MgCl2, or 0.5 mmol/L MnCl2 to suspended murine colon 26 cancer cells and placed these suspensions into wounds in anesthetized mice. After 30 minutes, we washed away nonadherent cells. In some studies, we 51Cr-labeled the cells and assayed tumor adhesion by wound radioactivity. In parallel studies, we closed the wounds and observed the mice for 90 days. RESULTS Mg2+ increased adhesion to 188% +/- 15% of control (n = 10, P < .001) and Mn2+ to 130% +/- 6% (n = 7, P < .001). However, Ca2+ inhibited adhesion to 61% +/- 12% (n = 7, P = .006) of control. Seventy-two percent of survival controls developed tumors during follow-up. Mg2+ and Mn2+ stimulated tumor formation to 96% and 92%, respectively, but adding Ca2+ to the wounds reduced subsequent tumor formation to 56% without altering serum Ca2+. The survival curves each differed significantly by log-rank test (P < .01 each). All pair-wise multiple comparisons were significant (Holm-Sidak, P < .05 each). CONCLUSION Thus, the high Mg2+ in endogenous wound fluid may potentiate tumor cell adhesion. However, 10 micromol/L Ca2+ inhibits cancer cell adhesion to murine wounds and subsequent tumor development. Irrigating with dilute CaCl2 could decrease local tumor recurrence by inhibiting the adhesion of shed tumor cells.
Collapse
|
28
|
Momberger T, Levick J, Mason R. Hyaluronan secretion by synoviocytes is mechanosensitive. Matrix Biol 2005; 24:510-9. [PMID: 16226884 PMCID: PMC1413575 DOI: 10.1016/j.matbio.2005.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/28/2022]
Abstract
Hyaluronan (HA) is an essential component of synovial interstitial matrix and synovial fluid, but the link between its production and joint use is unclear. HA secretion is enhanced by joint distension in vivo, but direct proof that synoviocytes exhibit mechanosensitive HA secretion is lacking. We tested this in vitro. Primary rabbit synoviocyte (PRS) cultures from microdissected synovial intima were subjected to 180 min of maintained 10% static stretch, or to 10 min of 10% static stretch followed by 170 min relaxation, in a Flexcell 2000 apparatus. Stretch stimulated HA secretion into the medium over 3 h by 57%. Notably, a short stretch (10 min) was as effective as sustained stretch. Actinomycin D and cycloheximide abolished stretch-stimulated HA secretion and also reduced basal HA secretion rate. RT-PCR showed that HAS2 was the major hyaluronan synthase expressed, but there was no increase in HAS2 mRNA (or other isoforms) in continuously stretched cells, and only a small increase (20%) at 180 min in cells stretched for the first 10-30 min. However HAS2 transcription increased 10-fold in response to TGF-beta1 and IL-1beta. Thus HA secretion by intimal synoviocytes is regulated by a mechanosensitive pathway which depends on transcription and de novo protein synthesis, possibly of HAS2, but also of other proteins involved in HA secretion.
Collapse
Affiliation(s)
- T.S. Momberger
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - J.R. Levick
- Physiology, Basic Medical Sciences, St. George’s Hospital Medical School, London SW17 0RE, United Kingdom
| | - R.M. Mason
- Renal Section, Division of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
- Corresponding author. Tel.: +44 208 383 2718; fax: +44 208 383 2062. E-mail address: (R.M. Mason)
| |
Collapse
|
29
|
Larson RS, Brown DC, Ye C, Hjelle B. Peptide antagonists that inhibit Sin Nombre virus and hantaan virus entry through the beta3-integrin receptor. J Virol 2005; 79:7319-26. [PMID: 15919886 PMCID: PMC1143646 DOI: 10.1128/jvi.79.12.7319-7326.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Specific therapy is not available for the treatment of hantavirus cardiopulmonary syndrome caused by Sin Nombre virus (SNV). The entry of pathogenic hantaviruses into susceptible human cells is dependent upon expression of the alpha(v)beta(3) integrin, and transfection of human beta(3) integrin is sufficient to confer infectibility onto CHO (Chinese hamster ovary) cells. Furthermore, pretreatment of susceptible cells with anti-beta(3) antibodies such as c7E3 or its Fab fragment ReoPro prevents hantavirus entry. By using repeated selection of a cyclic nonamer peptide phage display library on purified alpha(v)beta(3), we identified 70 peptides that were competitively eluted with ReoPro. Each of these peptides was examined for its ability to reduce the number of foci of SNV strain SN77734 in a fluorescence-based focus reduction assay according to the method of Gavrilovskaya et al. (I. N. Gavrilovskaya, M. Shepley, R. Shaw, M. H. Ginsberg, and E. R. Mackow, Proc. Natl. Acad. Sci. USA 95:7074-7079, 1998). We found that 11 peptides reduced the number of foci to a greater extent than did 80 mug/ml ReoPro when preincubated with Vero E6 cells. In addition, 8 of the 70 peptides had sequence similarity to SNV glycoproteins. We compared all 18 peptide sequences (10 most potent, 7 peptides with sequence similarity to hantavirus glycoproteins, and 1 peptide that was in the group that displayed the greatest potency and had significant sequence similarity) for their abilities to inhibit SNV, Hantaan virus (HTNV), and Prospect Hill virus (PHV) infection. There was a marked trend for the peptides to inhibit SNV and HTNV to a greater extent than they inhibited PHV, a finding that supports the contention that SNV and HTNV use beta(3) integrins and PHV uses a different receptor, beta1 integrin. We then chemically synthesized the four peptides that showed the greatest ability to neutralize SNV. These peptides inhibited viral entry in vitro as free peptides outside of the context of a phage. Some combinations of peptides proved more inhibitory than did individual peptides. In all, we have identified novel peptides that inhibit entry by SNV and HTNV via beta(3) integrins and that can be used as lead compounds for further structural optimization and consequent enhancement of activity.
