1
|
Vu JT, Tavasoli KU, Sheedy CJ, Chowdhury SP, Mandjikian L, Bacal J, Morrissey MA, Richardson CD, Gardner BM. A genome-wide screen links peroxisome regulation with Wnt signaling through RNF146 and TNKS/2. J Cell Biol 2024; 223:e202312069. [PMID: 38967608 PMCID: PMC11223164 DOI: 10.1083/jcb.202312069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
Peroxisomes are membrane-bound organelles harboring metabolic enzymes. In humans, peroxisomes are required for normal development, yet the genes regulating peroxisome function remain unclear. We performed a genome-wide CRISPRi screen to identify novel factors involved in peroxisomal homeostasis. We found that inhibition of RNF146, an E3 ligase activated by poly(ADP-ribose), reduced the import of proteins into peroxisomes. RNF146-mediated loss of peroxisome import depended on the stabilization and activity of the poly(ADP-ribose) polymerases TNKS and TNKS2, which bind the peroxisomal membrane protein PEX14. We propose that RNF146 and TNKS/2 regulate peroxisome import efficiency by PARsylation of proteins at the peroxisome membrane. Interestingly, we found that the loss of peroxisomes increased TNKS/2 and RNF146-dependent degradation of non-peroxisomal substrates, including the β-catenin destruction complex component AXIN1, which was sufficient to alter the amplitude of β-catenin transcription. Together, these observations not only suggest previously undescribed roles for RNF146 in peroxisomal regulation but also a novel role in bridging peroxisome function with Wnt/β-catenin signaling during development.
Collapse
Affiliation(s)
- Jonathan T. Vu
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Katherine U. Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Connor J. Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Soham P. Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lori Mandjikian
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Meghan A. Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Chris D. Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
2
|
Vu JT, Tavasoli KU, Mandjikian L, Sheedy CJ, Bacal J, Morrissey MA, Richardson CD, Gardner BM. A genome-wide screen links peroxisome regulation with Wnt signaling through RNF146 and tankyrase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578667. [PMID: 38352406 PMCID: PMC10862876 DOI: 10.1101/2024.02.02.578667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Peroxisomes are membrane-bound organelles harboring metabolic enzymes. In humans, peroxisomes are required for normal development, yet the genes regulating peroxisome function remain unclear. We performed a genome-wide CRISPRi screen to identify novel factors involved in peroxisomal homeostasis. We found that inhibition of RNF146, an E3 ligase activated by poly(ADP-ribose), reduced the import of proteins into peroxisomes. RNF146-mediated loss of peroxisome import depended on the stabilization and activity of the poly(ADP-ribose) polymerase tankyrase, which binds the peroxisomal membrane protein PEX14. We propose that RNF146 and tankyrase regulate peroxisome import efficiency by PARsylation of proteins at the peroxisome membrane. Interestingly, we found that the loss of peroxisomes increased tankyrase and RNF146-dependent degradation of non-peroxisomal substrates, including the beta-catenin destruction complex component AXIN1, which was sufficient to alter the amplitude of beta-catenin transcription. Together, these observations not only suggest previously undescribed roles for RNF146 in peroxisomal regulation, but also a novel role in bridging peroxisome function with Wnt/beta-catenin signaling during development.
Collapse
Affiliation(s)
- Jonathan T Vu
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katherine U Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Lori Mandjikian
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Connor J Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Dahabieh MS, Huang F, Goncalves C, Flores González RE, Prabhu S, Bolt A, Di Pietro E, Khoury E, Heath J, Xu ZY, Rémy-Sarrazin J, Mann KK, Orthwein A, Boisvert FM, Braverman N, Miller WH, Del Rincón SV. Silencing PEX26 as an unconventional mode to kill drug-resistant cancer cells and forestall drug resistance. Autophagy 2021; 18:540-558. [PMID: 34074205 DOI: 10.1080/15548627.2021.1936932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth. To disturb peroxisome homeostasis, we enhanced pexophagy in HDACi-resistant cells via genetic silencing of peroxisome exportomer complex components (PEX1, PEX6, or PEX26). This consequently sensitized resistant cells to HDACi-mediated apoptosis, which was rescued by inhibiting ATM/ataxia-telangiectasia mutated (ATM serine/threonine kinase), a mediator of pexophagy. We subsequently engineered melanoma cells to stably repress PEX26 using CRISPR interference (CRISPRi). Melanoma cells with repressed PEX26 expression showed evidence of both increased pexophagy and peroxisomal matrix protein import defects versus single guide scrambled (sgSCR) controls. In vivo studies showed that sgPEX26 melanoma xenografts recurred less compared to sgSCR xenografts, following the development of resistance to mitogen-activated protein kinase (MAPK)-targeted therapy. Finally, prognostic analysis of publicly available datasets showed that low expression levels of PEX26, PEX6 and MTOR, were significantly associated with prolonged patient survival in lymphoma, lung cancer and melanoma cohorts. Our work highlighted that drugs designed to disrupt peroxisome homeostasis may serve as unconventional therapies to combat therapy resistance in cancer.Abbreviations: ABCD3/PMP70: ATP binding cassette subfamily D member 3; ACOX1: acyl-CoA oxidase 1; AP: autophagosome; COX: cytochrome c oxidase; CQ: chloroquine; CRISPRi: clustered regularly interspaced short palindromic repeats interference; DLBCL: diffuse large B-cell lymphoma; GO: gene ontology; dCas9: Cas9 endonuclease dead, or dead Cas9; HDACi: histone deacetylase inhibitors; IHC: Immunohistochemistry; LAMP2: lysosomal associated membrane protein 2; LCFAs: long-chain fatty acids; LFQ-MS: label-free quantitation mass spectrometry; LPC: lysophoshatidylcholine; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PBD: peroxisome biogenesis disorders; PTS1: peroxisomal targeting signal 1; ROS: reactive oxygen species; sgRNA: single guide RNA; VLCFAs: very-long chain fatty acids; Vor: vorinostat; WO: wash-off.
Collapse
Affiliation(s)
- Michael S Dahabieh
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| | - Fan Huang
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| | | | - Raúl Ernesto Flores González
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| | - Sathyen Prabhu
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| | - Alicia Bolt
- Lady Davis Institute, McGill University, Montréal, Canada
| | - Erminia Di Pietro
- Department of Human Genetics and Pediatrics, Research Institute of McGill University Children's Hospital, Montréal, Canada
| | - Elie Khoury
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| | - John Heath
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| | - Zi Yi Xu
- Lady Davis Institute, McGill University, Montréal, Canada
| | | | - Koren K Mann
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada.,Department of Oncology, McGill University, Montréal, Canada
| | - Alexandre Orthwein
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada.,Department of Oncology, McGill University, Montréal, Canada
| | | | - Nancy Braverman
- Department of Human Genetics and Pediatrics, Research Institute of McGill University Children's Hospital, Montréal, Canada
| | - Wilson H Miller
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada.,Department of Oncology, McGill University, Montréal, Canada
| | - Sonia V Del Rincón
- Lady Davis Institute, McGill University, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada.,Department of Oncology, McGill University, Montréal, Canada
| |
Collapse
|
4
|
Identification of a Homozygous PEX26 Mutation in a Heimler Syndrome Patient. Genes (Basel) 2021; 12:genes12050646. [PMID: 33926089 PMCID: PMC8146857 DOI: 10.3390/genes12050646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to identify the molecular genetic etiology of an 8-year-old boy with amelogenesis imperfecta in permanent dentition. Bilateral cochlear implants were placed due to sensorineural hearing loss, and there was no other family member with a similar phenotype. Peripheral blood samples were collected with the understanding and written consent of the participating family members. A constitutional chromosome study was performed for the proband. Genomic DNA was isolated, and whole exome sequencing was performed. A series of bioinformatic analyses were performed with the obtained paired-end sequencing reads, and the variants were filtered and annotated with dbSNP147. There was no abnormality in the constitutional chromosome study. Whole exome sequencing analysis with trio samples identified a homozygous mutation (c.506T>C, p. (Leu169Pro)) in the PEX26 gene. We verified “temperature sensitivity (ts)” of patient-derived Pex26-L169P by expression in pex26 CHO mutant ZP167 cells to determine the effect of the L169P mutation on Pex26 function. The L169P mutation causes a mild ts-cellular phenotype representing the decreased peroxisomal import of catalase. This study supports the finding that the recessive mutations in PEX26 are associated with Heimler syndrome and demonstrates the importance of an early and correct diagnosis.
Collapse
|
5
|
Yamashita K, Tamura S, Honsho M, Yada H, Yagita Y, Kosako H, Fujiki Y. Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery. J Cell Biol 2021; 219:152047. [PMID: 32854114 PMCID: PMC7659713 DOI: 10.1083/jcb.202001003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 01/27/2023] Open
Abstract
Peroxisomal matrix proteins are imported into peroxisomes via membrane-bound docking/translocation machinery. One central component of this machinery is Pex14p, a peroxisomal membrane protein involved in the docking of Pex5p, the receptor for peroxisome targeting signal type 1 (PTS1). Studies in several yeast species have shown that Pex14p is phosphorylated in vivo, whereas no function has been assigned to Pex14p phosphorylation in yeast and mammalian cells. Here, we investigated peroxisomal protein import and its dynamics in mitotic mammalian cells. In mitotically arrested cells, Pex14p is phosphorylated at Ser-232, resulting in a lower import efficiency of catalase, but not the majority of proteins including canonical PTS1 proteins. Conformational change induced by the mitotic phosphorylation of Pex14p more likely increases homomeric interacting affinity and suppresses topological change of its N-terminal part, thereby giving rise to the retardation of Pex5p export in mitotic cells. Taken together, these data show that mitotic phosphorylation of Pex14p and consequent suppression of catalase import are a mechanism of protecting DNA upon nuclear envelope breakdown at mitosis.
