1
|
Brunmaier LAE, Ozdemir T, Walker TW. Angiogenesis: Biological Mechanisms and In Vitro Models. Ann Biomed Eng 2025:10.1007/s10439-025-03721-2. [PMID: 40210793 DOI: 10.1007/s10439-025-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The translation of biomedical devices and drug research is an expensive and long process with a low probability of receiving FDA approval. Developing physiologically relevant in vitro models with human cells offers a solution to not only improving the odds of FDA approval but also to expand our ability to study complex in vivo systems in a simpler fashion. Animal models remain the standard for pre-clinical testing; however, the data from animal models is an unreliable extrapolation when anticipating a human response in clinical trials, thus contributing to the low rates of translation. In this review, we focus on in vitro vascular or angiogenic models because of the incremental role that the vascular system plays in the translation of biomedical research. The first section of this review discusses the most common angiogenic cytokines that are used in vitro to initiate angiogenesis, followed by angiogenic inhibitors where both initiators and inhibitors work to maintain vascular homeostasis. Next, we evaluate previously published in vitro models, where we evaluate capturing the physical environment for biomimetic in vitro modeling. These topics provide a foundation of parameters that must be considered to improve and achieve vascular biomimicry. Finally, we summarize these topics to suggest a path forward with the goal of engineering human in vitro models that emulate the in vivo environment and provide a platform for biomedical device and drug screening that produces data to support clinical translation.
Collapse
Affiliation(s)
- Laura A E Brunmaier
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Travis W Walker
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA.
| |
Collapse
|
2
|
Huang M, Liu Y, Cheng Y, Dai W. Role of inflammatory biomarkers in mediating the effect of lipids on spontaneous intracerebral hemorrhage: a two-step, two-sample Mendelian randomization study. Front Neurol 2024; 15:1411555. [PMID: 39170073 PMCID: PMC11337198 DOI: 10.3389/fneur.2024.1411555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Spontaneous intracerebral hemorrhage (sICH) is a form of stroke with high mortality rates and significant neurological implications for patients. Abnormalities in lipid metabolism have been implicated in various cardiovascular diseases, yet their relationship with sICH remains insufficiently explored, particularly concerning their association with inflammatory factors. Methods Employing a two-sample, two-step Mendelian Randomization approach, combined with data from GWAS datasets, to investigate the causal relationship between plasma lipid levels and sICH. Additionally, the role of inflammatory factors in this relationship was examined, and sensitivity analyses were conducted to ensure the robustness of the results. Results The results indicate a significant causal relationship between 19 plasma lipid metabolites and sICH. Furthermore, mediation analysis revealed that three distinct lipids, namely Sterol ester (27:1/20:2), Phosphatidylcholine (16:0_20:4), and Sphingomyelin (d34:1), exert their influence on sICH through inflammatory factors. TRAIL (OR: 1.078, 95% CI: 1.016-1.144, p = 0.013) and HGF (OR: 1.131, 95% CI: 1.001-1.279, p = 0.049) were identified as significant mediators. Conclusion This study provides new evidence linking abnormalities in lipid metabolism with sICH and elucidates the role of inflammatory factors as mediators. These findings contribute to a better understanding of the pathogenesis of sICH and offer novel insights and therapeutic strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Mingsheng Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiheng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiran Dai