Collapse
Affiliation(s)
- Richard S Larson
- UNM School of Medicine, 2325 Camino de Salud, CRF 223, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
30
|
Xu YH, Grabowski GA. Translation modulation of acid beta-glucosidase in HepG2 cells: participation of the PKC pathway. Mol Genet Metab 2005; 84:252-64. [PMID: 15694175 DOI: 10.1016/j.ymgme.2004.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/08/2004] [Accepted: 10/11/2004] [Indexed: 11/26/2022]
Abstract
Acid beta-glucosidase (GCase) is the enzyme deficient in Gaucher disease, a prototypical inherited metabolic error for enzyme and gene therapy. An 80 kDa mammalian cytoplasmic translational control protein (TCP80) modulates GCase translation in vitro and ex vivo by interacting with the 5' coding region of GCase RNA. Ten predicted PKC phosphorylation sites (Ser- or Thr-) are in the TCP80 protein. Phosphorylation of TCP80 in vitro by PKC greatly enhanced its translational inhibitory function using in vitro translation assays; binding of GCase mRNA to TCP80 was unaltered. Conversely, de-phosphorylation of TCP80 reduced its translational inhibitory function. Phosphorylation-related modulation of GCase mRNA translation also was studied in HepG2 cells. GCase expression (protein and activity levels) in HepG2 cells increased (>2-fold) in cells treated with bisindolylmaleimide (BIM), a highly selective PKC specific inhibitor. This correlated with a 90% reduction in TCP80 phosphorylation in the presence of BIM. The amount of TCP80 protein in cytoplasm and its RNA-binding activity were unchanged. These experiments indicate that GCase mRNA translation is modulated by PKC signaling pathways that are mediated through TCP80. These findings indicate potential broader impacts of the TCP/PKC system on expression of this and other genes of therapeutic interest.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, The Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
31
|
Muramatsu H, Zou P, Suzuki H, Oda Y, Chen GY, Sakaguchi N, Sakuma S, Maeda N, Noda M, Takada Y, Muramatsu T. alpha4beta1- and alpha6beta1-integrins are functional receptors for midkine, a heparin-binding growth factor. J Cell Sci 2004; 117:5405-15. [PMID: 15466886 DOI: 10.1242/jcs.01423] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Midkine is a heparin-binding growth factor that promotes the growth, survival, migration and differentiation of various target cells. So far, receptor-type protein tyrosine phosphatase zeta, low-density-lipoprotein-receptor-related protein and anaplastic lymphoma kinase have been identified as receptors for midkine. We found beta1 integrin in midkine-binding proteins from 13-day-old mouse embryos. beta1-Integrin bound to a midkine-agarose column and was eluted mostly with EDTA. Further study revealed that the alpha-subunits capable of binding to midkine were alpha4 and alpha6. Purified alpha4beta1- and alpha6beta1-integrins bound midkine. Anti-alpha4 antibody inhibited the midkine-dependent migration of osteoblastic cells, and anti-alpha6 antibody inhibited the midkine-dependent neurite outgrowth of embryonic neurons. After midkine treatment, tyrosine phosphorylation of paxillin, an integrin-associated molecule, was transiently increased in osteoblastic cells. Therefore, we concluded that alpha4beta1- and alpha6beta1-integrins are functional receptors for midkine. We observed that the low-density-lipoprotein-receptor-related-protein-6 ectodomain was immunoprecipitated with alpha6beta1-integrin and alpha4beta1-integrin. The low-density-lipoprotein-receptor-related-protein-6 ectodomain was also immunoprecipitated with receptor-type protein tyrosine phosphatase zeta. alpha4beta1- and alpha6beta1-Integrins are expected to co-operate with other midkine receptors, possibly in a multimolecular complex that contains other midkine receptors.