Collapse
Affiliation(s)
- Koichiro Yamashita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Hiroto Yada
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yagita
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
6
|
Dubreuil MM, Morgens DW, Okumoto K, Honsho M, Contrepois K, Lee-McMullen B, Traber GM, Sood RS, Dixon SJ, Snyder MP, Fujiki Y, Bassik MC. Systematic Identification of Regulators of Oxidative Stress Reveals Non-canonical Roles for Peroxisomal Import and the Pentose Phosphate Pathway. Cell Rep 2021; 30:1417-1433.e7. [PMID: 32023459 DOI: 10.1016/j.celrep.2020.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/07/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play critical roles in metabolism and disease, yet a comprehensive analysis of the cellular response to oxidative stress is lacking. To systematically identify regulators of oxidative stress, we conducted genome-wide Cas9/CRISPR and shRNA screens. This revealed a detailed picture of diverse pathways that control oxidative stress response, ranging from the TCA cycle and DNA repair machineries to iron transport, trafficking, and metabolism. Paradoxically, disrupting the pentose phosphate pathway (PPP) at the level of phosphogluconate dehydrogenase (PGD) protects cells against ROS. This dramatically alters metabolites in the PPP, consistent with rewiring of upper glycolysis to promote antioxidant production. In addition, disruption of peroxisomal import unexpectedly increases resistance to oxidative stress by altering the localization of catalase. Together, these studies provide insights into the roles of peroxisomal matrix import and the PPP in redox biology and represent a rich resource for understanding the cellular response to oxidative stress.
Collapse
Affiliation(s)
- Michael M Dubreuil
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | | | | | - Ria S Sood
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Scott J Dixon
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305-5120, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Michael C Bassik
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305-5120, USA.
| |
Collapse
|
7
|
Abe Y, Nishimura Y, Nakamura K, Tamura S, Honsho M, Udo H, Yamashita T, Fujiki Y. Peroxisome Deficiency Impairs BDNF Signaling and Memory. Front Cell Dev Biol 2020; 8:567017. [PMID: 33163488 PMCID: PMC7591468 DOI: 10.3389/fcell.2020.567017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022] Open
Abstract
Peroxisome is an intracellular organelle that functions in essential metabolic pathways including β-oxidation of very-long-chain fatty acids and biosynthesis of plasmalogens. Peroxisome biogenesis disorders (PBDs) manifest severe dysfunction in multiple organs including central nervous system (CNS), whilst the pathogenic mechanisms are largely unknown. We recently reported that peroxisome-deficient neural cells secrete an increased level of brain-derived neurotrophic factor (BDNF), resulting in the cerebellar malformation. Peroxisomal functions in adulthood brain have been little investigated. To induce the peroxisome deficiency in adulthood brain, we here established tamoxifen-inducible conditional Pex2-knockout mouse. Peroxisome deficiency in the conditional Pex2-knockout adult mouse brain induces the upregulated expression of BDNF and its inactive receptor TrkB-T1 in hippocampus, which notably results in memory disturbance. Our results suggest that peroxisome deficiency gives rise to the dysfunction of hippocampal circuit via the impaired BDNF signaling.
Collapse
Affiliation(s)
- Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Yoshiki Nishimura
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Kaori Nakamura
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Shigehiko Tamura
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hiroshi Udo
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
8
|
Mammalian Homologue NME3 of DYNAMO1 Regulates Peroxisome Division. Int J Mol Sci 2020; 21:ijms21218040. [PMID: 33126676 PMCID: PMC7662248 DOI: 10.3390/ijms21218040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Peroxisomes proliferate by sequential processes comprising elongation, constriction, and scission of peroxisomal membrane. It is known that the constriction step is mediated by a GTPase named dynamin-like protein 1 (DLP1) upon efficient loading of GTP. However, mechanism of fuelling GTP to DLP1 remains unknown in mammals. We earlier show that nucleoside diphosphate (NDP) kinase-like protein, termed dynamin-based ring motive-force organizer 1 (DYNAMO1), generates GTP for DLP1 in a red alga, Cyanidioschyzon merolae. In the present study, we identified that nucleoside diphosphate kinase 3 (NME3), a mammalian homologue of DYNAMO1, localizes to peroxisomes. Elongated peroxisomes were observed in cells with suppressed expression of NME3 and fibroblasts from a patient lacking NME3 due to the homozygous mutation at the initiation codon of NME3. Peroxisomes proliferated by elevation of NME3 upon silencing the expression of ATPase family AAA domain containing 1, ATAD1. In the wild-type cells expressing catalytically-inactive NME3, peroxisomes were elongated. These results suggest that NME3 plays an important role in peroxisome division in a manner dependent on its NDP kinase activity. Moreover, the impairment of peroxisome division reduces the level of ether-linked glycerophospholipids, ethanolamine plasmalogens, implying the physiological importance of regulation of peroxisome morphology.
Collapse
|
9
|
Honsho M, Tanaka M, Zoeller RA, Fujiki Y. Distinct Functions of Acyl/Alkyl Dihydroxyacetonephosphate Reductase in Peroxisomes and Endoplasmic Reticulum. Front Cell Dev Biol 2020; 8:855. [PMID: 33042986 PMCID: PMC7517302 DOI: 10.3389/fcell.2020.00855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 01/03/2023] Open
Abstract
Plasmalogens are a subclass of ether glycerophospholipids characterized by a vinyl-ether bond at the sn-1 position of the glycerol backbone. Plasmalogen biosynthesis is initiated in peroxisomes. At the third step of plasmalogen synthesis, alkyl-dihydroxyacetonephosphate (DHAP) is enzymatically reduced to 1-alkyl-sn-glycero-3-phospate by acyl/alkyl DHAP reductase (ADHAPR), whose activity is found in both peroxisomes and microsomes. We herein show that knockdown of ADHAPR in HeLa cells reduced the synthesis of ethanolamine plasmalogen (PlsEtn), similar to the Chinese hamster ovary cell mutant FAA.K1B deficient in ADHAPR activity. Endogenous ADHAPR and ectopically expressed FLAG-tagged ADHAPR were localized to peroxisomes and endoplasmic reticulum (ER) as a type I integral membrane protein in HeLa cells. ADHAPR targets to peroxisomes via a Pex19p-dependent class I pathway. In addition, it is also inserted into the ER via the SRP-dependent mechanism. The ADHAPR mutant lacking the N-terminal domain preferentially targets to the ER, restoring the reduced level of PlsEtn synthesis in FAA.K1B cell. In contrast, the expression of full-length ADHAPR in the mutant cells elevates the synthesis of phosphatidylethanolamine, but not PlsEtn. Taken together, these results suggest that the third step of plasmalogen synthesis is mediated by ER-localized ADHAPR.
Collapse
Affiliation(s)
- Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Megumi Tanaka
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Raphael A Zoeller
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, United States
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Pérez-Rodriguez S, de Jesús Ramírez-Lira M, Wulff T, Voldbor BG, Ramírez OT, Trujillo-Roldán MA, Valdez-Cruz NA. Enrichment of microsomes from Chinese hamster ovary cells by subcellular fractionation for its use in proteomic analysis. PLoS One 2020; 15:e0237930. [PMID: 32841274 PMCID: PMC7447005 DOI: 10.1371/journal.pone.0237930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/06/2020] [Indexed: 11/19/2022] Open
Abstract
Chinese hamster ovary cells have been the workhorse for the production of recombinant proteins in mammalian cells. Since biochemical, cellular and omics studies are usually affected by the lack of suitable fractionation procedures to isolate compartments from these cells, differential and isopycnic centrifugation based techniques were characterized and developed specially for them. Enriched fractions in intact nuclei, mitochondria, peroxisomes, cis-Golgi, trans-Golgi and endoplasmic reticulum (ER) were obtained in differential centrifugation steps and subsequently separated in discontinuous sucrose gradients. Nuclei, mitochondria, cis-Golgi, peroxisomes and smooth ER fractions were obtained as defined bands in 30-60% gradients. Despite the low percentage represented by the microsomes of the total cell homogenate (1.7%), their separation in a novel sucrose gradient (10-60%) showed enough resolution and efficiency to quantitatively separate their components into enriched fractions in trans-Golgi, cis-Golgi and ER. The identity of these organelles belonging to the classical secretion pathway that came from 10-60% gradients was confirmed by proteomics. Data are available via ProteomeXchange with identifier PXD019778. Components from ER and plasma membrane were the most frequent contaminants in almost all obtained fractions. The improved sucrose gradient for microsomal samples proved being successful in obtaining enriched fractions of low abundance organelles, such as Golgi apparatus and ER components, for biochemical and molecular studies, and suitable for proteomic research, which makes it a useful tool for future studies of this and other mammalian cell lines.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
| | - María de Jesús Ramírez-Lira
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Bjørn Gunnar Voldbor
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Octavio T. Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, Morelos, México
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
| |
Collapse
|
11
|
Okumoto K, El Shermely M, Natsui M, Kosako H, Natsuyama R, Marutani T, Fujiki Y. The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation. eLife 2020; 9:55896. [PMID: 32831175 PMCID: PMC7498260 DOI: 10.7554/elife.55896] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Most of peroxisomal matrix proteins including a hydrogen peroxide (H2O2)-decomposing enzyme, catalase, are imported in a peroxisome-targeting signal type-1 (PTS1)-dependent manner. However, little is known about regulation of the membrane-bound protein import machinery. Here, we report that Pex14, a central component of the protein translocation complex in peroxisomal membrane, is phosphorylated in response to oxidative stresses such as H2O2 in mammalian cells. The H2O2-induced phosphorylation of Pex14 at Ser232 suppresses peroxisomal import of catalase in vivo and selectively impairs in vitro the interaction of catalase with the Pex14-Pex5 complex. A phosphomimetic mutant Pex14-S232D elevates the level of cytosolic catalase, but not canonical PTS1-proteins, conferring higher cell resistance to H2O2. We thus suggest that the H2O2-induced phosphorylation of Pex14 spatiotemporally regulates peroxisomal import of catalase, functioning in counteracting action against oxidative stress by the increase of cytosolic catalase.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Mahmoud El Shermely
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Masanao Natsui
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Ryuichi Natsuyama
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiro Marutani
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Hisayama-machi, Fukuoka, Japan
| |
Collapse
|
12
|
Abe Y, Honsho M, Kawaguchi R, Matsuzaki T, Ichiki Y, Fujitani M, Fujiwara K, Hirokane M, Oku M, Sakai Y, Yamashita T, Fujiki Y. A peroxisome deficiency-induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway. J Biol Chem 2020; 295:5321-5334. [PMID: 32165495 PMCID: PMC7170515 DOI: 10.1074/jbc.ra119.011989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/06/2020] [Indexed: 02/02/2023] Open
Abstract
The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid β-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid β-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function.