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Fonseca P, Cui W, Struyf N, Tong L, Chaurasiya A, Casagrande F, Zhao H, Fernando D, Chen X, Tobin NP, Seashore-Ludlow B, Lundqvist A, Hartman J, Göndör A, Östling P, Holmgren L. A phenotypic screening approach to target p60AmotL2-expressing invasive cancer cells. J Exp Clin Cancer Res 2024; 43:107. [PMID: 38594748 PMCID: PMC11003180 DOI: 10.1186/s13046-024-03031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Tumor cells have the ability to invade and form small clusters that protrude into adjacent tissues, a phenomenon that is frequently observed at the periphery of a tumor as it expands into healthy tissues. The presence of these clusters is linked to poor prognosis and has proven challenging to treat using conventional therapies. We previously reported that p60AmotL2 expression is localized to invasive colon and breast cancer cells. In vitro, p60AmotL2 promotes epithelial cell invasion by negatively impacting E-cadherin/AmotL2-related mechanotransduction. METHODS Using epithelial cells transfected with inducible p60AmotL2, we employed a phenotypic drug screening approach to find compounds that specifically target invasive cells. The phenotypic screen was performed by treating cells for 72 h with a library of compounds with known antitumor activities in a dose-dependent manner. After assessing cell viability using CellTiter-Glo, drug sensitivity scores for each compound were calculated. Candidate hit compounds with a higher drug sensitivity score for p60AmotL2-expressing cells were then validated on lung and colon cell models, both in 2D and in 3D, and on colon cancer patient-derived organoids. Nascent RNA sequencing was performed after BET inhibition to analyse BET-dependent pathways in p60AmotL2-expressing cells. RESULTS We identified 60 compounds that selectively targeted p60AmotL2-expressing cells. Intriguingly, these compounds were classified into two major categories: Epidermal Growth Factor Receptor (EGFR) inhibitors and Bromodomain and Extra-Terminal motif (BET) inhibitors. The latter consistently demonstrated antitumor activity in human cancer cell models, as well as in organoids derived from colon cancer patients. BET inhibition led to a shift towards the upregulation of pro-apoptotic pathways specifically in p60AmotL2-expressing cells. CONCLUSIONS BET inhibitors specifically target p60AmotL2-expressing invasive cancer cells, likely by exploiting differences in chromatin accessibility, leading to cell death. Additionally, our findings support the use of this phenotypic strategy to discover novel compounds that can exploit vulnerabilities and specifically target invasive cancer cells.
Collapse
Affiliation(s)
- Pedro Fonseca
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Weiyingqi Cui
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nona Struyf
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Le Tong
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Ayushi Chaurasiya
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Felipe Casagrande
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Honglei Zhao
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Dinura Fernando
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Department of Clinical Molecular Biology, University of Oslo, Akershus Universitetssykehus, 1478, Lørenskog, Oslo, Norway
| | - Päivi Östling
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Lars Holmgren
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden.
| |
Collapse
|
4
|
Aouad P, Quinn HM, Berger A, Brisken C. Tumor dormancy: EMT beyond invasion and metastasis. Genesis 2024; 62:e23552. [PMID: 37776086 DOI: 10.1002/dvg.23552] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
More than two-thirds of cancer-related deaths are attributable to metastases. In some tumor types metastasis can occur up to 20 years after diagnosis and successful treatment of the primary tumor, a phenomenon termed late recurrence. Metastases arise from disseminated tumor cells (DTCs) that leave the primary tumor early on in tumor development, either as single cells or clusters, adapt to new environments, and reduce or shut down their proliferation entering a state of dormancy for prolonged periods of time. Dormancy has been difficult to track clinically and study experimentally. Recent advances in technology and disease modeling have provided new insights into the molecular mechanisms orchestrating dormancy and the switch to a proliferative state. A new role for epithelial-mesenchymal transition (EMT) in inducing plasticity and maintaining a dormant state in several cancer models has been revealed. In this review, we summarize the major findings linking EMT to dormancy control and highlight the importance of pre-clinical models and tumor/tissue context when designing studies. Understanding of the cellular and molecular mechanisms controlling dormant DTCs is pivotal in developing new therapeutic agents that prevent distant recurrence by maintaining a dormant state.
