1
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
2
|
Garg M, Poornima G, Rajyaguru PI. Elucidation of the RNA-granule inducing sodium azide stress response through transcriptome analysis. Genomics 2020; 112:2978-2989. [PMID: 32437849 PMCID: PMC7116212 DOI: 10.1016/j.ygeno.2020.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022]
Abstract
Sodium azide is a commonly used cytochrome oxidase inhibitor that leads to translation repression and RNA granule assembly. The global changes in mRNA abundance in response to this stressor are unknown. RGG-motif proteins Scd6 and Sbp1 are translation-repressors and decapping-activators that localize to and affect the assembly of RNA granules in response to sodium azide stress. Transcriptome-wide effects of these proteins remain unknown. To address this, we have sequenced transcriptome of the: a) wild type strain under unstressed and sodium azide stress, b) Δscd6 and Δsbp1 strains under unstressed and sodium azide stress. Transcriptome analysis identified altered abundance of many transcripts belonging to stress-responsive pathways which were further validated by qRT-PCR results. Abundance of several transcripts was altered in Δscd6/Δsbp1 under normal conditions and upon stress. Overall, this study provides critical insights into transcriptome changes in response to sodium azide stress and the role of RGG-motif proteins in these changes.
Collapse
Affiliation(s)
- Mani Garg
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
3
|
Singer‐Krüger B, Fröhlich T, Franz‐Wachtel M, Nalpas N, Macek B, Jansen R. APEX2‐mediated proximity labeling resolves protein networks in
Saccharomyces cerevisiae
cells. FEBS J 2019; 287:325-344. [DOI: 10.1111/febs.15007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Theresa Fröhlich
- Interfaculty Institute of Biochemistry University of Tübingen Germany
| | | | | | - Boris Macek
- Proteome Center Tübingen University of Tübingen Germany
| | - Ralf‐Peter Jansen
- Interfaculty Institute of Biochemistry University of Tübingen Germany
| |
Collapse
|
4
|
Raué HA, Planta RJ. The pathway to maturity: processing of ribosomal RNA in Saccharomyces cerevisiae. Gene Expr 2018; 5:71-7. [PMID: 7488861 PMCID: PMC6138032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 17-18S, 5.8S, and 25-28S rRNA species of eukaryotic cells are transcribed by RNA polymerase I into a single precursor molecule, from which external and internal spacer sequences are subsequently removed in an order series of nucleolytic reactions. Whereas the order of the cleavage reactions has long been established, only recently has significant progress been made in detailing the cis-acting elements and the trans-acting factors involved in this process. The use of recently developed systems for in vivo mutational analysis of yeast rDNA has greatly enhanced our knowledge of cis-acting structural features within the pre-rRNA, which are critical for correct and efficient removal of the spacer sequences. The same systems also allow a link to be forged between trans-acting processing factors and these cis-acting elements. In this review the newly obtained information will be summarized, focused predominantly on pre-rRNA processing in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- H A Raué
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
5
|
Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 2018; 10:17-39. [PMID: 11868985 PMCID: PMC5977530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The small nucleolar RNAs (snoRNAs) are an abundant class of trans-acting RNAs that function in ribosome biogenesis in the eukaryotic nucleolus. Elegant work has revealed that most known snoRNAs guide modification of pre-ribosomal RNA (pre-rRNA) by base pairing near target sites. Other snoRNAs are involved in cleavage of pre-rRNA by mechanisms that have not yet been detailed. Moreover, our appreciation of the cellular roles of the snoRNAs is expanding with new evidence that snoRNAs also target modification of small nuclear RNAs and messenger RNAs. Many snoRNAs are produced by unorthodox modes of biogenesis including salvage from introns of pre-mRNAs. The recent discovery that homologs of snoRNAs as well as associated proteins exist in the domain Archaea indicates that the RNA-guided RNA modification system is of ancient evolutionary origin. In addition, it has become clear that the RNA component of vertebrate telomerase (an enzyme implicated in cancer and cellular senescence) is related to snoRNAs. During its evolution, vertebrate telomerase RNA appears to have co-opted a snoRNA domain that is essential for the function of telomerase RNA in vivo. The unique properties of snoRNAs are now being harnessed for basic research and therapeutic applications.
Collapse
MESH Headings
- Animals
- Base Pairing
- Biological Transport
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Eukaryotic Cells/metabolism
- Evolution, Molecular
- Methylation
- Prokaryotic Cells/metabolism
- Pseudouridine/metabolism
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/physiology
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribosomes/metabolism
- Species Specificity
- Structure-Activity Relationship
- Telomerase/metabolism
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
6
|
Brandariz-Núñez A, Zeng F, Lam QN, Jin H. Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner. RNA (NEW YORK, N.Y.) 2018; 24:43-55. [PMID: 28986506 PMCID: PMC5733569 DOI: 10.1261/rna.062547.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
RNA-binding protein Sbp1 facilitates the decapping pathway in mRNA metabolism and inhibits global mRNA translation by an unclear mechanism. Here we report molecular interactions responsible for Sbp1-mediated translation inhibition of mRNA encoding the polyadenosine-binding protein (Pab1), an essential translation factor that stimulates mRNA translation and inhibits mRNA decapping in eukaryotic cells. We demonstrate that the two distal RRMs of Sbp1 bind to the poly(A) sequence in the 5'UTR of the Pab1 mRNA specifically and cooperatively while the central RGG domain of the protein interacts directly with Pab1. Furthermore, methylation of arginines in the RGG domain abolishes the protein-protein interaction and the inhibitory effect of Sbp1 on translation initiation of Pab1 mRNA. Based on these results, the underlying mechanism for Sbp1-specific translational regulation is proposed. The functional differences of Sbp1 and RGG repeats alone on transcript-specific translation were observed, and a comparison of the results suggests the importance of remodeling the 5'UTR by RNA-binding proteins in mRNA translation.
Collapse
Affiliation(s)
- Alberto Brandariz-Núñez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Fuxing Zeng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Quan Ngoc Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
7
|
Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28:3686-99. [PMID: 18378690 DOI: 10.1128/mcb.01115-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.
Collapse
|
8
|
|
9
|
Segal SP, Dunckley T, Parker R. Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:5120-30. [PMID: 16782896 PMCID: PMC1489156 DOI: 10.1128/mcb.01913-05] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 10/31/2005] [Accepted: 03/31/2006] [Indexed: 11/20/2022] Open
Abstract
The relationship between translation and mRNA turnover is critical to the regulation of gene expression. One major pathway for mRNA turnover occurs by deadenylation, which leads to decapping and subsequent 5'-to-3' degradation of the body of the mRNA. Prior to mRNA decapping, a transcript exits translation and enters P bodies to become a potential decapping substrate. To understand the transition from translation to decapping, it is important to identify the factors involved in this process. In this work, we identify Sbp1p (formerly known as Ssb1p), an abundant RNA binding protein, as a high-copy-number suppressor of a conditional allele in the decapping enzyme. Sbp1p overexpression restores normal decay rates in decapping-defective strains and increases P-body size and number. In addition, Sbp1p promotes translational repression of mRNA during glucose deprivation. Moreover, P-body formation is reduced in strains lacking Sbp1p. Sbp1p acts in conjunction with Dhh1p, as it is required for translational repression and P-body formation in pat1Delta strains under these conditions. These results identify Sbp1p as a new protein that functions in the transition of mRNAs from translation to an mRNP complex destined for decapping.
Collapse
Affiliation(s)
- Scott P Segal
- Department of Molecular Cellular Biology and Howard Hughes Medical Institute, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA
| | | | | |
Collapse
|
10
|
Abstract
Each of the many different box H/ACA ribonucleoprotein particles (RNPs) present in eukaryotes and archaea consists of four common core proteins and one specific H/ACA small RNA, which bears the sequence elements H (ANANNA) and ACA. Most of the H/ACA RNPs are small nucleolar RNPs (snoRNPs), which are localized in nucleoli, and are one of the two major classes of snoRNPs. Most H/ACA RNPs direct pseudouridine synthesis in pre-rRNA and other RNAs. One H/ACA small nucleolar RNA (snoRNA), vertebrate E1/U17 (snR30 in yeast), is required for pre-rRNA cleavage processing that generates mature 18S rRNA. E1 snoRNA is encoded in introns of protein-coding genes, and the evidence suggests that human E1 RNA undergoes uridine insertional RNA editing. The vertebrate E1 RNA consensus secondary structure shows several features that are absent in other box H/ACA snoRNAs. The available UV-induced RNA-protein crosslinking results suggest that the E1 snoRNP is asymmetrical in vertebrate cells, in contrast to other H/ACA snoRNPs. The vertebrate E1 snoRNP in cells is surprisingly complex: (i) E1 RNA contacts directly and specifically several proteins which do not appear to be any of the H/ACA RNP four core proteins; and (ii) multiple E1 RNA sites are needed for E1 snoRNP formation, E1 RNA stability, and E1 RNA-protein direct interactions.