Collapse
Affiliation(s)
- Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Institute of Rheological Functions of Food, Hisayama-machi, Fukuoka 811-2501, Japan
| | - Ryoko Kawaguchi
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yayoi Ichiki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Kazushirou Fujiwara
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masaaki Hirokane
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahide Oku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Institute of Rheological Functions of Food, Hisayama-machi, Fukuoka 811-2501, Japan.
| |
Collapse
|
13
|
Honsho M, Okumoto K, Tamura S, Fujiki Y. Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:45-54. [PMID: 33417206 DOI: 10.1007/978-3-030-60204-8_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxisomes are presented in all eukaryotic cells and play essential roles in many of lipid metabolic pathways, including β-oxidation of fatty acids and synthesis of ether-linked glycerophospholipids, such as plasmalogens. Impaired peroxisome biogenesis, including defects of membrane assembly, import of peroxisomal matrix proteins, and division of peroxisome, causes peroxisome biogenesis disorders (PBDs). Fourteen complementation groups of PBDs are found, and their complementing genes termed PEXs are isolated. Several new mutations in peroxins from patients with mild PBD phenotype or patients with phenotypes unrelated to the commonly observed impairments of PBD patients are found by next-generation sequencing. Exploring a dysfunctional step(s) caused by the mutation is important for unveiling the pathogenesis of novel mutation by means of cellular and biochemical analyses.
Collapse
Affiliation(s)
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
14
|
Takahashi T, Honsho M, Abe Y, Fujiki Y. Plasmalogen mediates integration of adherens junction. J Biochem 2019; 166:423-432. [PMID: 31236591 DOI: 10.1093/jb/mvz049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Ether glycerolipids, plasmalogens are found in various mammalian cells and tissues. However, physiological role of plasmalogens in epithelial cells remains unknown. We herein show that synthesis of ethanolamine-containing plasmalogens, plasmenylethanolamine (PlsEtn), is deficient in MCF7 cells, an epithelial cell line, with severely reduced expression of alkyl-dihydroxyacetonephosphate synthase (ADAPS), the second enzyme in the PlsEtn biosynthesis. Moreover, expression of ADAPS or supplementation of PlsEtn containing C18-alkenyl residue delays the migration of MCF7 cells as compared to that mock-treated MCF7 and C16-alkenyl-PlsEtn-supplemented MCF7 cells. Localization of E-cadherin to cell-cell junctions is highly augmented in cells containing C18-alkenyl-PlsEtn. Together, these results suggest that PlsEtn containing C18-alkenyl residue plays a distinct role in the integrity of E-cadherin-mediated adherens junction.
Collapse
Affiliation(s)
- Takanori Takahashi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
15
|
Tanaka AJ, Okumoto K, Tamura S, Abe Y, Hirsch Y, Deng L, Ekstein J, Chung WK, Fujiki Y. A newly identified mutation in the PEX26 gene is associated with a milder form of Zellweger spectrum disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003483. [PMID: 30446579 PMCID: PMC6371744 DOI: 10.1101/mcs.a003483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Using clinical exome sequencing (ES), we identified an autosomal recessive missense variant, c.153C>A (p.F51L), in the peroxisome biogenesis factor 26 gene (PEX26) in a 19-yr-old female of Ashkenazi Jewish descent who was referred for moderate to severe hearing loss. The proband and three affected siblings are all homozygous for the c.153C>A variant. Skin fibroblasts from this patient show normal morphology in immunostaining of matrix proteins, although the level of catalase was elevated. Import rate of matrix proteins was significantly decreased in the patient-derived fibroblasts. Binding of Pex26-F51L to the AAA ATPase peroxins, Pex1 and Pex6, is severely impaired and affects peroxisome assembly. Moreover, Pex26 in the patient's fibroblasts is reduced to ∼30% of the control, suggesting that Pex26-F51L is unstable in cells. In the patient's fibroblasts, peroxisome-targeting signal 1 (PTS1) proteins, PTS2 protein 3-ketoacyl-CoA thiolase, and catalase are present in a punctate staining pattern at 37°C and in a diffuse pattern at 42°C, suggesting that these matrix proteins are not imported to peroxisomes in a temperature-sensitive manner. Analysis of peroxisomal metabolism in the patient's fibroblasts showed that the level of docosahexaenoic acid (DHA) (C22:6n-3) in ether phospholipids is decreased, whereas other lipid metabolism, including peroxisomal fatty acid β-oxidation, is normal. Collectively, the functional data support the mild phenotype of nonsyndromic hearing loss in patients harboring the F51L variant in PEX26.
Collapse
Affiliation(s)
- Akemi J Tanaka
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigehiko Tamura
- Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Arts and Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoel Hirsch
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Liyong Deng
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Joseph Ekstein
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Abe Y, Honsho M, Itoh R, Kawaguchi R, Fujitani M, Fujiwara K, Hirokane M, Matsuzaki T, Nakayama K, Ohgi R, Marutani T, Nakayama KI, Yamashita T, Fujiki Y. Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum. Life Sci Alliance 2018; 1:e201800062. [PMID: 30519675 PMCID: PMC6277683 DOI: 10.26508/lsa.201800062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/22/2023] Open
Abstract
Peroxisome biogenesis disorders (PBDs) manifest as neurological deficits in the central nervous system, including neuronal migration defects and abnormal cerebellum development. However, the mechanisms underlying pathogenesis remain enigmatic. Here, to investigate how peroxisome deficiency causes neurological defects of PBDs, we established a new PBD model mouse defective in peroxisome assembly factor Pex14p, termed Pex14 ΔC/ΔC mouse. Pex14 ΔC/ΔC mouse manifests a severe symptom such as disorganization of cortical laminar structure and dies shortly after birth, although peroxisomal biogenesis and metabolism are partially defective. The Pex14 ΔC/ΔC mouse also shows malformation of the cerebellum including the impaired dendritic development of Purkinje cells. Moreover, extracellular signal-regulated kinase and AKT signaling are attenuated in this mutant mouse by an elevated level of brain-derived neurotrophic factor (BDNF) together with the enhanced expression of TrkB-T1, a dominant-negative isoform of the BDNF receptor. Our results suggest that dysregulation of the BDNF-TrkB pathway, an essential signaling for cerebellar morphogenesis, gives rise to the pathogenesis of the cerebellum in PBDs.
Collapse
Affiliation(s)
- Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Itoh
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Ryoko Kawaguchi
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazushirou Fujiwara
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Masaaki Hirokane
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Takashi Matsuzaki
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Keiko Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryohei Ohgi
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Toshihiro Marutani
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Mukai S, Matsuzaki T, Fujiki Y. The cytosolic peroxisome-targeting signal (PTS)-receptors, Pex7p and Pex5pL, are sufficient to transport PTS2 proteins to peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:441-449. [PMID: 30296498 DOI: 10.1016/j.bbamcr.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Proteins harboring peroxisome-targeting signal type-2 (PTS2) are recognized in the cytosol by mobile PTS2 receptor Pex7p and associate with a longer isoform Pex5pL of the PTS1 receptor. Trimeric PTS2 protein-Pex7p-Pex5pL complexes are translocated to peroxisomes in mammalian cells. However, it remains unclear whether Pex5pL and Pex7p are sufficient cytosolic components in transporting of PTS2 proteins to peroxisomes. Here, we construct a semi-intact cell import system to define the cytosolic components required for the peroxisomal PTS2 protein import and show that the PTS2 pre-import complexes comprising Pex7p, Pex5p, and Hsc70 isolated from the cytosol of pex14 Chinese hamster ovary cell mutant ZP161 is import-competent. PTS2 reporter proteins are transported to peroxisomes by recombinant Pex7p and Pex5pL in semi-intact cells devoid of the cytosol. Furthermore, PTS2 proteins are translocated to peroxisomes in the presence of a non-hydrolyzable ATP analogue, adenylyl imidodiphosphate, and N-ethylmaleimide, suggesting that ATP-dependent chaperones including Hsc70 are dispensable for PTS2 protein import. Taken together, we suggest that Pex7p and Pex5pL are the minimal cytosolic factors in the transport of PTS2 proteins to peroxisomes.