Collapse
Affiliation(s)
- Patrick Aouad
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Hazel M Quinn
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adeline Berger
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
5
|
Spitaleri G, Trillo Aliaga P, Attili I, Del Signore E, Corvaja C, Corti C, Uliano J, Passaro A, de Marinis F. MET in Non-Small-Cell Lung Cancer (NSCLC): Cross 'a Long and Winding Road' Looking for a Target. Cancers (Basel) 2023; 15:4779. [PMID: 37835473 PMCID: PMC10571577 DOI: 10.3390/cancers15194779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Non-Small-Cell Lung Cancer (NSCLC) can harbour different MET alterations, such as MET overexpression (MET OE), MET gene amplification (MET AMP), or MET gene mutations. Retrospective studies of surgical series of patients with MET-dysregulated NSCLC have shown worse clinical outcomes irrespective of the type of specific MET gene alteration. On the other hand, earlier attempts failed to identify the 'druggable' molecular gene driver until the discovery of MET exon 14 skipping mutations (METex14). METex14 are rare and amount to around 3% of all NSCLCs. Patients with METex14 NSCLC attain modest results when they are treated with immune checkpoint inhibitors (ICIs). New selective MET inhibitors (MET-Is) showed a long-lasting clinical benefit in patients with METex14 NSCLC and modest activity in patients with MET AMP NSCLC. Ongoing clinical trials are investigating new small molecule tyrosine kinase inhibitors, bispecific antibodies, or antibodies drug conjugate (ADCs). This review focuses on the prognostic role of MET, the summary of pivotal clinical trials of selective MET-Is with a focus on resistance mechanisms. The last section is addressed to future developments and challenges.
Collapse
Affiliation(s)
- Gianluca Spitaleri
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Ester Del Signore
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Carla Corvaja
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (C.C.); (J.U.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Jacopo Uliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (C.C.); (J.U.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| |
Collapse
|
6
|
Lee TS, Kim JY, Lee MH, Cho IR, Paik WH, Ryu JK, Kim YT, Lee SH. Savolitinib: A Promising Targeting Agent for Cancer. Cancers (Basel) 2023; 15:4708. [PMID: 37835402 PMCID: PMC10571651 DOI: 10.3390/cancers15194708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Savolitinib is a highly selective small molecule inhibitor of the mesenchymal epithelial transition factor (MET) tyrosine kinase, primarily developed for the treatment of non-small cell lung cancer (NSCLC) with MET mutations. It is also being investigated as a treatment for breast, head and neck, colorectal, gastric, pancreatic, and other gastrointestinal cancers. In both preclinical and clinical studies, it has demonstrated efficacy in lung, kidney, and stomach cancers. Savolitinib is an oral anti-cancer medication taken as a 600 mg dose once daily. It can be used as a monotherapy in patients with non-small cell lung cancer with MET mutations and in combination with epidermal growth factor receptor (EGFR) inhibitors for patients who have developed resistance to them. Furthermore, savolitinib has shown positive results in gastric cancer treatment, particularly in combination with docetaxel. As a result, this review aims to validate its efficacy in NSCLC and suggests its potential application in other gastrointestinal cancers, such as pancreatic cancer, based on related research in gastric and renal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (T.S.L.); (J.Y.K.); (M.H.L.); (I.R.C.); (W.H.P.); (J.K.R.); (Y.-T.K.)
| |
Collapse
|
7
|
Mao X, Wang J, Luo F. α-Fetoprotein contributes to the malignant biological properties of AFP-producing gastric cancer. Open Life Sci 2023; 18:20220476. [PMID: 37588998 PMCID: PMC10426758 DOI: 10.1515/biol-2022-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/02/2022] [Accepted: 07/17/2022] [Indexed: 08/18/2023] Open
Abstract
This study aimed to investigate whether α-fetoprotein (AFP) could affect the malignant behavior of AFP-producing gastric cancer (AFP-GC) and to explore the relationship between AFP and mesenchymal-epithelial transition factor (c-Met) in AFP-GC. In this study, 23 patients with AFP-GC (AFP[+]) and 18 patients with common gastric cancer (AFP[-]) were evaluated for the c-Met expression using immunohistochemical analysis. The AFP-GC cell line, GCIY, was used. The AFP endoribonuclease-prepared small interfering RNA (siRNA) and eukaryotic AFP overexpression vector were used to increase/knockdown the expression of AFP. Afterward, the c-Met expression was evaluated by polymerase chain reaction and western blot. The proliferation, migration, and invasion of GCIY cells were estimated before and after the AFP overexpression/knockdown. The c-Met expression in both groups was the same (p > 0.05), and AFP[+] group had a higher positive incidence of the c-Met expression than the AFP[-] group (p < 0.01). Furthermore, the c-Met expression frequency was decreased by AFP knockdown and increased by AFP overexpression (p < 0.01). The cell counting kit-8 cell proliferation assay, cell invasion, and migration assays confirmed that the AFP could affect the malignant biological behavior of AFP-GC. These findings suggest that AFP contributes to the malignant biological properties of AFP-GC and the high expression of c-Met in AFP-GC.