Collapse
Affiliation(s)
- George L Eliceiri
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri 63104-1028, USA.
| |
Collapse
|
11
|
Cuoghi B, Marini M. Ultrastructural and cytochemical features of the supramedullary neurons of the pufferfish Diodon holacanthus (L.) (Osteichthyes). Tissue Cell 2001; 33:491-9. [PMID: 11949785 DOI: 10.1054/tice.2001.0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exceptionally high DNA contents were found in supramedullary neuron (SN) nuclei of the pufferfish Diodon holacanthus by quantitative microfluorimetric assay. This phenomenon has been explained by endoreplication, the functional significance of which is still unclear. In this view, the peptidergic nature and large dimensions make the teleostean clustered SN an interesting model for investigating the relationships between endoreplication, nuclear morphology and biosynthetic cellular activity. In this paper, we present a cytochemical and ultrastructural study on the SN of D. holacanthus (Tetraodontiformes). The nucleolar and nucleus structures suggest an intense production of ribosomal components in order to satisfy high cellular demands for protein synthesis. Accordingly, the cytoplasmic compartment presents an extensive rough endoplasmic reticulum, well-developed Golgi apparatus and a remarkable vesicular traffic. These features suggest that SN are engaged in an intense process of protein biosynthesis. The SN are completely surrounded by processes of different types of glial cells. The glial cells may be considered part of the SN cluster.
Collapse
Affiliation(s)
- B Cuoghi
- Department of Animal Biology, University of Modena and Reggio Emilia, Italy.
| | | |
Collapse
|
12
|
Wu K, Wu P, Aris JP. Nucleolar protein Nop12p participates in synthesis of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 2001; 29:2938-49. [PMID: 11452019 PMCID: PMC55798 DOI: 10.1093/nar/29.14.2938] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A genetic screen for mutations synthetically lethal with temperature sensitive alleles of nop2 led to the identification of the nucleolar proteins Nop12p and Nop13p in Saccharomyces cerevisiae. NOP12 was identified by complementation of a synthetic lethal growth phenotype in strain YKW35, which contains a single nonsense mutation at codon 359 in an allele termed nop12-1. Database mining revealed that Nop12p was similar to a related protein, Nop13p. Nop12p and Nop13p are not essential for growth and each contains a single canonical RNA recognition motif (RRM). Both share sequence similarity with Nsr1p, a previously identified, non-essential, RRM-containing nucleolar protein. Likely orthologs of Nop12p were identified in Drosophila and Schizosaccharomyces pombe. Deletion of NOP12 resulted in a cold sensitive (cs) growth phenotype at 15 degrees C and slow growth at 20 and 25 degrees C. Growth of a nop12Delta strain at 15 and 20 degrees C resulted in impaired synthesis of 25S rRNA, but not 18S rRNA. A nop13 null strain did not produce an observable growth phenotype under the laboratory conditions examined. Epitope-tagged Nop12p, which complements the cs growth phenotype and restores normal 25S rRNA levels, was localized to the nucleolus by immunofluorescence microscopy. Epitope-tagged Nop13p was distributed primarily in the nucleolus, with a lesser portion localizing to the nucleoplasm. Thus, Nop12p is a novel nucleolar protein required for pre-25S rRNA processing and normal rates of cell growth at low temperatures.
Collapse
Affiliation(s)
- K Wu
- Department of Anatomy and Cell Biology, Health Sciences Center, College of Medicine, University of Florida, Gainesville, FL 32610-0235, USA
| | | | | |
Collapse
|
13
|
Shu-Nu C, Lin CH, Lin A. An acidic amino acid cluster regulates the nucleolar localization and ribosome assembly of human ribosomal protein L22. FEBS Lett 2000; 484:22-8. [PMID: 11056215 DOI: 10.1016/s0014-5793(00)02118-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The control of human ribosomal protein L22 (rpL22) to enter into the nucleolus and its ability to be assembled into the ribosome is regulated by its sequence. The nuclear import of rpL22 depends on a classical nuclear localization signal of four lysines at positions 13-16. RpL22 normally enters the nucleolus via a compulsory sequence of KKYLKK (I-domain, positions 88-93). An acidic residue cluster at the C-terminal end (C-domain) plays a nuclear retention role. The retention is concealed by the N-domain (positions 1-9) which weakly interacts with the C-domain as demonstrated in the yeast two-hybrid system. Once it reaches the nucleolus, the question of whether rpL22 is assembled into the ribosome depends upon the presence of the N-domain. This suggests that the N-domain, on dissociation from its interaction with the C-domain, binds to a specific region of the 28S rRNA for ribosome assembly.
Collapse
Affiliation(s)
- C Shu-Nu
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
Trumtel S, Léger-Silvestre I, Gleizes PE, Teulières F, Gas N. Assembly and functional organization of the nucleolus: ultrastructural analysis of Saccharomyces cerevisiae mutants. Mol Biol Cell 2000; 11:2175-89. [PMID: 10848637 PMCID: PMC14911 DOI: 10.1091/mbc.11.6.2175] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Using Saccharomyces cerevisiae strains with genetically modified nucleoli, we show here that changing parameters as critical as the tandem organization of the ribosomal genes and the polymerase transcribing rDNA, although profoundly modifying the position and the shape of the nucleolus, only partially alter its functional subcompartmentation. High-resolution morphology achieved by cryofixation, together with ultrastructural localization of nucleolar proteins and rRNA, reveals that the nucleolar structure, arising upon transcription of rDNA from plasmids by RNA polymerase I, is still divided in functional subcompartments like the wild-type nucleolus. rRNA maturation is restricted to a fibrillar component, reminiscent of the dense fibrillar component in wild-type cells; a granular component is also present, whereas no fibrillar center can be distinguished, which directly links this latter substructure to rDNA chromosomal organization. Although morphologically different, the mininucleoli observed in cells transcribing rDNA with RNA polymerase II also contain a fibrillar subregion of analogous function, in addition to a dense core of unknown nature. Upon repression of rDNA transcription in this strain or in an RNA polymerase I thermosensitive mutant, the nucleolar structure falls apart (in a reversible manner), and nucleolar constituents partially relocate to the nucleoplasm, indicating that rRNA is a primary determinant for the assembly of the nucleolus.
Collapse
Affiliation(s)
- S Trumtel
- Laboratoire de Biologie Moléculaire Eucaryote, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5099, and Université Paul Sabatier, 31062 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
15
|
Bousquet-Antonelli C, Vanrobays E, Gélugne JP, Caizergues-Ferrer M, Henry Y. Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre-rRNA cleavage at site A2. RNA (NEW YORK, N.Y.) 2000; 6:826-43. [PMID: 10864042 PMCID: PMC1369961 DOI: 10.1017/s1355838200992288] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chemical modifications and processing of the 18S, 5.8S, and 25S ribosomal RNAs from the 35S pre-ribosomal RNA depend on an important set of small nucleolar ribonucleoprotein particles (snoRNPs). Genetic depletion of yeast Gar1p, an essential common component of H/ACA snoRNPs, leads to inhibition of uridine isomerizations to pseudo-uridines on the 35S pre-rRNA and of the early pre-rRNA cleavages at sites A1 and A2, resulting in a loss of mature 18S rRNA synthesis. To identify Gar1p functional partners, we screened for mutations that are synthetically lethal with a gar1 mutant allele encoding a Gar1p mutant protein lacking its two glycine/arginine-rich (GAR) domains. We identified a previously uncharacterized Saccharomyces cerevisiae open reading frame, YDR083W (now designated RRP8), that encodes a highly conserved protein containing motifs found in methyltransferases. Rrp8p localizes to the nucleolus. A yeast strain lacking this protein is viable at 30 degrees C but displays strong growth impairment at lower temperatures. In this strain, cleavage of the pre-rRNA at site A2 is strongly affected whereas cleavages at sites A0 and A1 are only slightly inhibited or delayed.