Collapse
Affiliation(s)
- Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
18
|
Kalel VC, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries. Subcell Biochem 2018; 89:299-321. [PMID: 30378029 DOI: 10.1007/978-981-13-2233-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins. The involvement of cycling receptors is a special feature of peroxisomal protein import. Complex machineries of peroxin (PEX) proteins mediate peroxisomal matrix and membrane protein import. Identification of PEX genes was dominated by forward genetic techniques in the early 90s. However, recent developments in proteomic techniques has revolutionized the detailed characterization of peroxisomal protein import. Here, we summarize the current knowledge on peroxisomal protein import with emphasis on the contribution of proteomic approaches to our understanding of the composition and function of the peroxisomal protein import machineries.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
19
|
Okumoto K, Ono T, Toyama R, Shimomura A, Nagata A, Fujiki Y. New splicing variants of mitochondrial Rho GTPase-1 (Miro1) transport peroxisomes. J Cell Biol 2017; 217:619-633. [PMID: 29222186 PMCID: PMC5800816 DOI: 10.1083/jcb.201708122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
The mechanisms underlying microtubule-dependent long-distance movement of peroxisomes in mammalian cells are unclear. Okumoto et al. identify splicing variants of human mitochondrial Rho GTPase-1 (Miro1) that localize to peroxisomes and that link these organelles to microtubule-dependent transport complexes including TRAK2. Microtubule-dependent long-distance movement of peroxisomes occurs in mammalian cells. However, its molecular mechanisms remain undefined. In this study, we identified three distinct splicing variants of human mitochondrial Rho GTPase-1 (Miro1), each containing amino acid sequence insertions 1 (named Miro1-var2), 2 (Miro1-var3), and both 1 and 2 (Miro1-var4), respectively, at upstream of the transmembrane domain. Miro1-var4 and Miro1-var2 are localized to peroxisomes in a manner dependent on the insertion 1 that is recognized by the cytosolic receptor Pex19p. Exogenous expression of Miro1-var4 induces accumulation of peroxisomes at the cell periphery and augments long-range movement of peroxisomes along microtubules. Depletion of all Miro1 variants by knocking down MIRO1 suppresses the long-distance movement of peroxisomes. Such abrogated movement is restored by reexpression of peroxisomal Miro1 variants. Collectively, our findings identify for the first time peroxisome-localized Miro1 variants as adapter proteins that link peroxisomes to the microtubule-dependent transport complexes including TRAK2 in the intracellular translocation of peroxisomes in mammalian cells.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuaki Ono
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Toyama
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Ayako Shimomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Aiko Nagata
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Kinoshita N, Matsuura A, Fujiki Y. Peroxisome biogenesis: a novel inducible PEX19 splicing variant is involved in early stages of peroxisome proliferation. J Biochem 2017; 161:297-308. [PMID: 28391327 DOI: 10.1093/jb/mvw075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/25/2016] [Indexed: 01/23/2023] Open
Abstract
Pex19p harbouring a prenylation CAAX box functions as a chaperone and transporter for peroxisomal membrane proteins in membrane assembly. By functional phenotype-complementation assay using a pex19 Chinese hamster ovary cell mutant ZP119, we herein cloned a rat cDNA encoding a protein similar to Pex19p, but with a C-terminal hydrophobic segment in place of the CAAX box region. The transcript of this gene was highly induced by treatment of rats with a peroxisome proliferator, clofibrate, hence termed PEX19i, while the other three less prominently inducible PEX19 variants encoded authentic Pex19p but differed in the length of 3' non-coding region. Pex19pi restored peroxisomes in ZP119 with slightly lower efficiency than Pex19p, showing apparently weaker interaction with Pex11pβ essential for peroxisome proliferation. However, the C-terminal region of Pex19p was not essential for the association of Pex19p with peroxisomal membrane and interaction with membrane assembly factors, Pex3p and Pex16p. Non-prenylated Pex19p interacted with a membrane protein cargo, Pex14p, but more weakly than Pex19pi and the farnesylated Pex19p. Thus, PEX19i most likely plays important roles involving the membrane formation at early stages, in prompt response to peroxisome proliferation. Similar types of PEX19 mRNA variants were also elevated in mouse regenerating liver.
Collapse
Affiliation(s)
- Naohiko Kinoshita
- Department of Biology, Faculty of Sciences Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Matsuura
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Generation of Peroxisome-Deficient Somatic Animal Cell Mutants. Methods Mol Biol 2017. [PMID: 28409474 DOI: 10.1007/978-1-4939-6937-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell mutants with a genetic defect affecting various cellular phenotypes are widely utilized as a powerful tool in genetic, biochemical, and cell biological research. More than a dozen complementation groups of animal somatic mutant cells defective in peroxisome biogenesis have been successfully isolated in Chinese hamster ovary (CHO) cells and used as a model system reflecting fatal human severe genetic disorders named peroxisome biogenesis disorders (PBD). Isolation and characterization of peroxisome-deficient CHO cell mutants has allowed the identification of PEX genes and the gene products peroxins, which directly leads to the accomplishment of isolation of pathogenic genes responsible for human PBDs, as well as elucidation of their functional roles in peroxisome biogenesis. Here, we describe the procedure to isolate peroxisome-deficient mammalian cell mutants from CHO cells, by making use of an effective, photo-sensitized selection method.
Collapse
|
22
|
Abstract
In mammalian cells several hundred peroxisomes are maintained by a balance between the biogenesis and turnover by peroxisome homeostasis. Pexophagy, a form of autophagy specific for peroxisomes, is the main pathway for peroxisome degradation, but molecular mechanisms of mammalian pexophagy are largely unknown. This is due to the lack of well-established pexophagy-inducing conditions in mammalian cells. Recently, several conditions that induce pexophagy were described for mammalian cells, involving ubiquitin and adaptor proteins of autophagy. In this chapter, we describe the protocol for Pex3-induced pexophagy, the more readable and highly inducible pexophagy condition in mammalian cells.
Collapse
|
23
|
Hosoi KI, Miyata N, Mukai S, Furuki S, Okumoto K, Cheng EH, Fujiki Y. The VDAC2-BAK axis regulates peroxisomal membrane permeability. J Cell Biol 2017; 216:709-722. [PMID: 28174205 PMCID: PMC5350511 DOI: 10.1083/jcb.201605002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/23/2016] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
Peroxisomal biogenesis disorders (PBDs) are fatal genetic diseases consisting of 14 complementation groups (CGs). We previously isolated a peroxisome-deficient Chinese hamster ovary cell mutant, ZP114, which belongs to none of these CGs. Using a functional screening strategy, VDAC2 was identified as rescuing the peroxisomal deficiency of ZP114 where VDAC2 expression was not detected. Interestingly, knockdown of BAK or overexpression of the BAK inhibitors BCL-XL and MCL-1 restored peroxisomal biogenesis in ZP114 cells. Although VDAC2 is not localized to the peroxisome, loss of VDAC2 shifts the localization of BAK from mitochondria to peroxisomes, resulting in peroxisomal deficiency. Introduction of peroxisome-targeted BAK harboring the Pex26p transmembrane region into wild-type cells resulted in the release of peroxisomal matrix proteins to cytosol. Moreover, overexpression of BAK activators PUMA and BIM permeabilized peroxisomes in a BAK-dependent manner. Collectively, these findings suggest that BAK plays a role in peroxisomal permeability, similar to mitochondrial outer membrane permeabilization.
Collapse
Affiliation(s)
- Ken-Ichiro Hosoi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satomi Furuki
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
24
|
Yagita Y, Shinohara K, Abe Y, Nakagawa K, Al-Owain M, Alkuraya FS, Fujiki Y. Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids. J Biol Chem 2016; 292:691-705. [PMID: 27899449 DOI: 10.1074/jbc.m116.760090] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Acyl-CoA binding domain-containing 5 (ACBD5) is a peroxisomal protein that carries an acyl-CoA binding domain (ACBD) at its N-terminal region. The recent identification of a mutation in the ACBD5 gene in patients with a syndromic form of retinal dystrophy highlights the physiological importance of ACBD5 in humans. However, the underlying pathogenic mechanisms and the precise function of ACBD5 remain unclear. We herein report that ACBD5 is a peroxisomal tail-anchored membrane protein exposing its ACBD to the cytosol. Using patient-derived fibroblasts and ACBD5 knock-out HeLa cells generated via genome editing, we demonstrate that ACBD5 deficiency causes a moderate but significant defect in peroxisomal β-oxidation of very-long-chain fatty acids (VLCFAs) and elevates the level of cellular phospholipids containing VLCFAs without affecting peroxisome biogenesis, including the import of membrane and matrix proteins. Both the N-terminal ACBD and peroxisomal localization of ACBD5 are prerequisite for efficient VLCFA β-oxidation in peroxisomes. Furthermore, ACBD5 preferentially binds very-long-chain fatty acyl-CoAs (VLC-CoAs). Together, these results suggest a direct role of ACBD5 in peroxisomal VLCFA β-oxidation. Based on our findings, we propose that ACBD5 captures VLC-CoAs on the cytosolic side of the peroxisomal membrane so that the transport of VLC-CoAs into peroxisomes and subsequent β-oxidation thereof can proceed efficiently. Our study reclassifies ACBD5-related phenotype as a novel peroxisomal disorder.