Collapse
Affiliation(s)
- Xiang Mao
- Department of General Surgery, Huashan Hospital, Shanghai, 200040, China
| | - Jun Wang
- Department of General Surgery, Huashan Hospital, Shanghai, 200040, China
| | - Fen Luo
- Department of General Surgery, Huashan Hospital, No. 12, Middle Urumqi Road, Shanghai, 200040, China
| |
Collapse
|
8
|
Zhu X, Lu Y, Lu S. Landscape of Savolitinib Development for the Treatment of Non-Small Cell Lung Cancer with MET Alteration-A Narrative Review. Cancers (Basel) 2022; 14:cancers14246122. [PMID: 36551608 PMCID: PMC9776447 DOI: 10.3390/cancers14246122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is increasingly being treated with targeted therapies. Savolitinib (Orpathys®) is highly selective mesenchymal epithelial transition (MET)-tyrosine kinase inhibitor (TKI), which is conditionally approved in China for advanced NSCLC with MET exon 14 skipping mutations (METex14). This article summarizes the clinical development of savolitinib, as a monotherapy in NSCLC with METex14 mutation and in combination with epidermal growth factor receptor (EGFR) inhibitor in post EGFR-TKI resistance NSCLC due to MET-based acquired resistance. Preclinical models demonstrated anti-tumor activities in MET-driven cancer cell line and xenograft tumor models. The Phase Ia/Ib study established an optimized, recommended phase II dose in Chinese NSCLC patients, while TATTON study of savolitinib plus osimertinib in patients with EGFR mutant, MET-amplified and TKI-progressed NSCLC showed beneficial efficacy with acceptable safety profile. In a pivotal phase II study, Chinese patients with pulmonary sarcomatoid carcinoma, brain metastasis and other NSCLC subtype positive for METex14 mutation showed notable responses and acceptable safety profile with savolitinib. Currently, results from ongoing clinical trials are eagerly anticipated to confirm the efficacious and safety benefits of savolitinib as monotherapy and in combination with EGFR-TKI in acquired resistance setting in advanced NSCLC and its subtypes with MET alterations.
Collapse
Affiliation(s)
- Xiaokuan Zhu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Lu
- AstraZeneca China, Shanghai 201200, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence:
| |
Collapse
|
9
|
Mutational Landscape and Expression of PD-L1 in Patients with Non-Small Cell Lung Cancer Harboring Genomic Alterations of the MET gene. Target Oncol 2022; 17:683-694. [PMID: 36136211 PMCID: PMC9684265 DOI: 10.1007/s11523-022-00918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
Background Mesenchymal-to-epithelial transition (MET) exon 14 skipping mutations and MET gene amplification occur in 3–5% of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) targeting MET alterations have shown promising results in these patients. Objective The aim of this study was to describe the genomic profile, PD-L1 expression and clinicopathological features of MET dysregulated NSCLC. Patients and Methods We identified 188 patients with advanced-stage NSCLC with data on MET expression by immunohistochemistry (IHC). IHC for PD-L1 expression was performed in 131 patient samples, and next-generation sequencing (NGS) analysis was performed in 109 patient samples. Results MET exon 14 skipping alterations were identified in 16 (14.7%) samples, MET amplifications with cut-off ≥4 copy number variations were identified in 11 (10.1%) samples, and an oncogenic MET mutation (MET p.D1228N) was identified in 1 (0.9%) sample. 12/15 tumors (80.0%) harboring MET exon 14 alterations and 7/11 (63.6%) MET-amplified tumors expressed PD-L1 in ≥1% of tumor cells. Tumors harboring MET exon 14 skipping alterations expressed PD-L1 more frequently than MET wild-type IHC-positive tumors (p = 0.045). Twenty-five percent of MET exon 14-altered cases and 33% of MET-amplified cases harbored potentially targetable oncogenic co-mutations in KRAS, BRAF, and EGFR. The most frequent co-occurring mutations in all MET-altered tumors were TP53, KRAS, BRAF, and CDK4. Conclusions We demonstrated that MET exon 14 skipping alterations and MET amplification are not mutually exclusive to other oncogenic co-mutations, and report the association of genomic MET alterations with PD-L1 expression. Since genomic MET alterations are emerging targets requiring upfront treatment, optimal understanding of the co-mutational landscape for this patient population is needed. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00918-6.