Collapse
Affiliation(s)
- C Bousquet-Antonelli
- Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | |
Collapse
|
16
|
Dragon F, Pogacić V, Filipowicz W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol Cell Biol 2000; 20:3037-48. [PMID: 10757788 PMCID: PMC85579 DOI: 10.1128/mcb.20.9.3037-3048.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. They usually fold into a two-domain hairpin-hinge-hairpin-tail structure, with the conserved motifs H and ACA located in the hinge and tail, respectively. Synthetic RNA transcripts and extracts from HeLa cells were used to reconstitute human U17 and other H/ACA ribonucleoproteins (RNPs) in vitro. Competition and UV cross-linking experiments showed that proteins of about 60, 29, 23, and 14 kDa interact specifically with U17 RNA. Except for U17, RNPs could be reconstituted only with full-length H/ACA snoRNAs. For U17, the 3'-terminal stem-loop followed by box ACA (U17/3'st) was sufficient to form an RNP, and U17/3'st could compete other full-length H/ACA snoRNAs for assembly. The H/ACA-like domain that constitutes the 3' moiety of human telomerase RNA (hTR), and its 3'-terminal stem-loop (hTR/3'st), also could form an RNP by binding H/ACA proteins. Hence, the 3'-terminal stem-loops of U17 and hTR have some specific features that distinguish them from other H/ACA RNAs. Antibodies that specifically recognize the human GAR1 (hGAR1) protein could immunoprecipitate H/ACA snoRNAs and hTR from HeLa cell extracts, which demonstrates that hGAR1 is a component of H/ACA snoRNPs and telomerase in vivo. Moreover, we show that in vitro-reconstituted RNPs contain hGAR1 and that binding of hGAR1 does not appear to be a prerequisite for the assembly of the other H/ACA proteins.
Collapse
Affiliation(s)
- F Dragon
- Friedrich Miescher-Institut, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
17
|
Sirri V, Roussel P, Hernandez-Verdun D. The AgNOR proteins: qualitative and quantitative changes during the cell cycle. Micron 2000; 31:121-6. [PMID: 10588057 DOI: 10.1016/s0968-4328(99)00068-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AgNOR proteins are a set of argyrophilic nucleolar proteins that accumulate in highly proliferating cells whereas their expression is very low in non-proliferating cells. Some of these proteins remain associated with the nucleolar organizer regions (NORs) during mitosis. In situ, the expression of AgNOR proteins is measured globally by quantification of the level of silver staining using morphometry and image analysis. To go deeper into the understanding of the relationship between the cell cycle and quantity of AgNOR proteins, it was necessary to determine the phases of cell cycle during which expression of AgNOR varies and what are the most variable proteins in each phase. To answer these questions, we set up the protocol permitting to detect and quantify AgNOR proteins on protein samples electrophoresed and transferred onto nitrocellulose membranes. This approach makes it possible to quantitatively evaluate individual AgNOR proteins and identify them, using nucleolar, nuclear and whole interphasic cell extracts, and chromosome-associated protein extracts. By this means, we identified nucleolin and protein B23 as the two major AgNOR proteins in the nucleolus during interphase and subunits of RNA polymerase I and transcription factor UBF as AgNOR proteins remaining associated with NORs during mitosis. We also observed that the increase in the level of nucleolin and protein B23 in rat liver seems to be linked with the cell cycle and not exclusively with stimulation of ribosomal gene (rDNA) transcription. Similarly in synchronized cells, the amount of nucleolin rapidly increases when cells enter the S phase (1.6-fold of the value of serum-deprived cells at 9 h, and 2.35-fold at 12 h after refeeding). The amount of protein B23 exhibits a lower and progressive increase with a maximum when the percentage of cells in G2 phase increased, i.e. after 24 h of cell cycle stimulation. We consider that the amount of AgNOR proteins can be a marker of proliferation, because this amount is related to cell cycle phases, schematically low for G1 phase and high for S-G2 phase. Thus, it is a measure of the relative proportion of cells in each phase, and consequently of the timing of each phase. The higher value indicates that the major part of the cells are in the S-G2 phase and correlatively few are in the G1 phase, and this characterizes a rapid cell cycle.
Collapse
Affiliation(s)
- V Sirri
- Institut Jacques Monod, CNRS-Université Paris VI, France
| | | | | |
Collapse
|
18
|
Kressler D, Linder P, de La Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7897-912. [PMID: 10567516 PMCID: PMC84875 DOI: 10.1128/mcb.19.12.7897] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- D Kressler
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1211 Genève 4, Switzerland
| | | | | |
Collapse
|
19
|
Oakes M, Siddiqi I, Vu L, Aris J, Nomura M. Transcription factor UAF, expansion and contraction of ribosomal DNA (rDNA) repeats, and RNA polymerase switch in transcription of yeast rDNA. Mol Cell Biol 1999; 19:8559-69. [PMID: 10567580 PMCID: PMC84978 DOI: 10.1128/mcb.19.12.8559] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1999] [Accepted: 09/07/1999] [Indexed: 11/20/2022] Open
Abstract
Strains of the yeast Saccharomyces cerevisiae defective in transcription factor UAF give rise to variants able to grow by transcribing endogenous ribosomal DNA (rDNA) by RNA polymerase II (Pol II). We have demonstrated that the switch to growth using the Pol II system consists of two steps: a mutational alteration in UAF and an expansion of chromosomal rDNA repeats. The first step, a single mutation in UAF, is sufficient to allow Pol II transcription of rDNA. In contrast to UAF mutations, mutations in Pol I or other Pol I transcription factors can not independently lead to Pol II transcription of rDNA, suggesting a specific role of UAF in preventing polymerase switch. The second step, expansion of chromosomal rDNA repeats to levels severalfold higher than the wild type, is required for efficient cell growth. Mutations in genes that affect recombination within the rDNA repeats, fob1 and sir2, decrease and increase, respectively, the frequency of switching to growth using Pol II, indicating that increased rDNA copy number is a cause rather than a consequence of the switch. Finally, we show that the switch to the Pol II system is accompanied by a striking alteration in the localization and morphology of the nucleolus. The altered state that uses Pol II for rDNA transcription is semistable and heritable through mitosis and meiosis. We discuss the significance of these observations in relation to the plasticity of rDNA tandem repeats and nucleolar structures as well as evolution of the Pol I machinery.
Collapse
Affiliation(s)
- M Oakes
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697-1700, USA
| | | | | | | | | |
Collapse
|
20
|
Kim HD, Choe J, Seo YS. The sen1(+) gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 1999; 38:14697-710. [PMID: 10545196 DOI: 10.1021/bi991470c] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two polynucleotide-dependent ATPases, 95 and 181 kDa in size, have been purified to near homogeneity from cell-free extracts of Schizosaccharomyces pombe. Despite their size differences, their biochemical properties were strikingly similar. Both enzymes were capable of unwinding RNA and DNA duplexes in keeping with their ability to hydrolyze ATP in the presence of either ribo- or deoxyribopolynucleotide. In addition, they were capable of unwinding DNA/RNA or RNA/DNA hybrid duplexes and translocated in the 5' to 3' direction. These results strongly indicate that they are closely related to each other. Determination of the partial amino acid sequence of the 95-kDa enzyme revealed that it is encoded by the sen1(+)() gene, an S. pombe homologue of yeast SEN1, a protein essential for the processing of small nucleolar RNA, transfer RNA, and ribosomal RNA. The molecular weight of the S. pombe Sen1 protein (SpSen1p) predicted from the sen1(+)() open reading frame was 192.5 kDa, suggesting that the 181-kDa enzyme is likely to be a full-length protein, whereas the 95-kDa polypeptide has arisen by proteolysis. In accord with this possibility, polyclonal antibodies specific to the C-terminal region of sen1(+)() cross-reacted with both 95- and 181-kDa polypeptides. We discuss the biochemical activities associated with SpSen1p and their relevance to the apparently divergent functions ascribed to the yeast Sen1 protein in RNA metabolism.