Collapse
Affiliation(s)
- Yuichi Yagita
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyoko Shinohara
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuichi Abe
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| | - Keiko Nakagawa
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohammed Al-Owain
- the King Faisal Specialist Hospital and Research Center, MBC-03 P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- the King Faisal Specialist Hospital and Research Center, MBC-03 P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Yukio Fujiki
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| |
Collapse
|
25
|
Hua R, Kim PK. Multiple paths to peroxisomes: Mechanism of peroxisome maintenance in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:881-91. [DOI: 10.1016/j.bbamcr.2015.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/19/2022]
|
26
|
Liu Y, Yagita Y, Fujiki Y. Assembly of Peroxisomal Membrane Proteins via the Direct Pex19p-Pex3p Pathway. Traffic 2016; 17:433-55. [PMID: 26777132 DOI: 10.1111/tra.12376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 02/03/2023]
Abstract
Correct targeting of peroxisomal membrane proteins (PMPs) is essential for the formation and maintenance of functional peroxisomes. Activities of Pex19p to interact with PMPs on one hand and Pex3p on the other, including formation of ternary complexes between Pex19p, PMP and Pex3p, strongly support posttranslational translocation of PMPs via the Pex19p- and Pex3p-dependent direct pathway, termed the class I pathway. However, it remains elusive whether Pex19p-PMP complexes are indeed capable of being imported into peroxisomal membranes through the interaction between Pex19p and Pex3p. We resolve this issue by investigating the targeting process of several topologically distinct PMPs, including multimembrane spanning PMPs. We show here that Pex19p forms cytosolic complexes with PMPs and directly translocates them to peroxisomes. Using a semi-intact mammalian cell-based import assay system, we prove that PMPs in the cytosolic complexes are imported into peroxisomes via the interaction between cargo-loaded Pex19p and Pex3p. Furthermore, we demonstrate for the first time that peroxisomal targeting of ATAD1, an N-terminally signal-anchored protein that resides on both mitochondria and peroxisomes, is also achieved through the Pex19p- and Pex3p-dependent class I pathway. Together, our results suggest that translocation of PMPs via the class I pathway is a common event in mammalian cells.
Collapse
Affiliation(s)
- Yuqiong Liu
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuichi Yagita
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Present address: Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
27
|
FUJIKI Y. Peroxisome biogenesis and human peroxisome-deficiency disorders. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:463-477. [PMID: 27941306 PMCID: PMC5328784 DOI: 10.2183/pjab.92.463] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Peroxisome is a single-membrane-bounded ubiquitous organelle containing a hundred different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen different complementation groups of Chinese hamster ovary (CHO) cell mutants impaired in peroxisome biogenesis are isolated as a model experimental system. By taking advantage of rapid functional complementation assay of the CHO cell mutants, successful cloning of PEX genes encoding peroxins required for peroxisome assembly invaluably contributed to the accomplishment of cloning of pathogenic genes responsible for PBDs. Peroxins are divided into three groups: 1) peroxins including Pex3p, Pex16p and Pex19p, are responsible for peroxisome membrane biogenesis via Pex19p- and Pex3p-dependent class I and Pex19p- and Pex16p-dependent class II pathways; 2) peroxins that function in matrix protein import; 3) those such as Pex11pβ are involved in peroxisome division where DLP1, Mff, and Fis1 coordinately function.
Collapse
Affiliation(s)
- Yukio FUJIKI
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Correspondence should be addressed: Y. Fujiki, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
28
|
Yoshida Y, Niwa H, Honsho M, Itoyama A, Fujiki Y. Pex11mediates peroxisomal proliferation by promoting deformation of the lipid membrane. Biol Open 2015; 4:710-21. [PMID: 25910939 PMCID: PMC4467191 DOI: 10.1242/bio.201410801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pex11p family proteins are key players in peroxisomal fission, but their molecular mechanisms remains mostly unknown. In the present study, overexpression of Pex11pβ caused substantial vesiculation of peroxisomes in mammalian cells. This vesicle formation was dependent on dynamin-like protein 1 (DLP1) and mitochondrial fission factor (Mff), as knockdown of these proteins diminished peroxisomal fission after Pex11pβ overexpression. The fission-deficient peroxisomes exhibited an elongated morphology, and peroxisomal marker proteins, such as Pex14p or matrix proteins harboring peroxisomal targeting signal 1, were discernible in a segmented staining pattern, like beads on a string. Endogenous Pex11pβ was also distributed a striped pattern, but which was not coincide with Pex14p and PTS1 matrix proteins. Altered morphology of the lipid membrane was observed when recombinant Pex11p proteins were introduced into proteo-liposomes. Constriction of proteo-liposomes was observed under confocal microscopy and electron microscopy, and the reconstituted Pex11pβ protein localized to the membrane constriction site. Introducing point mutations into the N-terminal amphiphathic helix of Pex11pβ strongly reduced peroxisomal fission, and decreased the oligomer formation. These results suggest that Pex11p contributes to the morphogenesis of the peroxisomal membrane, which is required for subsequent fission by DLP1.
Collapse
Affiliation(s)
- Yumi Yoshida
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hajime Niwa
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Akinori Itoyama
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan International Institute for Carbon-Neutral Energy Research (ICNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Jiang L, Hara-Kuge S, Yamashita SI, Fujiki Y. Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II. Genes Cells 2014; 20:36-49. [PMID: 25358256 DOI: 10.1111/gtc.12198] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/01/2014] [Indexed: 01/04/2023]
Abstract
Pexophagy can be experimentally induced in mammalian cells by removing the culture serum. Pex14p, a peroxisomal membrane protein essential for matrix protein import in docking of soluble receptor Pex5p, is involved in the mammalian autophagic degradation of peroxisomes and interacts with the lipidated form of LC3, termed LC3-II, an essential factor for autophagosome formation, under the starvation condition in CHO-K1 cells. However, molecular mechanisms underlying the Pex14p-LC3-II interaction remain largely unknown. To verify whether Pex14p directly binds LC3-II, we reconstituted an in vitro conjugation system for synthesis of LC3-II. We show here that Pex14p directly interacts with LC3-II via the transmembrane domain of Pex14p. Pex5p competitively inhibited this interaction, implying that Pex14p preferentially binds to Pex5p under the nutrient-rich condition. Moreover, a Pex5p mutant defective in PTS1-protein import lost its affinity for Pex14p under the condition of nutrient deprivation, thereby more likely explaining why Pex14p prefers to interact with LC3-II under the starvation condition in vivo. Together, these results suggest that Pex14p is a unique factor that functions in the dual processes in peroxisomal biogenesis and degradation with the coordination of Pex5p in response to the environmental changes.
Collapse
Affiliation(s)
- Li Jiang
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | |
Collapse
|
30
|
Yamashita SI, Abe K, Tatemichi Y, Fujiki Y. The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy 2014; 10:1549-64. [PMID: 25007327 DOI: 10.4161/auto.29329] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes are degraded by a selective type of autophagy known as pexophagy. Several different types of pexophagy have been reported in mammalian cells. However, the mechanisms underlying how peroxisomes are recognized by autophagy-related machinery remain elusive. PEX3 is a peroxisomal membrane protein (PMP) that functions in the import of PMPs into the peroxisomal membrane and has been shown to interact with pexophagic receptor proteins during pexophagy in yeast. Thus, PEX3 is important not only for peroxisome biogenesis, but also for peroxisome degradation. However, whether PEX3 is involved in the degradation of peroxisomes in mammalian cells is unclear. Here, we report that high levels of PEX3 expression induce pexophagy. In PEX3-loaded cells, peroxisomes are ubiquitinated, clustered, and degraded in lysosomes. Peroxisome targeting of PEX3 is essential for the initial step of this degradation pathway. The degradation of peroxisomes is inhibited by treatment with autophagy inhibitors or siRNA against NBR1, which encodes an autophagic receptor protein. These results indicate that ubiquitin- and NBR1-mediated pexophagy is induced by increased expression of PEX3 in mammalian cells. In addition, another autophagic receptor protein, SQSTM1/p62, is required only for the clustering of peroxisomes. Expression of a PEX3 mutant with substitution of all lysine and cysteine residues by arginine and alanine, respectively, also induces peroxisome ubiquitination and degradation, hence suggesting that ubiquitination of PEX3 is dispensable for pexophagy and an endogenous, unidentified peroxisomal protein is ubiquitinated on the peroxisomal membrane.