Collapse
|
10
|
Therapeutic Strategies for Ovarian Cancer in Point of HGF/c-MET Targeting. Medicina (B Aires) 2022; 58:medicina58050649. [PMID: 35630066 PMCID: PMC9147666 DOI: 10.3390/medicina58050649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths in women and is regarded as one of the most difficult cancers to treat. Currently, studies are being conducted to develop therapeutic agents for effective treatment of ovarian cancer. In this review, we explain the properties of the hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) and how the signaling pathway of HGF/c-MET is activated in different cancers and involved in tumorigenesis and metastasis of ovarian cancer. We present the findings of clinical studies using small chemicals or antibodies targeting HGF/c-MET signaling in various cancer types, particularly in ovarian cancer. We also discuss that HGF/c-MET-targeted therapy, when combined with chemo drugs, could be an effective strategy for ovarian cancer therapeutics.
Collapse
|
11
|
Zhao Y, Ye W, Wang YD, Chen WD. HGF/c-Met: A Key Promoter in Liver Regeneration. Front Pharmacol 2022; 13:808855. [PMID: 35370682 PMCID: PMC8968572 DOI: 10.3389/fphar.2022.808855] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/11/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a peptide-containing multifunctional cytokine that acts on various epithelial cells to regulate cell growth, movement and morphogenesis, and tissue regeneration of injured organs. HGF is sequestered by heparin-like protein in its inactive form and is widespread in the extracellular matrix of most tissues. When the liver loses its average mass, volume, or physiological and biochemical functions due to various reasons, HGF binds to its specific receptor c-Met (cellular mesenchymal-epithelial transition) and transmits the signals into the cells, and triggers the intrinsic kinase activity of c-Met. The downstream cascades of HGF/c-Met include JAK/STAT3, PI3K/Akt/NF-κB, and Ras/Raf pathways, affecting cell proliferation, growth, and survival. HGF has important clinical significance for liver fibrosis, hepatocyte regeneration after inflammation, and liver regeneration after transplantation. And the development of HGF as a biological drug for regenerative therapy of diseases, that is, using recombinant human HGF protein to treat disorders in clinical trials, is underway. This review summarizes the recent findings of the HGF/c-Met signaling functions in liver regeneration.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Schmitt C, Schulz AA, Winkelmann R, Smith K, Wild PJ, Demes M. Comparison of MET gene amplification analysis by next-generation sequencing and fluorescence in situ hybridization. Oncotarget 2021; 12:2273-2282. [PMID: 34733418 PMCID: PMC8555686 DOI: 10.18632/oncotarget.28092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
MET gene alterations are known to be involved in acquired resistance to epidermal growth factor receptor inhibition. MET amplifications present a potential therapeutic target in non-small cell lung cancer. Although next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) are conventionally used to assess MET amplifications, there are currently no clinically defined cut-off values for NGS, with FISH still being the gold standard. A collective of 20 formalin-fixed paraffin-embedded lung cancer tissue samples (mean age 64 years) were selected based on increased MET gene copy number (CNV) status or the presence of mutations detected by NGS (GeneReader, QIAGEN) and were further assessed by FISH (MET/CEN7, Zytomed). Of these, 17 tumor samples were MET-amplified and one patient was found to have a MET rearrangement by NGS, while two samples had no MET gene alteration. In contrast to the NGS result, FISH analysis showed only one highly amplified sample and 19 negative samples. The single highly amplified case detected by FISH was also positive by NGS with a fold change (FC) of 3.18 and a mean copy number (CNMV 10−100%) of 20.5. Therefore, for the assessment of MET amplifications using the QIAGEN NGS workflow, we suggest detecting amplified cases with an FC value of ≥ 3.0 and a CNMV 10−100% value of ≥ 20.0 by FISH. In summary, NGS allows for DNA- and RNA-based analysis of specific MET gene amplifications, point mutations or rearrangements.