Collapse
Affiliation(s)
- Hisako Muramatsu
- Department of Biochemistry and Division of Disease Models, Center for Neural Disease and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Richard O Hynes
- Howard Hughes Medical Institute, Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Abstract
Alpha3beta1 integrin has been considered to be a mysterious adhesion molecule due to the pleiotropy in its ligand-binding specificity. However, recent studies have identified laminin isoforms as high-affinity ligands for this integrin, and demonstrated that alpha3beta1 integrin plays a number of essential roles in development and differentiation, mainly by mediating the establishment and maintenance of epithelial tissues. Furthermore, alpha3beta1 integrin is also implicated in many other biological phenomena, including cell growth and apoptosis, angiogenesis and neural functions. This integrin receptor forms complexes with various other membrane proteins, such as the transmembrane-4 superfamily proteins (tetraspanins), cytoskeletal proteins and signaling molecules. Recently, lines of evidence have been reported showing that complex formation regulates integrin functions in cell adhesion and migration, signal transduction across cell membranes, and cytoskeletal organization. In addition to these roles in physiological processes, alpha3beta1 integrin performs crucial functions in various pathological processes, especially in wound healing, tumor invasion and metastasis, and infection by pathogenic microorganisms.
Collapse
Affiliation(s)
- Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
34
|
Bellis SL. Variant glycosylation: an underappreciated regulatory mechanism for β1 integrins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:52-60. [PMID: 15157607 DOI: 10.1016/j.bbamem.2004.03.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 03/24/2004] [Accepted: 03/31/2004] [Indexed: 01/07/2023]
Abstract
Although it has been known for many years that beta1 integrins undergo differential glycosylation in accordance with changes in cell phenotype, the potential role of N-glycosylation as a modulator of integrin function has received little attention. One reason for the relatively limited interest in this topic likely relates to the fact that much of the prior research was correlative in nature. However, new results now bolster the hypothesis that there is a causal relationship between variant glycosylation and altered integrin activity. In this review, the evidence for variant glycosylation as a regulatory mechanism for beta1 integrins are summarized, with particular emphasis on: (1). outlining the instances in which cell phenotypic variation is associated with differential beta1 glycosylation, (2). describing the specific alterations in glycan structure that accompany phenotypic changes and (3). presenting potential mechanisms by which variant glycosylation might regulate integrin function.
Collapse
Affiliation(s)
- Susan L Bellis
- Department of Physiology and Biophysics, University of Alabama at Birmingham, MCLM 982A, 1918 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
35
|
Stefansson A, Armulik A, Nilsson I, von Heijne G, Johansson S. Determination of N- and C-terminal borders of the transmembrane domain of integrin subunits. J Biol Chem 2004; 279:21200-5. [PMID: 15016834 DOI: 10.1074/jbc.m400771200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies on the membrane-cytoplasm interphase of human integrin subunits have shown that a conserved lysine in subunits alpha(2), alpha(5), beta(1), and beta(2) is embedded in the plasma membrane in the absence of interacting proteins (Armulik, A., Nilsson, I., von Heijne, G., and Johansson, S. (1999) in J. Biol. Chem. 274, 37030-37034). Using a glycosylation mapping technique, we here show that alpha(10) and beta(8), two subunits that deviate significantly from the integrin consensus sequences in the membrane-proximal region, were found to have the conserved lysine at a similar position in the lipid bilayer. Thus, this organization at the C-terminal end of the transmembrane (TM) domain seems likely to be general for all 24 integrin subunits. Furthermore, we have determined the N-terminal border of the TM domains of the alpha(2), alpha(5), alpha(10), beta(1), and beta(8) subunits. The TM domain of subunit beta(8) is found to be 22 amino acids long, with a second basic residue (Arg(684)) positioned just inside the membrane at the exoplasmic side, whereas the lipidembedded domains of the other subunits are longer, varying from 25 (alpha(2)) to 29 amino acids (alpha(10)). These numbers implicate that the TM region of the analyzed integrins (except beta(8)) would be tilted or bent in the membrane. Integrin signaling by transmembrane conformational change may involve alteration of the position of the segment adjacent to the conserved lysine. To test the proposed "piston" model for signaling, we forced this region at the C-terminal end of the alpha(5) and beta(1) TM domains out of the membrane into the cytosol by replacing Lys-Leu with Lys-Lys. The mutation was found to not alter the position of the N-terminal end of the TM domain in the membrane, indicating that the TM domain is not moving as a piston. Instead the shift results in a shorter and therefore less tilted or bent TM alpha-helix.
Collapse
Affiliation(s)
- Anne Stefansson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
36
|
Pons V, Pérès C, Teulié JM, Nauze M, Mus M, Rolland C, Collet X, Perret B, Gassama-Diagne A, Hullin-Matsuda F. Enterophilin-1 Interacts with Focal Adhesion Kinase and Decreases β1 Integrins in Intestinal Caco-2 Cells. J Biol Chem 2004; 279:9270-7. [PMID: 14630935 DOI: 10.1074/jbc.m309764200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intestinal cell growth and differentiation are tightly regulated by growth factors and extracellular matrix components along the crypt-villus axis. We previously described enterophilin-1 (Ent-1) as a new intestinal protein associated with growth arrest and enterocyte differentiation. Ent-1 interacted with sorting nexin 1 and decreased cell surface epidermal growth factor receptor. Because beta(1) integrins are mostly found in vivo in the proliferative crypt cells, we investigated the role of Ent-1 in the fate of beta(1) integrin subunits. In undifferentiated intestinal Caco-2 cells, overexpression of Ent-1 induces a marked decrease of alpha(5)beta(1) integrin pools, whereas alpha(2)beta(1) integrin is weakly affected. Conversely, overexpression of sorting nexin 1 has no effect on integrin levels despite its ability to interact with Ent-1. Interestingly, we identified focal adhesion kinase as a new Ent-1 partner using yeast two-hybrid screening and co-precipitation experiments. Furthermore by confocal microscopy, we observed that Ent-1 and beta(1) integrins partly co-localize on vesicular structures, suggesting a role for Ent-1 in integrin trafficking. Because focal adhesion kinase is able to bind both Ent-1 and beta(1) integrins, the kinase might act as a molecular bridge between the two proteins. Altogether, these results support a role of Ent-1 in regulating beta(1) integrin expression that could favor intestinal differentiation.