Collapse
Affiliation(s)
- H D Kim
- Center for Cell Cycle Control, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-gu, Suwon, Kyounggi, 440-746, Korea
| | | | | |
Collapse
|
21
|
Lange TS, Ezrokhi M, Amaldi F, Gerbi SA. Box H and box ACA are nucleolar localization elements of U17 small nucleolar RNA. Mol Biol Cell 1999; 10:3877-90. [PMID: 10564278 PMCID: PMC25686 DOI: 10.1091/mbc.10.11.3877] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nucleolar localization elements (NoLEs) of U17 small nucleolar RNA (snoRNA), which is essential for rRNA processing and belongs to the box H/ACA snoRNA family, were analyzed by fluorescence microscopy. Injection of mutant U17 transcripts into Xenopus laevis oocyte nuclei revealed that deletion of stems 1, 2, and 4 of U17 snoRNA reduced but did not prevent nucleolar localization. The deletion of stem 3 had no adverse effect. Therefore, the hairpins of the hairpin-hinge-hairpin-tail structure formed by these stems are not absolutely critical for nucleolar localization of U17, nor are sequences within stems 1, 3, and 4, which may tether U17 to the rRNA precursor by base pairing. In contrast, box H and box ACA are major NoLEs; their combined substitution or deletion abolished nucleolar localization of U17 snoRNA. Mutation of just box H or just the box ACA region alone did not fully abolish the nucleolar localization of U17. This indicates that the NoLEs of the box H/ACA snoRNA family function differently from the bipartite NoLEs (conserved boxes C and D) of box C/D snoRNAs, where mutation of either box alone prevents nucleolar localization.
Collapse
Affiliation(s)
- T S Lange
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
22
|
Maiorano D, Brimage LJ, Leroy D, Kearsey SE. Functional conservation and cell cycle localization of the Nhp2 core component of H + ACA snoRNPs in fission and budding yeasts. Exp Cell Res 1999; 252:165-74. [PMID: 10502409 DOI: 10.1006/excr.1999.4607] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the identification of a novel nucleolar protein from fission yeast, p17(nhp2), which is homologous to the recently identified Nhp2p core component of H+ACA snoRNPs in Saccharomyces cerevisiae. We show that the fission yeast p17(nhp2) localizes to the nucleolus in live S. cerevisiae or Schizosaccharomyces pombe cells and is functionally conserved since the fission yeast gene can complement a deletion of the NHP2 gene in budding yeast. Analysis of p17(nhp2) during the mitotic cell cycles of living fission and budding yeast cells shows that this protein, and by implication H+ACA snoRNPs, remains localized with nucleolar material during mitosis, although the gross organization of partitioning of p17(nhp2) during anaphase is different in a comparison of the two yeasts. During anaphase in S. pombe p17(nhp2) trails segregating chromatin, while in S. cerevisiae the protein segregates alongside bulk chromatin. The pattern of segregation comparing haploid and diploid S. cerevisiae cells suggests that p17(nhp2) is closely associated with the rDNA during nuclear division.
Collapse
Affiliation(s)
- D Maiorano
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | | | | | | |
Collapse
|
23
|
Frankel A, Clarke S. RNase treatment of yeast and mammalian cell extracts affects in vitro substrate methylation by type I protein arginine N-methyltransferases. Biochem Biophys Res Commun 1999; 259:391-400. [PMID: 10362520 DOI: 10.1006/bbrc.1999.0779] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I protein arginine N-methyltransferases catalyze the formation of omega-NG-monomethylarginine and asymmetric omega-NG, NG-dimethylarginine residues using S-adenosyl-l-methionine as the methyl donor. In vitro these enzymes can modify a number of soluble methyl-accepting substrates in yeast and mammalian cell extracts including several species that interact with RNA. We treated normal and hypomethylated Saccharomyces cerevisiae and RAT1 cell extracts with RNase prior to in vitro methylation by recombinant protein N-arginine methyltransferases and found that the methylation of certain polypeptides is enhanced up to 12-fold whereas that of others is diminished. 2-D gel electrophoresis of RNase-treated yeast extracts allowed us to tentatively identify the glycine- and arginine-rich (GAR) domain-containing proteins Gar1, Nop1, Sbp1, and Npl3 as major methyl-acceptors based on their known isoelectric points and apparent molecular weights. These results suggest that the methylation and RNA-binding of GAR domain-containing proteins in vivo may regulate protein-nucleic acid or protein-protein interactions.
Collapse
Affiliation(s)
- A Frankel
- Department of Chemistry & Biochemistry and Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
24
|
Zanchin NI, Goldfarb DS. Nip7p interacts with Nop8p, an essential nucleolar protein required for 60S ribosome biogenesis, and the exosome subunit Rrp43p. Mol Cell Biol 1999; 19:1518-25. [PMID: 9891085 PMCID: PMC116080 DOI: 10.1128/mcb.19.2.1518] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NIP7 encodes a conserved Saccharomyces cerevisiae nucleolar protein that is required for 60S subunit biogenesis (N. I. T. Zanchin, P. Roberts, A. DeSilva, F. Sherman, and D. S. Goldfarb, Mol. Cell. Biol. 17:5001-5015, 1997). Rrp43p and a second essential protein, Nop8p, were identified in a two-hybrid screen as Nip7p-interacting proteins. Biochemical evidence for an interaction was provided by the copurification on immunoglobulin G-Sepharose of Nip7p with protein A-tagged Rrp43p and Nop8p. Cells depleted of Nop8p contained reduced levels of free 60S ribosomes and polysomes and accumulated half-mer polysomes. Nop8p-depleted cells also accumulated 35S pre-rRNA and an aberrant 23S pre-rRNA. Nop8p-depleted cells failed to accumulate either 25S or 27S rRNA, although they did synthesize significant levels of 18S rRNA. These results indicate that 27S or 25S rRNA is degraded in Nop8p-depleted cells after the section containing 18S rRNA is removed. Nip7p-depleted cells exhibited the same defects as Nop8p-depleted cells, except that they accumulated 27S precursors. Rrp43p is a component of the exosome, a complex of 3'-to-5' exonucleases whose subunits have been implicated in 5.8S rRNA processing and mRNA turnover. Whereas both green fluorescent protein (GFP)-Nop8p and GFP-Nip7p localized to nucleoli, GFP-Rrp43p localized throughout the nucleus and to a lesser extent in the cytoplasm. Distinct pools of Rrp43p may interact both with the exosome and with Nip7p, possibly both in the nucleus and in the cytoplasm, to catalyze analogous reactions in the multistep process of 60S ribosome biogenesis and mRNA turnover.
Collapse
Affiliation(s)
- N I Zanchin
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
25
|
Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gélugne JP, Caizergues-Ferrer M. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J 1998; 17:7078-90. [PMID: 9843512 PMCID: PMC1171055 DOI: 10.1093/emboj/17.23.7078] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The small nucleolar ribonucleoprotein particles containing H/ACA-type snoRNAs (H/ACA snoRNPs) are crucial trans-acting factors intervening in eukaryotic ribosome biogenesis. Most of these particles generate the site-specific pseudouridylation of rRNAs while a subset are required for 18S rRNA synthesis. To understand in detail how these particles carry out these functions, all of their protein components have to be characterized. For that purpose, we have affinity-purified complexes containing epitope-tagged Gar1p protein, previously shown to be part of H/ACA snoRNPs. Under the conditions used, three polypeptides of 65, 22 and 10 kDa apparent molecular weight specifically copurify with epitope-tagged Gar1p. The 22 and 10 kDa polypeptides were identified as Nhp2p and a novel protein we termed Nop10p, respectively. Both proteins are conserved, essential and present in the dense fibrillar component of the nucleolus. Nhp2p and Nop10p are specifically associated with all H/ACA snoRNAs and are essential to the function of H/ACA snoRNPs. Cells lacking Nhp2p or Nop10p are impaired in global rRNA pseudouridylation and in the A1 and A2 cleavage steps of the pre-rRNA required for the synthesis of mature 18S rRNA. These phenotypes are probably a direct consequence of the instability of H/ACA snoRNAs and Gar1p observed in cells deprived of Nhp2p or Nop10p. Our results suggest that Nhp2p and Nop10p, together with Cbf5p, constitute the core of H/ACA snoRNPs.