Collapse
Affiliation(s)
- Christina Schmitt
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main 60590, Germany
| | - Anna-Alice Schulz
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main 60590, Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main 60590, Germany
| | - Kevin Smith
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main 60590, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main 60590, Germany.,Wildlab, University Hospital Frankfurt MVZ GmbH, Frankfurt am Main 60590, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main 60438, Germany
| | - Melanie Demes
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main 60590, Germany.,Wildlab, University Hospital Frankfurt MVZ GmbH, Frankfurt am Main 60590, Germany
| |
Collapse
|
14
|
Arras J, Thomas KS, Myers PJ, Cross AM, Osei AD, Vazquez GE, Atkins KA, Conaway MR, Jones MK, Lazzara MJ, Bouton AH. Breast Cancer Antiestrogen Resistance 3 (BCAR3) promotes tumor growth and progression in triple-negative breast cancer. Am J Cancer Res 2021; 11:4768-4787. [PMID: 34765292 PMCID: PMC8569345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023] Open
Abstract
Triple-Negative Breast Cancers (TNBCs) constitute roughly 10-20% of breast cancers and are associated with poor clinical outcomes. Previous work from our laboratory and others has determined that the cytoplasmic adaptor protein Breast Cancer Antiestrogen Resistance 3 (BCAR3) is an important promoter of cell motility and invasion of breast cancer cells. In this study, we use both in vivo and in vitro approaches to extend our understanding of BCAR3 function in TNBC. We show that BCAR3 is upregulated in ductal carcinoma in situ (DCIS) and invasive carcinomas compared to normal mammary tissue, and that survival of TNBC patients whose tumors contained elevated BCAR3 mRNA is reduced relative to individuals whose tumors had less BCAR3 mRNA. Using mouse orthotopic tumor models, we further show that BCAR3 is required for efficient TNBC tumor growth. Analysis of publicly available RNA expression databases revealed that MET receptor signaling is strongly correlated with BCAR3 mRNA expression. A functional role for BCAR3-MET coupling is supported by data showing that both proteins participate in a single pathway to control proliferation and migration of TNBC cells. Interestingly, the mechanism through which this functional interaction operates appears to differ in different genetic backgrounds of TNBC, stemming in one case from potential differences in the strength of downstream signaling by the MET receptor and in another from BCAR3-dependent activation of an autocrine loop involving the production of HGF mRNA. Together, these data open the possibility for new approaches to personalized therapy for individuals with TNBCs.
Collapse
Affiliation(s)
- Janet Arras
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Keena S Thomas
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Paul J Myers
- Department of Chemical Engineering, University of VirginiaCharlottesville, VA 22904, USA
| | - Allison M Cross
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Amare D Osei
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Gabriel E Vazquez
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Mark R Conaway
- Department of Public Health Sciences, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Marieke K Jones
- Claude Moore Health Sciences Library, University of VirginiaCharlottesville, VA 22908, USA
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of VirginiaCharlottesville, VA 22904, USA
| | - Amy H Bouton
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| |
Collapse
|
15
|
Jones TM, Marks PC, Cowan JM, Kainth DK, Petrie RJ. Cytoplasmic pressure maintains epithelial integrity and inhibits cell motility. Phys Biol 2021; 18:10.1088/1478-3975/ac267a. [PMID: 34521072 PMCID: PMC8591555 DOI: 10.1088/1478-3975/ac267a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022]
Abstract
Cytoplasmic pressure, a function of actomyosin contractility and water flow, can regulate cellular morphology and dynamics. In mesenchymal cells, cytoplasmic pressure powers cell protrusion through physiological three-dimensional extracellular matrices. However, the role of intracellular pressure in epithelial cells is relatively unclear. Here we find that high cytoplasmic pressure is necessary to maintain barrier function, one of the hallmarks of epithelial homeostasis. Further, our data show that decreased cytoplasmic pressure facilitates lamellipodia formation during the epithelial to mesenchymal transition (EMT). Critically, activation of the actin nucleating protein Arp2/3 is required for the reduction in cytoplasmic pressure and lamellipodia formation in response to treatment with hepatocyte growth factor (HGF) to induce EMT. Thus, elevated cytoplasmic pressure functions to maintain epithelial tissue integrity, while reduced cytoplasmic pressure triggers lamellipodia formation and motility during HGF-dependent EMT.