Collapse
Affiliation(s)
- Shun-ichi Yamashita
- Department of Biology; Faculty of Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Kakeru Abe
- Graduate School of Systems Life Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Yuki Tatemichi
- Graduate School of Systems Life Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Yukio Fujiki
- Department of Biology; Faculty of Sciences; Kyushu University Graduate School; Fukuoka, Japan
| |
Collapse
|
31
|
Okumoto K, Noda H, Fujiki Y. Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import. J Biol Chem 2014; 289:14089-108. [PMID: 24662292 DOI: 10.1074/jbc.m113.527937] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome targeting signal type-1 (PTS1) receptor, Pex5p, is a key player in peroxisomal matrix protein import. Pex5p recognizes PTS1 cargoes in the cytosol, targets peroxisomes, translocates across the membrane, unloads the cargoes, and shuttles back to the cytosol. Ubiquitination of Pex5p at a conserved cysteine is required for the exit from peroxisomes. However, any potential ubiquitin ligase (E3) remains unidentified in mammals. Here, we establish an in vitro ubiquitination assay system and demonstrate that RING finger Pex10p functions as an E3 with an E2, UbcH5C. The E3 activity of Pex10p is essential for its peroxisome-restoring activity, being enhanced by another RING peroxin, Pex12p. The Pex10p·Pex12p complex catalyzes monoubiquitination of Pex5p at one of multiple lysine residues in vitro, following the dissociation of Pex5p from Pex14p and the PTS1 cargo. Several lines of evidence with lysine-to-arginine mutants of Pex5p demonstrate that Pex10p RING E3-mediated ubiquitination of Pex5p is required for its efficient export from peroxisomes to the cytosol and peroxisomal matrix protein import. RING peroxins are required for both modes of Pex5p ubiquitination, thus playing a pivotal role in Pex5p shuttling.
Collapse
Affiliation(s)
- Kanji Okumoto
- From the Department of Biology, Faculty of Sciences, and the Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Hiromi Noda
- From the Department of Biology, Faculty of Sciences, and
| | - Yukio Fujiki
- From the Department of Biology, Faculty of Sciences, and
| |
Collapse
|
32
|
Abe Y, Honsho M, Nakanishi H, Taguchi R, Fujiki Y. Very-long-chain polyunsaturated fatty acids accumulate in phosphatidylcholine of fibroblasts from patients with Zellweger syndrome and acyl-CoA oxidase1 deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:610-9. [PMID: 24418004 DOI: 10.1016/j.bbalip.2014.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Peroxisomes are subcellular organelles that function in multiple anabolic and catabolic processes, including β-oxidation of very-long-chain fatty acids (VLCFA) and biosynthesis of ether phospholipids. Peroxisomal disorders caused by defects in peroxisome biogenesis or peroxisomal β-oxidation manifest as severe neural disorders of the central nervous system. Abnormal peroxisomal metabolism is thought to be responsible for the clinical symptoms of these diseases, but their molecular pathogenesis remains to be elucidated. We performed lipidomic analysis to identify aberrant metabolites in fibroblasts from patients with Zellweger syndrome (ZS), acyl-CoA oxidase1 (AOx) deficiency, D-bifunctional protein (D-BP) and X-linked adrenoleukodystrophy (X-ALD), as well as in peroxisome-deficient Chinese hamster ovary cell mutants. In cells deficient in peroxisomal biogenesis, plasmenylethanolamine was remarkably reduced and phosphatidylethanolamine was increased. Marked accumulation of very-long-chain saturated fatty acid and monounsaturated fatty acids in phosphatidylcholine was observed in all mutant cells. Very-long-chain polyunsaturated fatty acid (VLC-PUFA) levels were significantly elevated, whilst phospholipids containing docosahexaenoic acid (DHA, C22:6n-3) were reduced in fibroblasts from patients with ZS, AOx deficiency, and D-BP deficiency, but not in fibroblasts from an X-ALD patient. Because patients with AOx deficiency suffer from more severe symptoms than those with X-ALD, accumulation of VLC-PUFA and/or reduction of DHA may be associated with the severity of peroxisomal diseases.
Collapse
Affiliation(s)
- Yuichi Abe
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Hiroki Nakanishi
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8502, Japan
| | - Ryo Taguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan.
| |
Collapse
|
33
|
Honsho M, Asaoku S, Fukumoto K, Fujiki Y. Topogenesis and homeostasis of fatty acyl-CoA reductase 1. J Biol Chem 2013; 288:34588-98. [PMID: 24108123 DOI: 10.1074/jbc.m113.498345] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peroxisomal fatty acyl-CoA reductase 1 (Far1) is essential for supplying fatty alcohols required for ether bond formation in ether glycerophospholipid synthesis. The stability of Far1 is regulated by a mechanism that is dependent on cellular plasmalogen levels. However, the membrane topology of Far1 and how Far1 is targeted to membranes remain largely unknown. Here, Far1 is shown to be a peroxisomal tail-anchored protein. The hydrophobic C terminus of Far1 binds to Pex19p, a cytosolic receptor harboring a C-terminal CAAX motif, which is responsible for the targeting of Far1 to peroxisomes. Far1, but not Far2, was preferentially degraded in response to the cellular level of plasmalogens. Experiments in which regions of Far1 or Far2 were replaced with the corresponding region of the other protein showed that the region flanking the transmembrane domain of Far1 is required for plasmalogen-dependent modulation of Far1 stability. Expression of Far1 increased plasmalogen synthesis in wild-type Chinese hamster ovary cells, strongly suggesting that Far1 is a rate-limiting enzyme for plasmalogen synthesis.
Collapse
|
34
|
Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y, Fujiki Y. Mff functions with Pex11pβ and DLP1 in peroxisomal fission. Biol Open 2013; 2:998-1006. [PMID: 24167709 PMCID: PMC3798195 DOI: 10.1242/bio.20135298] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/03/2013] [Indexed: 01/24/2023] Open
Abstract
Peroxisomal division comprises three steps: elongation, constriction, and fission. Translocation of dynamin-like protein 1 (DLP1), a member of the large GTPase family, from the cytosol to peroxisomes is a prerequisite for membrane fission; however, the molecular machinery for peroxisomal targeting of DLP1 remains unclear. This study investigated whether mitochondrial fission factor (Mff), which targets DLP1 to mitochondria, may also recruit DLP1 to peroxisomes. Results show that endogenous Mff is localized to peroxisomes, especially at the membrane-constricted regions of elongated peroxisomes, in addition to mitochondria. Knockdown of MFF abrogates the fission stage of peroxisomal division and is associated with failure to recruit DLP1 to peroxisomes, while ectopic expression of MFF increases the peroxisomal targeting of DLP1. Co-expression of MFF and PEX11β, the latter being a key player in peroxisomal elongation, increases peroxisome abundance. Overexpression of MFF also increases the interaction between DLP1 and Pex11pβ, which knockdown of MFF, but not Fis1, abolishes. Moreover, results show that Pex11pβ interacts with Mff in a DLP1-dependent manner. In conclusion, Mff contributes to the peroxisomal targeting of DLP1 and plays a key role in the fission of the peroxisomal membrane by acting in concert with Pex11pβ and DLP1.
Collapse
Affiliation(s)
- Akinori Itoyama
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 , Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Tabak HF, Braakman I, Zand AVD. Peroxisome Formation and Maintenance Are Dependent on the Endoplasmic Reticulum. Annu Rev Biochem 2013; 82:723-44. [DOI: 10.1146/annurev-biochem-081111-125123] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Henk F. Tabak
- Section of Cellular Protein Chemistry, Faculty of Science, Utrecht University, NL-3584 CH Utrecht, the Netherlands;
| | - Ineke Braakman
- Section of Cellular Protein Chemistry, Faculty of Science, Utrecht University, NL-3584 CH Utrecht, the Netherlands;
| | - Adabella van der Zand
- Section of Cellular Protein Chemistry, Faculty of Science, Utrecht University, NL-3584 CH Utrecht, the Netherlands;
| |
Collapse
|
36
|
Yagita Y, Hiromasa T, Fujiki Y. Tail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway. ACTA ACUST UNITED AC 2013; 200:651-66. [PMID: 23460677 PMCID: PMC3587837 DOI: 10.1083/jcb.201211077] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tail-anchored (TA) proteins are anchored into cellular membranes by a single transmembrane domain (TMD) close to the C terminus. Although the targeting of TA proteins to peroxisomes is dependent on PEX19, the mechanistic details of PEX19-dependent targeting and the signal that directs TA proteins to peroxisomes have remained elusive, particularly in mammals. The present study shows that PEX19 formed a complex with the peroxisomal TA protein PEX26 in the cytosol and translocated it directly to peroxisomes by interacting with the peroxisomal membrane protein PEX3. Unlike in yeast, the adenosine triphosphatase TRC40, which delivers TA proteins to the endoplasmic reticulum, was dispensable for the peroxisomal targeting of PEX26. Moreover, the basic amino acids within the luminal domain of PEX26 were essential for binding to PEX19 and thereby for peroxisomal targeting. Finally, our results suggest that a TMD that escapes capture by TRC40 and is followed by a highly basic luminal domain directs TA proteins to peroxisomes via the PEX19-dependent route.