Collapse
Affiliation(s)
- Véronique Pons
- Institut Fédératif de Recherche Claude de Préval, IFR30, INSERM Unité 563, Département Lipoprotéines et Médiateurs Lipidiques, Hôpital Purpan, 31059 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakano S, Kishi H, Ogawa H, Yasue H, Okano A, Okuda K. Trophinin is expressed in the porcine endometrium during the estrous cycle. J Reprod Dev 2004; 49:127-34. [PMID: 14967937 DOI: 10.1262/jrd.49.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated endometrial expression of trophinin mRNA and protein, homophilic cell adhesion molecules, during the estrous cycle of gilts. An immunopositive reaction for trophinin was observed in the luminal and glandular epithelia of the endometrium at all stages of the estrous cycle, but not in endometrial stromal cells or the myometrium. A partial coding sequence of porcine trophinin was similar to sequences in humans and mice, with homologies of 75% and 70%, respectively. As in humans and mice, the trophinin gene is expressed in the endometrium. Trophinin, however, is expressed in the endometrium of the pig throughout the estrous cycle, higher expression levels were observed at some points of the luteal phase, as in humans. These findings suggest that regulation of trophinin gene expression in the pig is different from that in mice, but similar to that in humans. Furthermore, the present results suggest that the pig might be a suitable model for studying the physiological importance of trophinin in early pregnancy in humans.
Collapse
Affiliation(s)
- Saeko Nakano
- Genome Research Group, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Tantivejkul K, Kalikin LM, Pienta KJ. Dynamic process of prostate cancer metastasis to bone. J Cell Biochem 2004; 91:706-17. [PMID: 14991762 DOI: 10.1002/jcb.10664] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostate cancer metastasis to the bone occurs at high frequency in patients with advanced disease, causing significant morbidity and mortality. Over a century ago, the "seed and soil" theory was proposed to explain organ-specific patterns of metastases. Today, this theory continues to be relevant as we continue to discover factors involved in the attraction and subsequent growth of prostate cancer cells to the bone. These include the accumulation of genetic changes within cancer cells, the preferential binding of cancer cells to bone marrow endothelial cells, and the release of cancer cell chemoattractants from bone elements. A key mediator throughout this metastatic process is the integrin family of proteins. Alterations in integrin expression and function promote dissociation of cancer cells from the primary tumor mass and migration into the blood stream. Once in circulation, integrins facilitate cancer cell survival through interactions between other cancer cells, platelets, and endothelial cells of the target bone. Furthermore, dynamic changes in integrins and in integrin-associated signal transduction aid in the extravasation of cancer cells into the bone and in expansion to a clinically relevant metastasis. Thus, we will review the critical roles of integrins in the process of prostate cancer bone metastasis, from the escape of cancer cells from the primary tumor, to their survival in the harsh "third microenvironment" of the circulation, and ultimately to their attachment and growth at distant bone sites.
Collapse
Affiliation(s)
- Kwanchanit Tantivejkul
- Department of Urology, Division of Hematology and Oncology, The Michigan Urology Center at The University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
39
|
Salicioni AM, Gaultier A, Brownlee C, Cheezum MK, Gonias SL. Low density lipoprotein receptor-related protein-1 promotes beta1 integrin maturation and transport to the cell surface. J Biol Chem 2003; 279:10005-12. [PMID: 14699139 DOI: 10.1074/jbc.m306625200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein receptor-related protein-1 (LRP-1) mediates the endocytosis of multiple plasma membrane proteins and thereby models the composition of the cell surface. LRP-1 also functions as a catabolic receptor for fibronectin, limiting fibronectin accumulation in association with cells. The goal of the present study was to determine whether LRP-1 regulates cell surface levels of the beta(1) integrin subunit. We hypothesized that LRP-1 may down-regulate cell surface beta(1) by promoting its internalization; however, unexpectedly, LRP-1 expression was associated with a substantial increase in cell surface beta(1) integrin in two separate cell lines, murine embryonic fibroblasts (MEFs) and CHO cells. The total amount of beta(1) integrin was unchanged because LRP-1-deficient cells retained increased amounts of beta(1) in the endoplasmic reticulum (ER). Expression of human LRP-1 in LRP-1-deficient MEFs reversed the shift in subcellular beta(1) integrin distribution. Metabolic labeling experiments demonstrated that the precursor form of newly synthesized beta(1) integrin (p105) is converted into mature beta(1) (p125) more slowly in LRP-1-deficient cells. Although low levels of cell surface beta(1) integrin, in LRP-1-deficient MEFs, were associated with decreased adhesion to fibronectin, the subcellular distribution of beta(1) integrin was most profoundly dependent on LRP-1 only after the cell cultures became confluent. A mutagen-treated CHO cell line, in which LRP-1 is expressed but retained in the secretory pathway, also demonstrated nearly complete ER retention of beta(1) integrin. These studies support a model in which LRP-1 either directly or indirectly promotes maturation of beta(1) integrin precursor and thereby increases the level of beta(1) integrin at the cell surface.