Collapse
Affiliation(s)
- A Henras
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 04, France
| | | | | | | | | | | |
Collapse
|
26
|
Watkins NJ, Gottschalk A, Neubauer G, Kastner B, Fabrizio P, Mann M, Lührmann R. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA (NEW YORK, N.Y.) 1998; 4:1549-68. [PMID: 9848653 PMCID: PMC1369725 DOI: 10.1017/s1355838298980761] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The eukaryotic nucleolus contains a large number of small nucleolar RNAs (snoRNAs) that are involved in preribosomal RNA (pre-rRNA) processing. The H box/ACA-motif (H/ACA) class of snoRNAs has recently been demonstrated to function as guide RNAs targeting specific uridines in the pre-rRNA for pseudouridine (psi) synthesis. To characterize the protein components of this class of snoRNPs, we have purified the snR42 and snR30 snoRNP complexes by anti-m3G-immunoaffinity and Mono-Q chromatography of Saccharomyces cerevisiae extracts. Sequence analysis of the individual polypeptides demonstrated that the three proteins Gar1p, Nhp2p, and Cbf5p are common to both the snR30 and snR42 complexes. Nhp2p is a highly basic protein that belongs to a family of putative RNA-binding proteins. Cbf5p has recently been demonstrated to be involved in ribosome biogenesis and also shows striking homology with known prokaryotic psi synthases. The presence of Cbf5p, a putative psi synthase in each H/ACA snoRNP suggests that this class of RNPs functions as individual modification enzymes. Immunoprecipitation studies using either anti-Cbf5p antibodies or a hemagglutinin-tagged Nhp2p demonstrated that both proteins are associated with all H/ACA-motif snoRNPs. In vivo depletion of Nhp2p results in a reduction in the steady-state levels of all H/ACA snoRNAs. Electron microscopy of purified snR42 and snR30 particles revealed that these two snoRNPs possess a similar bipartite structure that we propose to be a major structural determining principle for all H/ACA snoRNPs.
Collapse
Affiliation(s)
- N J Watkins
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Oakes M, Aris JP, Brockenbrough JS, Wai H, Vu L, Nomura M. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J Cell Biol 1998; 143:23-34. [PMID: 9763418 PMCID: PMC2132813 DOI: 10.1083/jcb.143.1.23] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/1998] [Revised: 06/11/1998] [Indexed: 11/22/2022] Open
Abstract
The nucleolus in Saccharomyces cerevisiae is a crescent-shaped structure that makes extensive contact with the nuclear envelope. In different chromosomal rDNA deletion mutants that we have analyzed, the nucleolus is not organized into a crescent structure, as determined by immunofluorescence microscopy, fluorescence in situ hybridization, and electron microscopy. A strain carrying a plasmid with a single rDNA repeat transcribed by RNA polymerase I (Pol I) contained a fragmented nucleolus distributed throughout the nucleus, primarily localized at the nuclear periphery. A strain carrying a plasmid with the 35S rRNA coding region fused to the GAL7 promoter and transcribed by Pol II contained a rounded nucleolus that often lacked extensive contact with the nuclear envelope. Ultrastructurally distinct domains were observed within the round nucleolus. A similar rounded nucleolar morphology was also observed in strains carrying the Pol I plasmid in combination with mutations that affect Pol I function. In a Pol I-defective mutant strain that carried copies of the GAL7-35S rDNA fusion gene integrated into the chromosomal rDNA locus, the nucleolus exhibited a round morphology, but was more closely associated with the nuclear envelope in the form of a bulge. Thus, both the organization of the rDNA genes and the type of polymerase involved in rDNA expression strongly influence the organization and localization of the nucleolus.
Collapse
Affiliation(s)
- M Oakes
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sicard H, Faubladier M, Noaillac-Depeyre J, Léger-Silvestre I, Gas N, Caizergues-Ferrer M. The role of the Schizosaccharomyces pombe gar2 protein in nucleolar structure and function depends on the concerted action of its highly charged N terminus and its RNA-binding domains. Mol Biol Cell 1998; 9:2011-23. [PMID: 9693363 PMCID: PMC25453 DOI: 10.1091/mbc.9.8.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nonribosomal nucleolar protein gar2 is required for 18S rRNA and 40S ribosomal subunit production in Schizosaccharomyces pombe. We have investigated the consequences of the absence of each structural domain of gar2 on cell growth, 18S rRNA production, and nucleolar structure. Deletion of gar2 RNA-binding domains (RBDs) causes stronger inhibition of growth and 18S rRNA accumulation than the absence of the whole protein, suggesting that other factors may be titrated by its remaining N-terminal basic/acidic serine-rich domain. These drastic functional defects correlate with striking nucleolar hypertrophy. Point mutations in the conserved RNP1 motifs of gar2 RBDs supposed to inhibit RNA-protein interactions are sufficient to induce severe nucleolar modifications but only in the presence of the N-terminal domain of the protein. Gar2 and its mutants also distribute differently in glycerol gradients: gar2 lacking its RBDs is found either free or assembled into significantly larger complexes than the wild-type protein. We propose that gar2 helps the assembly on rRNA of factors necessary for 40S subunit synthesis by providing a physical link between them. These factors may be recruited by the N-terminal domain of gar2 and may not be released if interaction of gar2 with rRNA is impaired.
Collapse
Affiliation(s)
- H Sicard
- Laboratoire de Biologie Moleculaire Eucaryote du Centre National de la Recherche Scientifique, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Ursic D, Himmel KL, Gurley KA, Webb F, Culbertson MR. The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res 1997; 25:4778-85. [PMID: 9365256 PMCID: PMC147120 DOI: 10.1093/nar/25.23.4778] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A single base change in the helicase superfamily 1 domain of the yeast Saccharomyces cerevisiae SEN1 gene results in a heat-sensitive mutation that alters the cellular abundance of many RNA species. We compared the relative amounts of RNAs between cells that are wild-type and mutant after temperature-shift. In the mutant several RNAs were found to either decrease or increase in abundance. The affected RNAs include tRNAs, rRNAs and small nuclear and nucleolar RNAs. Many of the affected RNAs have been positively identified and include end-matured precursor tRNAs and the small nuclear and nucleolar RNAs U5 and snR40 and snR45. Several small nucleolar RNAs co-immunoprecipitate with Sen1 but differentially associate with the wild-type and mutant protein. Its inactivation also impairs precursor rRNA maturation, resulting in increased accumulation of 35S and 6S precursor rRNAs and reduced levels of 20S, 23S and 27S rRNA processing intermediates. Thus, Sen1 is required for the biosynthesis of various functionally distinct classes of nuclear RNAs. We propose that Sen1 is an RNA helicase acting on a wide range of RNA classes. Its effects on the targeted RNAs in turn enable ribonuclease activity.
Collapse
Affiliation(s)
- D Ursic
- Laboratories of Molecular Biology and Genetics, 1525 Linden Drive, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
30
|
Yue WL, Ma ZZ, Sun ZH. Diagnostic importance of the nucleolar organizer regions in Wegener's granulomatosis. J Laryngol Otol 1997; 111:825-8. [PMID: 9373547 DOI: 10.1017/s0022215100138733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number and distribution pattern of silver staining nucleolar organizer regions (AgNORs) were thought to reflect the cellular proliferative activity and the malignancy of tumours. Using a silver-staining method, the variations of AgNORs have been studied in patients with atypical inflammatory lesion (n = 5), malignant reticulosis (n = 5) and Wegener's granulomatosis (n = 6). Our results reveal that there was a statistically significant difference (p < 0.01), highly suggestive of a difference in AgNOR counts between the atypical inflammatory lesion and Wegener's granulomatosis, with the Wegener's granulomatosis specimens having the higher irregular AgNORs, but the difference between Wegener's granulomatosis and malignant reticulosis is probably not clinically important. It is concluded that AgNORs may be useful in differentiating Wegener's granulomatosis from an atypical inflammatory lesion, and the simplified counting technique is adequate for the purpose.