Collapse
Affiliation(s)
- Yuichi Yagita
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
37
|
Noguchi M, Okumoto K, Fujiki Y. System to quantify the import of peroxisomal matrix proteins by fluorescence intensity. Genes Cells 2013; 18:476-92. [PMID: 23573963 DOI: 10.1111/gtc.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/23/2013] [Indexed: 11/30/2022]
Abstract
Fourteen distinct peroxins are essential for peroxisome biogenesis in mammals, of which ten are involved in the import of matrix proteins into peroxisomes. Peroxisomal matrix protein import is regulated by various cellular factors; however, the mechanisms underlying this regulation are poorly understood. This is primarily because no quantitative detection method with high resolution is available to study the import of peroxisomal matrix proteins. Here, we developed a monitoring system that uses a fluorescent reporter that is stabilized in peroxisomes but is degraded in the cytosol. An FK506 binding protein 12 variant, termed destabilization domain (DD), is rapidly and constitutively degraded by proteasomes when expressed in mammalian cells. DD is reversibly protected by the addition of a specific synthetic ligand. In the absence of the ligand, a reporter molecule, enhanced GFP (EGFP) fused with DD and peroxisomal targeting signal 1 (DD-EGFP-PTS1), is largely degraded in the cytosol. By contrast, in the presence of the ligand, the reporter is stabilized and translocates into peroxisomes. Upon withdrawal of the ligand, the reporter in peroxisomes remains intact, whereas that in the cytosol is rapidly degraded. Thus, peroxisomal protein import can be readily quantified by measuring the fluorescence intensity of whole cells.
Collapse
Affiliation(s)
- Masafumi Noguchi
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
38
|
Pex5p stabilizes Pex14p: a study using a newly isolated pex5 CHO cell mutant, ZPEG101. Biochem J 2013; 449:195-207. [PMID: 23009329 DOI: 10.1042/bj20120911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pex5p [PTS (peroxisome-targeting signal) type 1 receptor] plays an essential role in peroxisomal matrix protein import. In the present study, we isolated a novel PEX5-deficient CHO (Chinese-hamster ovary) cell mutant, termed ZPEG101, showing typical peroxisomal import defects of both PTS1 and PTS2 proteins. ZPEG101 is distinct from other known pex5 CHO mutants in its Pex5p expression. An undetectable level of Pex5p in ZPEG101 results in unstable Pex14p, which is due to inefficient translocation to the peroxisomal membrane. All of the mutant phenotypes of ZPEG101 are restored by expression of wild-type Pex5pL, a longer form of Pex5p, suggesting a role for Pex5p in sustaining the levels of Pex14p in addition to peroxisomal matrix protein import. Complementation analysis using various Pex5p mutants revealed that in the seven pentapeptide WXXXF/Y motifs in Pex5pL, known as the multiple binding sites for Pex14p, the fifth motif is an auxiliary binding site for Pex14p and is required for Pex14p stability. Furthermore, we found that Pex5p-Pex13p interaction is essential for the import of PTS1 proteins as well as catalase, but not for that of PTS2 proteins. Therefore ZPEG101 with no Pex5p would be a useful tool for investigating Pex5p function and delineating the mechanisms underlying peroxisomal matrix protein import.
Collapse
|
39
|
Itoyama A, Honsho M, Abe Y, Moser A, Yoshida Y, Fujiki Y. Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. J Cell Sci 2012; 125:589-602. [PMID: 22389399 DOI: 10.1242/jcs.087452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome division is regulated by several factors, termed fission factors, as well as the conditions of the cellular environment. Over the past decade, the idea of metabolic control of peroxisomal morphogenesis has been postulated, but remains largely undefined to date. In the current study, docosahexaenoic acid (DHA, C22:6n-3) was identified as an inducer of peroxisome division. In fibroblasts isolated from patients that carry defects in peroxisomal fatty acid β-oxidation, peroxisomes are much less abundant than normal cells. Treatment of these patient fibroblasts with DHA induced the proliferation of peroxisomes to the level seen in normal fibroblasts. DHA-induced peroxisomal proliferation was abrogated by treatment with a small inhibitory RNA (siRNA) targeting dynamin-like protein 1 and with dynasore, an inhibitor of dynamin-like protein 1, which suggested that DHA stimulates peroxisome division. DHA augmented the hyper-oligomerization of Pex11pβ and the formation of Pex11pβ-enriched regions on elongated peroxisomes. Time-lapse imaging analysis of peroxisomal morphogenesis revealed a sequence of steps involved in peroxisome division, including elongation in one direction followed by peroxisomal fission. DHA enhanced peroxisomal division in a microtubule-independent manner. These results suggest that DHA is a crucial signal for peroxisomal elongation, a prerequisite for subsequent fission and peroxisome division.
Collapse
Affiliation(s)
- Akinori Itoyama
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Hashimoto Y, Muramatsu K, Kunii M, Yoshimura SI, Yamada M, Sato T, Ishida Y, Harada R, Harada A. Uncovering genes required for neuronal morphology by morphology-based gene trap screening with a revertible retrovirus vector. FASEB J 2012; 26:4662-74. [PMID: 22874834 PMCID: PMC3475256 DOI: 10.1096/fj.12-207530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular mechanisms of neuronal morphology and synaptic vesicle transport have been largely elusive, and only a few of the molecules involved in these processes have been identified. Here, we developed a novel morphology-based gene trap method, which is theoretically applicable to all cell lines, to easily and rapidly identify the responsible genes. Using this method, we selected several gene-trapped clones of rat pheochromocytoma PC12 cells, which displayed abnormal morphology and distribution of synaptic vesicle-like microvesicles (SLMVs). We identified several genes responsible for the phenotypes and analyzed three genes in more detail. The first gene was BTB/POZ domain-containing protein 9 (Btbd9), which is associated with restless legs syndrome. The second gene was cytokine receptor-like factor 3 (Crlf3), whose involvement in the nervous system remains unknown. The third gene was single-stranded DNA-binding protein 3 (Ssbp3), a gene known to regulate head morphogenesis. These results suggest that Btbd9, Crlf3, and Ssbp3 regulate neuronal morphology and the biogenesis/transport of synaptic vesicles. Because our novel morphology-based gene trap method is generally applicable, this method is promising for uncovering novel genes involved in the function of interest in any cell lines.—Hashimoto, Y., Muramatsu, K., Kunii, M., Yoshimura, S., Yamada, M., Sato, T., Ishida, Y., Harada, R., Harada, A. Uncovering genes required for neuronal morphology by morphology-based gene trap screening with a revertible retrovirus vector.
Collapse
Affiliation(s)
- Yukiko Hashimoto
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Molecular basis of peroxisomal biogenesis disorders caused by defects in peroxisomal matrix protein import. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1326-36. [PMID: 22617146 DOI: 10.1016/j.bbadis.2012.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/26/2012] [Accepted: 05/09/2012] [Indexed: 12/28/2022]
Abstract
Peroxisomal biogenesis disorders (PBDs) represent a spectrum of autosomal recessive metabolic disorders that are collectively characterized by abnormal peroxisome assembly and impaired peroxisomal function. The importance of this ubiquitous organelle for human health is highlighted by the fact that PBDs are multisystemic disorders that often cause death in early infancy. Peroxisomes contribute to central metabolic pathways. Most enzymes in the peroxisomal matrix are linked to lipid metabolism and detoxification of reactive oxygen species. Proper assembly of peroxisomes and thus also import of their enzymes relies on specific peroxisomal biogenesis factors, so called peroxins with PEX being the gene acronym. To date, 13 PEX genes are known to cause PBDs when mutated. Studies of the cellular and molecular defects in cells derived from PBD patients have significantly contributed to the understanding of the functional role of the corresponding peroxins in peroxisome assembly. In this review, we discuss recent data derived from both human cell culture as well as model organisms like yeasts and present an overview on the molecular mechanism underlying peroxisomal biogenesis disorders with emphasis on disorders caused by defects in the peroxisomal matrix protein import machinery.
Collapse
|
42
|
Bonekamp NA, Sampaio P, de Abreu FV, Lüers GH, Schrader M. Transient complex interactions of mammalian peroxisomes without exchange of matrix or membrane marker proteins. Traffic 2012; 13:960-78. [PMID: 22435684 DOI: 10.1111/j.1600-0854.2012.01356.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022]
Abstract
Peroxisomes and mitochondria show a much closer interrelationship than previously anticipated. They co-operate in the metabolism of fatty acids and reactive oxygen species, but also share components of their fission machinery. If peroxisomes - like mitochondria - also fuse in mammalian cells is a matter of debate and was not yet systematically investigated. To examine potential peroxisomal fusion and interactions in mammalian cells, we established an in vivo fusion assay based on hybridoma formation by cell fusion. Fluorescence microscopy in time course experiments revealed a merge of different peroxisomal markers in fused cells. However, live cell imaging revealed that peroxisomes were engaged in transient and long-term contacts, without exchanging matrix or membrane markers. Computational analysis showed that transient peroxisomal interactions are complex and can potentially contribute to the homogenization of the peroxisomal compartment. However, peroxisomal interactions do not increase after fatty acid or H(2) O(2) treatment. Additionally, we provide the first evidence that mitochondrial fusion proteins do not localize to peroxisomes. We conclude that mammalian peroxisomes do not fuse with each other in a mechanism similar to mitochondrial fusion. However, they show an extensive degree of interaction, the implication of which is discussed.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
43
|
Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y. AWP1/ZFAND6 functions in Pex5 export by interacting with cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 2011; 13:168-83. [PMID: 21980954 DOI: 10.1111/j.1600-0854.2011.01298.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator. In the in vitro Pex5 export assay, recombinant AWP1 stimulated Pex5 export and an anti-AWP1 antibody interfered with Pex5 export. AWP1 interacted with Pex6 AAA ATPase, but not with Pex1-Pex6 complexes. Preferential binding of AWP1 to the cysteine-ubiquitinated form of Pex5 rather than to unmodified Pex5 was mediated by the AWP1 A20 zinc-finger domain. Inhibition of AWP1 by RNA interference had a significant effect on PTS1-protein import into peroxisomes. Furthermore, in AWP1 knock-down cells, Pex5 stability was decreased, similar to fibroblasts from patients defective in Pex1, Pex6 and Pex26, all of which are required for Pex5 export. Taken together, these results identify AWP1 as a novel cofactor of Pex6 involved in the regulation of Pex5 export during peroxisome biogenesis.