Collapse
Affiliation(s)
- Ana María Salicioni
- Department of Pathology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
40
|
Liu DG, Jiang QH, Wei YY, Sun L, Fu BB, Zhao FK, Zhou Q. Gene expression profile favoring phenotypic reversion: a clue for mechanism of tumor suppression by NF-IL6 3′UTR. Cell Res 2003; 13:509-14. [PMID: 14728809 DOI: 10.1038/sj.cr.7290195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transfection of cDNA in 3'untranslated region of human nuclear factor for interleukin-6 (NF-IL6 3'UTR) induced tumor suppression in a human hepatoma cell line. cDNA array analysis was used to reveal changes in gene expression profile leading to tumor suppression The results indicate that this suppression was not due to activation of dsRNA-dependent protein kinase, nor to inactivation of oncogenes; rather, all the changes in expression of known genes, induced by NF-IL6 3'UTR cDNA may be ascribed to the suppression of cellular malignancy. Therefore, our results imply that this 3'untranslated region may have played role of a regulator of gene expression profile.
Collapse
MESH Headings
- 3' Untranslated Regions/metabolism
- Animals
- CCAAT-Enhancer-Binding Protein-beta/genetics
- Carcinogenicity Tests
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Clone Cells
- DNA, Complementary/analysis
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Time Factors
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Ding Gan Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Moro L, Perlino E, Marra E, Languino LR, Greco M. Regulation of beta1C and beta1A integrin expression in prostate carcinoma cells. J Biol Chem 2003; 279:1692-702. [PMID: 14585844 DOI: 10.1074/jbc.m307857200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
beta(1C) and beta(1A) integrins are two splice variants of the human beta(1) integrin subfamily that act as an inhibitor and a stimulator of cell proliferation, respectively. In neoplastic prostate epithelium, both these variants are down-regulated at the mRNA level, but only beta(1C) protein levels are reduced. We used an experimental model consisting of PNT1A, a normal immortalized prostate cell line, and LNCaP and PC-3, two prostate carcinoma cell lines, to investigate both the transcription/post-transcription and translation/post-translation processes of beta(1C) and beta(1A). Transcriptional regulation played the key role for the reduction in beta(1C) and beta(1A) mRNA expression in cancer cells, as beta(1C) and beta(1A) mRNA half-lives were comparable in normal and cancer cells. beta(1C) translation rate decreased in cancer cells in agreement with the decrease in mRNA levels, whereas beta(1A) translation rate increased more than 2-fold, despite the reduction in mRNA levels. Both beta(1C) and beta(1A) proteins were degraded more rapidly in cancer than in normal cells, and pulse-chase experiments showed that intermediates and/or rates of beta(1C) and beta(1A) protein maturation differ in cancer versus normal cells. Inhibition of either calpain- or lysosomal-mediated proteolysis increased both beta(1C) and beta(1A) protein levels, the former in normal but not in cancer cells and the latter in both cell types, albeit at a higher extent in cancer than in normal cells. Interestingly, inhibition of the ubiquitin proteolytic pathway increased expression of ubiquitinated beta(1C) protein without affecting beta(1A) protein levels in cancer cells. These results show that transcriptional, translational, and post-translational processes, the last involving the ubiquitin proteolytic pathway, contribute to the selective loss of beta(1C) integrin, a very efficient inhibitor of cell proliferation, in prostate malignant transformation.
Collapse
Affiliation(s)
- Loredana Moro
- Institute of Biomembranes and Bioenergetics, National Research Council (C.N.R.), Via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | |
Collapse
|
42
|
Krokhin OV, Cheng K, Sousa SL, Ens W, Standing KG, Wilkins JA. Mass Spectrometric Based Mapping of the Disulfide Bonding Patterns of Integrin α Chains. Biochemistry 2003; 42:12950-9. [PMID: 14596610 DOI: 10.1021/bi034726u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integrins are one of the major mediators of cellular adherence. Structurally the component alpha and beta chains are characterized by extensive intrachain disulfide bonding. The assignment of these bonds is currently based on homology with the chains of the integrin alphaIIbbeta3. However, recent crystallographic analysis of the soluble alphaVbeta3 construct indicates that the alphaV chain displays bonding patterns different from those predicted for alphaIIb. In an effort to define the disulfide bonding patterns in integrins, we have used mass spectrometric based approaches to map the human alpha3, alpha5, alphaV, and alphaIIb. The results indicate that there are differences in the disulfide patterns of the alpha chains. These do not correlate with the integrin capacity to bind ligands as all integrins used in the present study displayed functional activity. The differences were observed in the bonding patterns linking the heavy (H) and light (L) components of the of the alpha chains. It was also possible to assign the location in alpha5 of an additional disulfide bond involving a pair of cysteines not present in alphaV or alphaIIb. This second bond between the H and L chains of alpha5 has not been previously described. These results indicate that not all integrin species display the same disulfide bonding patterns. They also highlight the need for caution in the use of assignments based on sequence homology.