Collapse
Affiliation(s)
- W L Yue
- Department of Otolaryngology, Pingdingshan People's Hospital No. 1, Henan, People's Republic of China
| | | | | |
Collapse
|
31
|
Ni J, Tien AL, Fournier MJ. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 1997; 89:565-73. [PMID: 9160748 DOI: 10.1016/s0092-8674(00)80238-x] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ten ACA yeast small nucleolar RNAs (snoRNAs) were shown to be required for site-specific synthesis of pseudouridine psi in ribosomal RNA. A common secondary folding motif for the snoRNAs and rRNA target segments predicts that site selection involves: (1) base pairing of the snoRNA with complementary rRNA elements flanking the site of modification, and (2) identification of a uridine located at a near-constant distance from the snoRNA ACA box. The model is supported by mutations showing that: (1) reducing the complementarity between the snoRNA and rRNA disrupts psi formation, and (2) altering the distance between the ACA box and target uridine causes an adjacent uridine to be modified. This discovery implies that most snoRNAs function in targeting nucleotide modification in rRNA: ribose methylation for the box C/D snoRNAs and psi formation for the ACA snoRNAs.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Nucleolus/metabolism
- Chick Embryo
- Models, Biological
- Molecular Sequence Data
- Molecular Structure
- Mutation
- Nucleic Acid Conformation
- Pseudouridine/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- J Ni
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
32
|
Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev 1997; 11:941-56. [PMID: 9106664 DOI: 10.1101/gad.11.7.941] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eukaryotic cells contain a large number of small nucleolar RNAs (snoRNAs). A major family of snoRNAs features a consensus ACA motif positioned 3 nucleotides from the 3' end of the RNA. In this study we have characterized nine novel human ACA snoRNAs (U64-U72). Structural probing of U64 RNA followed by systematic computer modeling of all known box ACA snoRNAs revealed that this class of snoRNAs is defined by a phylogenetically conserved secondary structure. The ACA snoRNAs fold into two hairpin structures connected by a single-stranded hinge region and followed by a short 3' tail. The hinge region carries an evolutionarily conserved sequence motif, called box H (consensus, AnAnnA). The H box, probably in concert with the flanking helix structures and the ACA box characterized previously, plays an essential role in the accumulation of human U64 intronic snoRNA. The correct processing of a yeast ACA snoRNA, snR36, in mammalian cells demonstrated that the cis- and trans-acting elements required for processing and accumulation of ACA snoRNAs are evolutionarily conserved. The notion that ACA snoRNAs share a common secondary structure and conserved box elements that likely function as binding sites for common proteins (e.g., GAR1) suggests that these RNAs possess closely related nucleolar functions.
Collapse
Affiliation(s)
- P Ganot
- Laboratoire de Biologie Moléculaire Eucaryote du Centre National de laRecherche (CNRS), Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
33
|
Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 1996; 86:823-34. [PMID: 8797828 DOI: 10.1016/s0092-8674(00)80156-7] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have discovered that all known yeast and vertebrate small nucleolar RNAs (snoRNAs), except for the MRP/7-2 RNA, fall into two major classes. One class is defined by conserved boxes C and D and the other by a novel element: a consensus ACA triplet positioned 3 nt before the 3' end of the RNA. A role for the ACA box is snoRNA stability has been established by mutational analysis of a yeast ACA snoRNA (snR 11). Full function of the box depends on the integrity of an adjacent upstream stem. All members of the yeast ACA family are associated with the GAR1 protein. Binding of this or another common small nucleolar ribonucleoprotein particle protein is predicted to be a critical entry point to snoRNA posttranscriptional life, including precise formation of the snoRNA 3' end.
Collapse
Affiliation(s)
- A G Balakin
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
34
|
Lafontaine D, Tollervey D. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res 1996; 24:3469-71. [PMID: 8811105 PMCID: PMC146098 DOI: 10.1093/nar/24.17.3469] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
With the availability of the complete yeast genomic sequence, techniques which allow the rapid functional analysis of genes of interest are of increasing importance. Here we report a technique which allows the initial characterisation of genes of interest, through the construction of conditionally expressed mutations for functional analyses and the generation of epitope-tagged fusion proteins for immuno-localisation and immuno-purification, entirely by PCR.
Collapse
Affiliation(s)
- D Lafontaine
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
35
|
Beven AF, Lee R, Razaz M, Leader DJ, Brown JW, Shaw PJ. The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs. J Cell Sci 1996; 109 ( Pt 6):1241-51. [PMID: 8799814 DOI: 10.1242/jcs.109.6.1241] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the organization of pre-rRNA processing by confocal microscopy in pea root cell nucleoli using a variety of probes for fluorescence in situ hybridization and immunofluorescence. Our results show that transcript processing within the nucleolus is spatially highly organized. Probes to the 5' external transcribed spacer (ETS) and first internal transcribed spacer (ITS1) showed that the excision of the ETS occurred in a sub-region of the dense fibrillar component (DFC), whereas the excision of ITS1 occurred in the surrounding region, broadly corresponding to the granular component. In situ labelling with probes to the snoRNAs U3 and U14, and immunofluorescence labelling with antibodies to fibrillarin and SSB1 showed a high degree of coincidence with the ETS pattern, confirming that ETS cleavage and 18 S rRNA production occur in the DFC. ETS, U14, fibrillarin and SSB1 showed a fine substructure within the DFC comprising closely packed small foci, whereas U3 appeared more diffuse throughout the DFC. A third snoRNA, 7-2/MRP, was localised to the region surrounding the ETS, in agreement with its suggested role in ITS1 cleavage. All three snoRNAs were also frequently observed in numerous small foci in the nucleolar vacuoles, but none was detectable in coiled bodies. Antibodies to fibrillarin and SSB1 labelled coiled bodies strongly, though neither protein was detected in the nucleolar vacuoles. During mitosis, all the components analyzed, including pre-rRNA, were dispersed through the cell at metaphase, then became concentrated around the periphery of all the chromosomes at anaphase, before being localized to the developing nucleoli at late telophase. Pre-rRNA (ETS and ITS1 probes), U3 and U14 were also concentrated into small bodies, presumed to be pre-nucleolar bodies at anaphase.
Collapse
Affiliation(s)
- A F Beven
- Department of Cell Biology, John Innes Centre, Colney, Norwich, UK
| | | | | | | | | | | |
Collapse
|
36
|
Bauer A, Kölling R. The SAC3 gene encodes a nuclear protein required for normal progression of mitosis. J Cell Sci 1996; 109 ( Pt 6):1575-83. [PMID: 8799844 DOI: 10.1242/jcs.109.6.1575] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SAC3 gene of Saccharomyces serevisiae has been implicated in actin function by genetic experiments showing that a temperature sensitive mutation in the essential actin gene (actl-1) can be suppressed by mutations in SAC3. An involvement of SAC3 in actin function is further suggested by the observation that the actin cytoskeleton is altered in SAC3 mutants. Our fractionation experiments, however, point to a nuclear localization of Sac3p. On sucrose density gradients Sac3p co-fractionated with the nuclear organelle markers examined. Furthermore, Sac3p was enriched 10-fold in a nuclei preparation along with the nuclear protein Nop1p. In this report we further show that SAC3 function is required for normal progression of mitosis. SAC3 mutants showed a higher fraction of large-budded cells in culture, indicative of a cell cycle delay. The predominant population among the large-budded sac3 cells were cells with a single nucleus at the bud-neck and a short intranuclear spindle. This suggests that a cell cycle delay occurs in mitosis prior to anaphase. The observation that SAC3 mutants lose chromosomes with higher frequency than wild-type is another indication for a mitotic defect in SAC3 mutants. We further noticed that SAC3 mutants are more resistant against the microtubule destabilizing drug benomyl. This finding suggests that SAC3 is involved, directly or indirectly, in microtubule function. In summary, our data indicate that SAC3 is involved in a process which affects both the actin cytoskeleton and mitosis.
Collapse
Affiliation(s)
- A Bauer
- Institut für Mikrobiologie, Heinrich-Heine-Universität Dsseldorf, Germany
| | | |
Collapse
|
37
|
Tani T, Derby RJ, Hiraoka Y, Spector DL. Nucleolar accumulation of poly (A)+ RNA in heat-shocked yeast cells: implication of nucleolar involvement in mRNA transport. Mol Biol Cell 1996; 7:173-92. [PMID: 8741848 PMCID: PMC278621 DOI: 10.1091/mbc.7.1.173] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transport of mRNA from the nucleus to the cytoplasm plays an important role in gene expression in eukaryotic cells. In wild-type Schizosaccharomyces pombe cells poly(A)+ RNA is uniformly distributed throughout the nucleoplasm and cytoplasm. However, we found that a severe heat shock blocks mRNA transport in S. pombe, resulting in the accumulation of bulk poly(A)+ RNA, as well as a specific intron-less transcript, in the nucleoli. Pretreatment of cells with a mild heat shock, which induces heat shock proteins, before a severe heat shock protects the mRNA transport machinery and allows mRNA transport to proceed unimpeded. In heat-shocked S. pombe cells, the nucleolar region condensed into a few compact structures. Interestingly, poly(A)+ RNA accumulated predominantly in the condensed nucleolar regions of the heat-shocked cells. These data suggest that the yeast nucleolus may play a role in mRNA transport in addition to its roles in rRNA synthesis and preribosome assembly.