Collapse
Affiliation(s)
- Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
44
|
Okumoto K, Kametani Y, Fujiki Y. Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal lon protease (PsLon), cooperatively regulate fatty acid β-oxidation in peroxisomal matrix. J Biol Chem 2011; 286:44367-79. [PMID: 22002062 DOI: 10.1074/jbc.m111.285197] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms underlying protein turnover and enzyme regulation in the peroxisomal matrix remain largely unknown. Trypsin domain-containing 1 (Tysnd1) and peroxisomal Lon protease (PsLon) are newly identified peroxisomal matrix proteins that harbor both a serine protease-like domain and a peroxisome-targeting signal 1 (PTS1) sequence. Tysnd1 processes several PTS1-containing proteins and cleaves N-terminal presequences from PTS2-containing protein precursors. Here we report that knockdown of Tysnd1, but not PsLon, resulted in accumulation of endogenous β-oxidation enzymes in their premature form. The protease activity of Tysnd1 was inactivated by intermolecular self-conversion of the 60-kDa form to 15- and 45-kDa chains, which were preferentially degraded by PsLon. Peroxisomal β-oxidation of a very long fatty acid was significantly decreased by knockdown of Tysnd1 and partially lowered by PsLon knockdown. Taken together, these data suggest that Tysnd1 is a key regulator of the peroxisomal β-oxidation pathway via proteolytic processing of β-oxidation enzymes. The proteolytic activity of oligomeric Tysnd1 is in turn controlled by self-cleavage of Tysnd1 and degradation of Tysnd1 cleavage products by PsLon.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
45
|
Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y. Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 2011; 12:1067-83. [PMID: 21554508 DOI: 10.1111/j.1600-0854.2011.01217.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, resulting in its accumulation in peroxisomes. These results suggest an essential role of the cysteine residue in the export of Pex5p. Furthermore, domain mapping indicates that N-terminal 158-amino-acid region of Pex5p-C11A, termed 158-CA, is sufficient for such dominant-negative activity by binding to membrane peroxin Pex14p via its two pentapeptide WXXXF/Y motifs. Stable expression of either Pex5p-C11A or 158-CA likewise inhibits the wild-type Pex5p import into peroxisomes, strongly suggesting that Pex5p-C11A exerts the dominant-negative effect at the translocation step via Pex14p. Taken together, these findings show that the cysteine(11) of Pex5p is indispensable for two distinct steps, its import and export. The Pex5p-C11A would be a useful tool for gaining a mechanistic insight into the matrix protein import into peroxisomes.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Bharti P, Schliebs W, Schievelbusch T, Neuhaus A, David C, Kock K, Herrmann C, Meyer HE, Wiese S, Warscheid B, Theiss C, Erdmann R. PEX14 is required for microtubule-based peroxisome motility in human cells. J Cell Sci 2011; 124:1759-68. [PMID: 21525035 DOI: 10.1242/jcs.079368] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have established a procedure for isolating native peroxisomal membrane protein complexes from cultured human cells. Protein-A-tagged peroxin 14 (PEX14), a central component of the peroxisomal protein translocation machinery was genomically expressed in Flp-In-293 cells and purified from digitonin-solubilized membranes. Size-exclusion chromatography revealed the existence of distinct multimeric PEX14 assemblies at the peroxisomal membrane. Using mass spectrometric analysis, almost all known human peroxins involved in protein import were identified as constituents of the PEX14 complexes. Unexpectedly, tubulin was discovered to be the major PEX14-associated protein, and direct binding of the proteins was demonstrated. Accordingly, peroxisomal remnants in PEX14-deficient cells have lost their ability to move along microtubules. In vivo and in vitro analyses indicate that the physical binding to tubulin is mediated by the conserved N-terminal domain of PEX14. Thus, human PEX14 is a multi-tasking protein that not only facilitates peroxisomal protein import but is also required for peroxisome motility by serving as membrane anchor for microtubules.
Collapse
Affiliation(s)
- Pratima Bharti
- Institute for Physiological Chemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nashiro C, Kashiwagi A, Matsuzaki T, Tamura S, Fujiki Y. Recruiting mechanism of the AAA peroxins, Pex1p and Pex6p, to Pex26p on the peroxisomal membrane. Traffic 2011; 12:774-88. [PMID: 21362118 DOI: 10.1111/j.1600-0854.2011.01182.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A peroxisomal C-tail-anchored type-II membrane protein, Pex26p, recruits AAA ATPase Pex1p-Pex6p complexes to peroxisomes. We herein attempted to gain mechanistic insight into Pex26p function. Pex26pΔ33-40 truncated in amino-acid residues at 33-40 abolishes the recruiting of Pex1p-Pex6p complex to peroxisomes and fails to complement the impaired phenotype of pex26 CHO cell mutant ZP167, thereby suggesting that peroxisomal localization of Pex1p and Pex6p is indispensable for the transport of matrix proteins. In in vitro transport assay using semipermeabilized CHO cells, Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. This finding is confirmed by the assay using Walker-motif mutants. Transport of Pex1p and Pex6p is temperature-dependent. In vitro binding assays with glutathione-S-transferase-fused Pex26p, Pex1p and Pex6p bind to Pex26p in a manner dependent on ATP binding but not ATP hydrolysis. These results suggest that ATP hydrolysis is required for stable localization of Pex1p to peroxisomes, but not for binding to Pex26p. Moreover, Pex1p and Pex6p are altered to a more compact conformation upon binding to ATP, as verified by limited proteolysis. Taken together, Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by the ATPase cycle.
Collapse
Affiliation(s)
- Chika Nashiro
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
48
|
A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2010; 107:21523-8. [PMID: 21098289 DOI: 10.1073/pnas.1013397107] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pex19p, a soluble cytoplasmic transport protein, is required for the traffic of the peroxisomal membrane proteins Pex3p and Pex15p from the endoplasmic reticulum (ER) to the peroxisome. We documented Pex15p traffic from the ER using a chimeric protein containing a C-terminal glycosylation acceptor peptide. Pex15Gp expressed in wild-type yeast cells is N-glycosylated and functions properly in the peroxisome. In contrast, pex19Δ-mutant cells accumulate the glycoprotein Pex15Gp in the ER. We developed a cell-free preperoxisomal vesicle-budding reaction in which Pex15Gp and Pex3p are packaged into small vesicles in the presence of cytosol, Pex19p, and ATP. Secretory vesicle budding (COPII) detected by the packaging of a SNARE protein (soluble N-ethylmaleimide-sensitive attachment protein receptor) occurs in the same incubation but does not depend on Pex19p. Conversely a dominant GTPase mutant Sar1p which inhibits COPII has no effect on Pex3p packaging. Pex15Gp and Pex3p budded vesicles sediment as low-buoyant-density membranes on a Nycodenz gradient and copurify by affinity isolation using native but not Triton X-100-treated budded vesicles. ER-peroxisome transport vesicles appear to rely on a novel budding mechanism requiring Pex19p and additional unknown factors.
Collapse
|
49
|
Honsho M, Hashiguchi Y, Ghaedi K, Fujiki Y. Interaction defect of the medium isoform of PTS1-receptor Pex5p with PTS2-receptor Pex7p abrogates the PTS2 protein import into peroxisomes in mammals. J Biochem 2010; 149:203-10. [DOI: 10.1093/jb/mvq130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes. Mol Cell Biol 2010; 30:3758-66. [PMID: 20498274 DOI: 10.1128/mcb.00121-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species are generated within peroxisomes during peroxisomal metabolism. However, due to technological difficulties, the intraperoxisomal redox state remain elusive, and the effect of peroxisome deficiency on the intracellular redox state is controversial. A newly developed, genetically encoded fluorescence resonance energy transfer (FRET) probe, Redoxfluor, senses the physiological redox state via its internal disulfide bonds, resulting in a change in the conformation of the protein leading to a FRET response. We made use of Redoxfluor to measure the redox states at the subcellular level in yeast and Chinese hamster ovary (CHO) cells. In wild-type peroxisomes harboring an intact fatty acid beta-oxidation system, the redox state within the peroxisomes was more reductive than that in the cytosol, despite the fact that reactive oxygen species were generated within the peroxisomes. Interestingly, we observed that the redox state of the cytosol of cell mutants for peroxisome assembly, regarded as models for a neurological metabolic disorder, was more reductive than that of the wild-type cells in yeast and CHO cells. Furthermore, Redoxfluor was utilized to develop an efficient system for the screening of drugs that moderate the abnormal cytosolic redox state in the mutant CHO cell lines for peroxisome assembly without affecting the redox state of normal cells.
Collapse
|