Collapse
Affiliation(s)
- Oleg V Krokhin
- Manitoba Centre for Proteomics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | | | | | | | | | | |
Collapse
|
43
|
Fornaro M, Plescia J, Chheang S, Tallini G, Zhu YM, King M, Altieri DC, Languino LR. Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway. J Biol Chem 2003; 278:50402-11. [PMID: 14523021 DOI: 10.1074/jbc.m307627200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Integrins are cell surface heterodimeric transmembrane receptors that, in addition to mediating cell adhesion to extracellular matrix proteins modulate cell survival. This mechanism may be exploited in cancer where evasion from apoptosis invariably contributes to cellular transformation. The molecular mechanisms responsible for matrix-induced survival signals begin to be elucidated. Here we report that the inhibitor of apoptosis survivin is expressed in vitro in human prostate cell lines with the highest levels present in aggressive prostate cancer cells such as PC3 and LNCaP-LN3 as well as in vivo in prostatic adenocarcinoma. We also show that interference with survivin in PC3 prostate cancer cells using a Cys84--> Ala dominant negative mutant or survivin antisense cDNA causes nuclear fragmentation, hypodiploidy, cleavage of a 32-kDa proform caspase-3 to active caspase-3, and proteolysis of the caspase substrate poly(ADP-ribose) polymerase. We demonstrate that in the aggressive PC3 cell line, adhesion to fibronectin via beta1 integrins results in up-regulation of survivin and protection from apoptosis induced by tumor necrosis factor-alpha (TNF-alpha). In contrast, survivin is not up-regulated by cell adhesion in the non-tumorigenic LNCaP cell line. Dominant negative survivin counteracts the ability of fibronectin to protect cells from undergoing apoptosis, whereas wild-type survivin protects non-adherent cells from TNF-alpha-induced apoptosis. Evidence is provided that expression of beta1A integrin is necessary to protect non-adherent cells transduced with survivin from TNF-alpha-induced apoptosis. In contrast, the beta1C integrin, which contains a variant cytoplasmic domain, is not able to prevent apoptosis induced by TNF-alpha in non-adherent cells transduced with survivin. Finally, we show that regulation of survivin levels by integrins are mediated by protein kinase B/AKT. These findings indicate that survivin is required to maintain a critical anti-apoptotic threshold in prostate cancer cells and identify integrin signaling as a crucial survival pathway against death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Mara Fornaro
- Department of Cancer Biology and the Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Matlin KS, Haus B, Zuk A. Integrins in epithelial cell polarity: using antibodies to analyze adhesive function and morphogenesis. Methods 2003; 30:235-46. [PMID: 12798138 DOI: 10.1016/s1046-2023(03)00030-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial cells polarize in response to cell-substratum and cell-cell adhesive interactions. Contacts between cells and proteins of the extracellular matrix are mediated by integrin receptors. Of the 24 recognized integrin heterodimers, epithelial cells typically express four or more distinct integrins, with the exact complement dependent on the tissue of origin. Investigation of the roles of integrins in epithelial cell polarization has depended on the use of function-blocking antibodies both to determine ligand specificity of individual integrins and to disrupt and redirect normal morphogenesis. In this article we describe techniques for employing function-blocking anti-integrin antibodies in adhesion assays of the polarized Madin-Darby canine kidney (MDCK) cell line and to demonstrate the involvement of beta1 integrins in collagen-induced tubulocyst formation. These techniques can be easily expanded to other antibodies and epithelial cell lines to characterize specific functions of individual integrins in epithelial morphogenesis.
Collapse
Affiliation(s)
- Karl S Matlin
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | |
Collapse
|
45
|
Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, Poulin B, Yamada KM. Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J Biol Chem 2003; 278:18671-81. [PMID: 12637511 DOI: 10.1074/jbc.m300879200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.