Collapse
Affiliation(s)
- T Tani
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Post-transcriptional processing of precursor-ribosomal RNA comprises a complex pathway of endonucleolytic cleavages, exonucleolytic digestion and covalent modifications. The general order of the various processing steps is well conserved in eukaryotic cells, but the underlying mechanisms are largely unknown. Recent analysis of pre-rRNA processing, mainly in the yeast Saccharomyces cerevisiae, has significantly improved our understanding of this important cellular activity. Here we will review the data that have led to our current picture of yeast pre-rRNA processing.
Collapse
Affiliation(s)
- J Venema
- European Molecular Biology Laboratory (EMBL), Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
39
|
Abstract
A growing list of small nucleolar RNAs (snoRNAs) has been characterized in eukaryotes. They are transcribed by RNA polymerase II or III; some snoRNAs are encoded in the introns of other genes. The nonintronic polymerase II transcribed snoRNAs receive a trimethylguanosine cap, probably in the nucleus, and move to the nucleolus. snoRNAs are complexed with proteins, sometimes including fibrillarin. Localization and maintenance in the nucleolus of some snoRNAs requires the presence of initial precursor rRNA (pre-rRNA). Many snoRNAs have conserved sequence boxes C and D and a 3' terminal stem; the role of these features are discussed. Functional assays done for a few snoRNAs indicate their roles in rRNA processing for cleavage of the external and internal transcribed spacers (ETS and ITS). U3 is the most abundant snoRNA and is needed for cleavage of ETS1 and ITS1; experimental results on U3 binding sites in pre-rRNA are reviewed. 18S rRNA production also needs U14, U22, and snR30 snoRNAs, whereas U8 snoRNA is needed for 5.8S and 28S rRNA production. Other snoRNAs that are complementary to 18S or 28S rRNA might act as chaperones to mediate RNA folding. Whether snoRNAs join together in a large rRNA processing complex (the "processome") is not yet clear. It has been hypothesized that such complexes could anchor the ends of loops in pre-rRNA containing 18S or 28S rRNA, thereby replacing base-paired stems found in pre-rRNA of prokaryotes.
Collapse
|
40
|
Tani T, Derby RJ, Hiraoka Y, Spector DL. Nucleolar accumulation of poly (A)+ RNA in heat-shocked yeast cells: implication of nucleolar involvement in mRNA transport. Mol Biol Cell 1995; 6:1515-34. [PMID: 8589453 PMCID: PMC301308 DOI: 10.1091/mbc.6.11.1515] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transport of mRNA from the nucleus to the cytoplasm plays an important role in gene expression in eukaryotic cells. In wild-type Schizosaccharomyces pombe cells poly(A)+ RNA is uniformly distributed throughout the nucleoplasm and cytoplasm. However, we found that a severe heat shock blocks mRNA transport in S. pombe, resulting in the accumulation of bulk poly(A)+ RNA, as well as a specific intron-less transcript, in the nucleoli. Pretreatment of cells with a mild heat shock, which induces heat shock proteins, before a severe heat shock protects the mRNA transport machinery and allows mRNA transport to proceed unimpeded. In heat-shocked S. pombe cells, the nucleolar region condensed into a few compact structures. Interestingly, poly(A)+ RNA accumulated predominantly in the condensed nucleolar regions of the heat-shocked cells. These data suggest that the yeast nucleolus may play a role in mRNA transport in addition to its roles in rRNA synthesis and preribosome assembly.
Collapse
Affiliation(s)
- T Tani
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
41
|
Gulli MP, Girard JP, Zabetakis D, Lapeyre B, Melese T, Caizergues-Ferrer M. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation. Nucleic Acids Res 1995; 23:1912-8. [PMID: 7596817 PMCID: PMC306962 DOI: 10.1093/nar/23.11.1912] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several nucleolar proteins, such as nucleolin, NOP1/fibrillarin, SSB1, NSR1 and GAR1 share a common glycine and arginine rich structural motif called the GAR domain. To identify novel nucleolar proteins from fission yeast we screened Schizosaccharomyces pombe genomic DNA libraries with a probe encompassing the GAR structural motif. Here we report the identification and characterization of a S.pombe gene coding for a novel nucleolar protein, designated gar2. The structure of the fission yeast gar2 is reminiscent of that of nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. In addition, like these proteins, gar2 has a nucleolar localisation. The disruption of the gar2+ gene affects normal cell growth, leads to an accumulation of 35S pre-rRNA and a decrease of mature 18S rRNA steady state levels. Moreover, ribosomal profiles of the mutant show an increase of free 60S ribosomal subunits and an absence of free 40S ribosomal subunits. gar2 is able to rescue a S.cerevisiae mutant lacking NSR1, thus establishing gar2 as a functional homolog of NSR1. We propose that gar2 helps the assembly of pre-ribosomal particles containing 18S rRNA.
Collapse
Affiliation(s)
- M P Gulli
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Toulouse, France, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Recent evidence corroborates the idea that the structure of the nucleolus need not be strictly maintained for proper function, suggesting that the organelle is composed of supramolecular assemblies formed during rRNA synthesis. More controversial is whether the nucleolus exists in the absence of rRNA synthesis and whether it interacts with the nuclear scaffold. The simultaneous and highly integrative nature of building a ribosome is reflected in the numerous observations showing that proteins involved in all aspects of ribosomal biogenesis affect pre-rRNA processing. The identification of several new nucleolar proteins without an obvious role in pre-rRNA metabolism may provide the field with long sought after assembly factors that might be key players in eukaryotic ribosome biogenesis.
Collapse
Affiliation(s)
- T Mélèse
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
43
|
Lübben B, Fabrizio P, Kastner B, Lührmann R. Isolation and characterization of the small nucleolar ribonucleoprotein particle snR30 from Saccharomyces cerevisiae. J Biol Chem 1995; 270:11549-54. [PMID: 7744794 DOI: 10.1074/jbc.270.19.11549] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nucleolus of the yeast Saccharomyces cerevisiae contains the small nucleolar RNA snR30 (snoRNA), that is found associated with at least two proteins, NOP1 and GAR1. All three of these molecules are essential for the cell's viability and have been implicated in pre-rRNA maturation. NOP1 and GAR1 are believed to be general rRNA-processing factors or, alternatively, integral protein components of the small nucleolar ribonucleoprotein particle snR30 (snoRNP). In this paper, we describe procedures for the biochemical isolation of snR30 RNP, and we identify seven snR30 RNP proteins of molecular masses of 10, 23, 25, 38, 46, 48, and 65 kDa, including the previously reported GAR1 protein. Additional proteins, including NOP1, may also be components of snR30 RNP but are lost during our stringent isolation procedure. The 10-, 23-, and 25-kDa (GAR1) and 65-kDa proteins remain tightly associated with the snR30 RNA even after isopycnic sedimentation in cesium sulfate gradients. Electron microscopy of Mono Q-purified snR30 RNPs show a slightly elongated two-domain structure approximately 20 nm long and 14 nm wide.