Collapse
Affiliation(s)
- Roumen Pankov
- Craniofacial Developmental Biology and Regeneration Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Cordes N, van Beuningen D. Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase-3beta (GSK-3beta) in vitro. Br J Cancer 2003; 88:1470-9. [PMID: 12778079 PMCID: PMC2741045 DOI: 10.1038/sj.bjc.6600912] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion to extracellular matrix (ECM) is thought to confer resistance against cell-damaging agents, that is, drugs and radiation, in tumour and normal cells in vitro. The dependence of cell survival on beta1-integrin-linked kinase (ILK), protein kinase Balpha/Akt (PKBalpha/Akt) and glycogen synthase kinase-3beta (GSK-3beta) activity, which participate in beta1-integrin signalling and cell cycle progression was investigated as a function of radiation exposure. Colony-formation assays on polystyrene, fibronectin (FN), laminin (LA), bovine serum albumin (BSA) or poly-L-lysine (poly-L) (0-8 Gy), kinase assays, flow cytometric DNA and annexin-V analysis and immunoblotting were performed in nonirradiated and irradiated (2 or 6 Gy) A549 human lung cancer cells and CCD32 normal human lung fibroblasts. Cell contact to FN in contrast to polystyrene elevated basal ILK, PKBalpha/Akt and GSK-3beta kinase activities in A549 and CCD32 cells, as well as the basal amount of A549 G2 phase cells. Irradiation on FN or LA as compared to polystyrene, BSA or poly-L significantly improved cell survival. Following irradiation, kinase activities were stimulated strongly on polystyrene but showed to be less prominent on FN, which was because of the FN-related basal induction. Following irradiation, FN compared to polystyrene enlarged and prolonged G2 arrest in both the cell lines. For the analysis of phosphatidylinositol-3 kinase (PI3-K) dependence of protein kinases and cell cycle transition, the PI3-K inhibitors LY294002 and wortmannin were used showing decreased kinase activities, antiproliferative and radiation-dependent G2 accumulation-abrogating effects accompanied by downregulation of cyclin D1 and phospho-pRb in cells attached to polystyrene. Fibronectin partly abrogated these effects PI3-K-independently. These findings suggest a novel pathway that makes direct phosphorylation of GSK-3beta by ILK feasible after irradiation. Conclusively, the data indicate that ILK, PKBalpha/Akt and GSK-3beta are involved in modulations of the cell cycle after irradiation. These interactions are strictly dependent on ECM components in a cell line-specific manner. Our findings provide molecular insights into mechanisms likely to be important for ECM-dependent cell survival and cellular radioresistance as well as tumour growth.
Collapse
Affiliation(s)
- N Cordes
- Institute of Radiobiology, German Armed Forces Medical Academy, Neuherbergstrasse 11, 80937 Munich, Germany.
| | | |
Collapse
|
47
|
Kääriäinen M, Nissinen L, Kaufman S, Sonnenberg A, Järvinen M, Heino J, Kalimo H. Expression of alpha7beta1 integrin splicing variants during skeletal muscle regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1023-31. [PMID: 12213731 PMCID: PMC1867267 DOI: 10.1016/s0002-9440(10)64263-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrin alpha7beta1 is a laminin receptor, both subunits of which have alternatively spliced, developmentally regulated variants. In skeletal muscle beta1 has two major splice variants of the intracellular domain (beta1A and beta1D). alpha7X1 and alpha7X2 represent variants of the alpha7 ectodomain, whereas alpha7A and alpha7B are variants of the intracellular domain. Previously we showed that during early regeneration after transection injury of muscle alpha7 integrin mediates dynamic adhesion of myofibers along their lateral aspects to the extracellular matrix. Stable attachment of myofibers to the extracellular matrix occurs during the third week after injury, when new myotendinous junctions develop at the ends of the regenerating myofibers. Now we have analyzed the relative expression of beta1A/beta1D and alpha7A/alpha7B and alpha7X1/alpha7X2 isoforms during regeneration for 2 to 56 days after transection of rat soleus muscle using reverse transcriptase-polymerase chain reaction and immunohistochemistry. During early regeneration beta1A was the predominant isoform in both the muscle and scar tissue. Expression of muscle-specific beta1D was detected in regenerating myofibers from day 4 onwards, ie, when myogenic mitotic activity began to decrease, and it became more abundant with the progression of regeneration. alpha7B isoform predominated on day 2. Thereafter, the relative expression of alpha7A transcripts increased until day 7 with the concomitant appearance of alpha7A immunoreactivity on regenerating myofibers. Finally, alpha7B again became the predominant variant in highly regenerated myofibers. Similarly as in the controls, alpha7X1 and alpha7X2 isoforms were both expressed throughout the regeneration with a peak in alpha7X1 expression on day 4 coinciding with the dynamic adhesion stage. The results suggest that during regeneration of skeletal muscle the splicing of beta1 and alpha7 integrin subunits is regulated according to functional requirements. alpha7A and alpha7X1 appear to have a specific role during the dynamic phase of adhesion, whereas alpha7B, alpha7X2, and beta1D predominate during stable adhesion.