Collapse
Affiliation(s)
- B Lübben
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
44
|
de Beus E, Brockenbrough JS, Hong B, Aris JP. Yeast NOP2 encodes an essential nucleolar protein with homology to a human proliferation marker. J Biophys Biochem Cytol 1994; 127:1799-813. [PMID: 7806561 PMCID: PMC2120275 DOI: 10.1083/jcb.127.6.1799] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have isolated a gene (NOP2) encoding a nucleolar protein during a search for previously unidentified nuclear proteins in the yeast Saccharomyces cerevisiae. The protein encoded by NOP2 (Nop2p) has a predicted molecular mass of 70 kD, migrates at 90 kD by SDS-PAGE, and is essential for cell viability. Nop2p shows significant amino acid sequence homology to a human proliferation-associated nucleolar protein, p120. Approximately half of Nop2p exhibits 67% amino acid sequence identity to p120. Analysis of subcellular fractions indicates that Nop2p is located primarily in the nucleus, and nuclear fractionation studies suggest that Nop2p is associated with the nucleolus. Indirect immunofluorescence localization of Nop2p shows a nucleolar-staining pattern, which is heterogeneous in appearance, and a faint staining of the cytoplasm. The expression of NOP2 during the transition from stationary phase growth arrest to rapid growth was measured, and compared to the expression of TCM1, which encodes the ribosomal protein L3. Nop2p protein levels are markedly upregulated during the onset of growth, compared to the levels of ribosomal protein L3, which remain relatively constant. NOP2 mRNA levels also increase during the onset of growth, accompanied by a similar increase in the levels of TCM1 mRNA. The consequences of overexpressing NOP2 from the GAL10 promoter on a multicopy plasmid were investigated. Although NOP2 overexpression produced no discernible growth phenotype and had no effect on ribosome subunit synthesis, overexpression was found to influence the morphology of the nucleolus, as judged by electron microscopy. Overexpression caused the nucleolus to become detached from the nuclear envelope and to become more rounded and/or fragmented in appearance. These findings suggest roles for NOP2 in nucleolar function during the onset of growth, and in the maintenance of nucleolar structure.
Collapse
Affiliation(s)
- E de Beus
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York 10021
| | | | | | | |
Collapse
|
45
|
Xue Z, Mélèse T. Nucleolar proteins that bind NLSs: a role in nuclear import or ribosome biogenesis? Trends Cell Biol 1994; 4:414-7. [PMID: 14731688 DOI: 10.1016/0962-8924(94)90095-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In a search for proteins that bind nuclear localization sequences (NLSs), a number of nucleolar proteins with diverse functions were found. It is thought that the assay fortuitously uncovered a novel domain that mediates the interaction between these nucleolar proteins and ribosomal proteins containing NLS-like sequences. The domain is highly acidic and contains a number of serines forming putative casein kinase II sites. Here, we propose a model in which the nucleolar proteins catalyse the assembly of ribosomal proteins with pre-rRNA.
Collapse
Affiliation(s)
- Z Xue
- Department of Biological Sciences, Columbia University, 702 Fairchild Building, New York, NY 10027, USA
| | | |
Collapse
|
46
|
Identification of a segment of the small nucleolar ribonucleoprotein-associated protein GAR1 that is sufficient for nucleolar accumulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32337-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Cusick ME. RNP1, a new ribonucleoprotein gene of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1994; 22:869-77. [PMID: 8139928 PMCID: PMC307894 DOI: 10.1093/nar/22.5.869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A previously unidentified ribonucleoprotein (RNP) gene of yeast has been cloned and sequenced. The gene, named RNP1, was found adjacent to a previously sequenced gene encoding the second gene for ribosomal protein L4. RNP1 contains two RNA Recognition Motifs (RRM), [alternatively known as RNA binding Domains (RBD)], but unlike most RNP genes does not contain any auxiliary simple sequence domains. The first RRM (RRM1) most resembles RRM domains found in the hnRNP A/B class of RNP proteins. The second RRM (RRM2) most resembles a RRM so far seen only in the single RRM of the yeast SSB1 gene. Two null mutants of RNP1 that were created, a frameshift disruption and a complete deletion of the gene, were viable, demonstrating that the gene is not essential for cell growth. Two double null mutants of yeast RNP genes that were created (delta RNP1/delta SSB1 and delta SSB1/delta NPL3) were also viable. A fragment identical in size to the RRM1 domain could be amplified by PCR from the DNA of fungi, plants, and animals, using primers matching the ends of this domain, indicating that the structure of RRM1 is conserved. Another potential open reading frame on the same cloned fragment of DNA encodes a gene product whose structure resembles that of a seven-transmembrane-segment membrane receptor protein.
Collapse
Affiliation(s)
- M E Cusick
- Department of Medical Biochemistry and Genetics, Texas A&M College of Medicine, College Station 77843-1114
| |
Collapse
|
48
|
Eichler DC, Craig N. Processing of eukaryotic ribosomal RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 49:197-239. [PMID: 7863007 DOI: 10.1016/s0079-6603(08)60051-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In summary, it can be argued that the understanding of eukaryotic rRNA processing is no less important than the understanding of mRNA maturation, since the capacity of a cell to carry out protein synthesis is controlled, in part, by the abundance of ribosomes. Processing of pre-rRNA is highly regulated, involving many cellular components acting either alone or as part of a complex. Some of these components are directly involved in the modification and cleavage of the precursor rRNA, while others direct the packaging of the rRNA into ribosome subunits. As is the case for pre-mRNA processing, snoRNPs are clearly involved in eukaryotic rRNA processing, and have been proposed to assemble with other proteins into at least one complex called a "processosome" (17), which carries out the ordered processing of the pre-rRNA and its assembly into ribosomes. The formation of a processing complex clearly makes possible the regulation required to coordinate the abundance of ribosomes with the physiological and developmental changes of a cell. It may be that eukaryotic rRNA processing is even more complex than pre-mRNA maturation, since pre-rRNA undergoes extensive nucleotide modification and is assembled into a complex structure called the ribosome. Undoubtedly, features of the eukaryotic rRNA-processing pathway have been conserved evolutionarily, and the genetic approach available in yeast research (6) should provide considerable knowledge that will be useful for other investigators working with higher eukaryotic systems. Interestingly, it was originally hoped that the extensive work and understanding of bacterial ribosome formation would provide a useful paradigm for the process in eukaryotes. However, although general features of ribosome structure and function are highly conserved between bacterial and eukaryotic systems, the basic strategy in ribosome biogenesis seems to be, for the most part, distinctly different. Thus, the detailed molecular mechanisms for rRNA processing in each kingdom will have to be independently deciphered in order to elucidate the features and regulation of this important process for cell survival.
Collapse
Affiliation(s)
- D C Eichler
- Department of Biochemistry & Molecular Biology, University of South Florida College of Medicine, Tampa 33612
| | | |
Collapse
|
49
|
Abstract
Silver resistance was studied in a silver-resistant Pseudomonas stutzeri AG259 strain and compared to a silver-sensitive P. stutzeri JM303 strain. Silver resistance was not due to silver complexation to intracellular polyphosphate or the presence of low molecular weight metal-binding protein(s). Both the silver-resistant and silver-sensitive P. stutzeri strains produced H2S, with the silver-resistant AG259 strain producing lower amounts of H2S than the silver-sensitive JM303 strain. However, intracellular acid-labile sulfide levels were generally higher in the silver-resistant P. stutzeri AG259 strain. Silver resistance may be due to formation of silver-sulfide complexes in the silver-resistant P. stutzeri AG259 strain.
Collapse
Affiliation(s)
- R M Slawson
- Department of Environmental Biology, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Balakin AG, Schneider GS, Corbett MS, Ni J, Fournier MJ. SnR31, snR32, and snR33: three novel, non-essential snRNAs from Saccharomyces cerevisiae. Nucleic Acids Res 1993; 21:5391-7. [PMID: 8265354 PMCID: PMC310576 DOI: 10.1093/nar/21.23.5391] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genes for three novel yeast snRNAs have been identified and tested for essentiality. Partial sequence information was developed for RNA extracted from isolated nuclei and the respective gene sequences were discovered by screening a DNA sequence database. The three RNAs contain 222, 188 and 183 nucleotides and are designated snR31, snR32 and snR33, respectively. Each RNA is derived from a single copy gene. The SNR31 gene is adjacent to a gene for an unnamed protein associated with the cap-binding protein eIF-4E. The SNR32 gene is next to a gene for ribosomal protein L41 and the gene for SNR33 is on chromosome III, between two open reading frames with no known function. Genetic disruption analyses showed that none of the three snRNAs is required for growth. The new RNAs bring the number of non-spliceosomal snRNAs characterized thus far in S. cerevisiae to 14, of which only three are essential.
Collapse
Affiliation(s)
- A G Balakin
- Department of Biochemistry and Molecular Biology, Lederle Graduate Research Center, University of Massachusetts, Amherst 01002
| | | | | | | | | |
Collapse
|