Collapse
Affiliation(s)
- Minna Kääriäinen
- Medical School and the Institute of Medical Technology, University of Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
48
|
Segat D, Comai R, Di Marco E, Strangio A, Cancedda R, Franzi AT, Tacchetti C. Integrins alpha(6A)beta 1 and alpha(6B)beta 1 promote different stages of chondrogenic cell differentiation. J Biol Chem 2002; 277:31612-22. [PMID: 12077132 DOI: 10.1074/jbc.m203471200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The differentiation of chondrocytes and of several other cell types is associated with a switch from the alpha(6B) to the alpha(6A) isoform of the laminin alpha(6)beta(1) integrin receptor. To define whether this event plays a functional role in cell differentiation, we used an in vitro model system that allows chick chondrogenic cells to remain undifferentiated when cultured in monolayer and to differentiate into chondrocytes when grown in suspension culture. We report that: (i) upon over-expression of the human alpha(6B), adherent chondrogenic cells differentiate to stage I chondrocytes (i.e. increased type II collagen, reduced type I collagen, fibronectin, alpha(5)beta(1) and growth rate, loss of fibroblast morphology); (ii) the expression of type II collagen requires the activation of p38 MAP kinase; (iii) the over-expression of alpha(6A) induces an incomplete differentiation to stage I chondrocytes, whereas no differentiation was observed in alpha(5) and mock-transfected control cells; (iv) a prevalence of the alpha(6A) subunit is necessary to stabilize the differentiated phenotype when cells are transferred to suspension culture. Altogether, these results indicate a functional role for the alpha(6B) to alpha(6A) switch in chondrocyte differentiation; the former promotes chondrocyte differentiation, and the latter is necessary in stabilizing the differentiated phenotype.
Collapse
Affiliation(s)
- Daniela Segat
- Dipartimento di Medicina Sperimentale, Sezione di Anatomia Umana, Universita' di Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y. Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Ib alpha under flow conditions: specific synergy of receptor-ligand interactions. Blood 2002; 100:136-42. [PMID: 12070018 DOI: 10.1182/blood.v100.1.136] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liposomes carrying both recombinant glycoprotein Ia/IIa (rGPIa/IIa) and Ib alpha (rGPIb alpha) (rGPIa/IIa-Ib alpha-liposomes) instantaneously and irreversibly adhered to the collagen surface in the presence of soluble von Willebrand factor (VWF) at high shear rates, in marked contrast with translocation of liposomes carrying rGPIb alpha alone on the VWF surface. In the absence of soluble VWF, the adhesion of rGPIa/IIa-Ib alpha-liposomes to the collagen surface decreased with increasing shear rates, similar to liposomes carrying rGPIa/IIa alone. While adhesion of liposomes with exofacial rGPIa/IIa and rGPIb alpha densities of 2.17 x 10(3) and 1.00 x 10(4) molecules per particle, respectively, was efficient at high shear rates, reduction in rGPIb alpha density to 5.27 x 10(3) molecules per particle resulted in decreased adhesion even in the presence of soluble VWF. A 50% reduction in the exofacial rGPIa/IIa density resulted in a marked decrease in the adhesive ability of the liposomes at all shear rates tested. The inhibitory effect of antibody against GPIb alpha (GUR83-35) on liposome adhesion was greater at higher shear rates. Further, the anti-GPIa antibody (Gi9) inhibited liposome adhesion more than GUR83-35 at all shear rates tested. These results suggest that the rGPIa/IIa-collagen interaction dominates the adhesion of rGPIa/IIa-Ib alpha-liposomes to the collagen surface at low shear rates, while the rGPIa/IIa-collagen and rGPIb alpha-VWF interaction complements each other, and they synergistically provide the needed functional integration required for liposome adhesion at high shear rates. This study thus has confirmed for the first time the proposed mechanisms of platelet adhesion to the collagen surface under flow conditions using the liposome system.
Collapse
Affiliation(s)
- Takako Nishiya
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
50
|
Di Simone N, Castellani R, Caliandro D, Caruso A. Antiphospholid antibodies regulate the expression of trophoblast cell adhesion molecules. Fertil Steril 2002; 77:805-11. [PMID: 11937138 DOI: 10.1016/s0015-0282(01)03258-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To examine the effect of antiphospholipid antibodies on trophoblast expression of adhesion molecules. DESIGN Primary cytotrophoblast cell cultures. SETTING Department of Obstetrics and Gynecology, Catholic University, Rome, Italy. PATIENT(S) Five normal pregnant women underwent uncomplicated vaginal delivery at 36 weeks of gestation. INTERVENTION(S) IgG antibodies were isolated from a patient with antiphospholipid syndrome and from a normal control subject, using protein-G Sepharose columns. Cytotrophoblast cells were dispersed in bicarbonate buffer containing trypsin and DNAse I. MAIN OUTCOME MEASURE(S) We investigated the effects of antiphospholipid antibodies on trophoblast adhesion molecules (alpha1 and alpha5 integrins, E and VE cadherins), both at the protein and mRNA levels. RESULT(S) The alpha1 and alpha5 integrins were present in trophoblast cells from 24 hours of culture. Treatment with IgG that were obtained from the patient with antiphospholipid syndrome significantly decreased alpha1 integrin and increased alpha5 integrin at both the mRNA and protein levels. Furthermore, IgG with antiphospholipid antibodies activities induced VE-cadherin down-regulation and the E-cadherin up-regulation at protein and mRNA levels compared with control IgG or untreated cells. CONCLUSION(S) The results suggest that the inadequate trophoblastic invasion, induced by antiphospholipid antibodies, can be the result of abnormal trophoblast adhesion molecules expression.
Collapse
Affiliation(s)
- Nicoletta Di Simone
- Department of Obstetrics and Gynecolgy, Universita' Cattolica del S. Cuore, Rome, Italy
| | | | | | | |
Collapse
|