Collapse
Affiliation(s)
- Tia M. Jones
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Pragati C. Marks
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - James M. Cowan
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
16
|
Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 2021; 40:4625-4651. [PMID: 34145400 DOI: 10.1038/s41388-021-01863-w] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This review provides a comprehensive landscape of HGF/c-MET (hepatocyte growth factor (HGF) /mesenchymal-epithelial transition factor (c-MET)) signaling pathway in cancers. First, we generalize the compelling influence of HGF/c-MET pathway on multiple cellular processes. Then, we present the genomic characterization of HGF/c-MET pathway in carcinogenesis. Furthermore, we extensively illustrate the malignant biological behaviors of HGF/c-MET pathway in cancers, in which hyperactive HGF/c-MET signaling is considered as a hallmark. In addition, we investigate the current clinical trials of HGF/c-MET-targeted therapy in cancers. We find that although HGF/c-MET-targeted therapy has led to breakthroughs in certain cancers, monotherapy of targeting HGF/c-MET has failed to demonstrate significant clinical efficacy in most cancers. With the advantage of the combinations of HGF/c-MET-targeted therapy, the exploration of more options of combinational targeted therapy in cancers may be the major challenge in the future.
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Zhihua Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiawei Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| |
Collapse
|
17
|
Alreja D, Rao JR, Kataria S, Faterpenkar DA. Effect of Nonsurgical Treatment on Salivary HGF Levels in Population with Periodontal Disease: A Quasi-experimental Study. Euroasian J Hepatogastroenterol 2021; 10:51-55. [PMID: 33511065 PMCID: PMC7801889 DOI: 10.5005/jp-journals-10018-1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim To assess the effect of nonsurgical treatment on salivary hepatocyte growth factor (sHGF) levels in a population with periodontal disease: a quasi-experimental study. Methods Eighty-one patients (aged 30–70 years) were divided into three groups based on the gingival index, probing depth, clinical attachment loss, and radiographic evidence of bone loss: healthy (group I), gingivitis (group II), and chronic periodontitis (group III). Saliva samples were collected from these groups at baseline. At 8 weeks, saliva samples were collected again from group II and group III after the patients went through nonsurgical periodontal treatment. The levels of HGF were estimated using enzyme-linked immunosorbent assay (ELISA). The clinical parameters and HGF levels among all groups were analyzed using a one-way analysis of variance (ANOVA) using SPSS 17 version. Results At baseline, the highest mean HGF concentration in saliva was observed for group III (3455.83 ± 1463.44 pg/mL), and the least in group I (469.43 ± 317.13 pg/mL). Following nonsurgical periodontal treatment, the mean HGF concentration decreased significantly in group III and group II (p < 0.05). A significant positive correlation between clinical parameters and HGF levels was also seen (p < 0.05). Conclusion HGF concentration showed a positive correlation with the progression of periodontal disease. Clinical significance Following nonsurgical periodontal therapy, the levels of HGF decreased significantly, suggesting that HGF could be useful for monitoring the response to periodontal therapy. How to cite this article Alreja D, Rao JR, Kataria S, et al. Effect of Nonsurgical Treatment on Salivary HGF Levels in Population with Periodontal Disease: A Quasi-experimental Study. Euroasian J Hepato-Gastroenterol 2020;10(2):51–55.
Collapse
Affiliation(s)
- Dalip Alreja
- Department of Periodontics, Goa Dental College and Hospital, Panjim, Goa, India
| | - Jyoti R Rao
- Department of Periodontics, Goa Dental College and Hospital, Panjim, Goa, India
| | - Sakshi Kataria
- Department of Public Health Dentistry, Sudha Rustagi College of Dental Sciences and Research, Faridabad, Haryana, India
| | | |
Collapse
|
18
|
Legerstee K, Abraham TE, van Cappellen WA, Nigg AL, Slotman JA, Houtsmuller AB. Growth factor dependent changes in nanoscale architecture of focal adhesions. Sci Rep 2021; 11:2315. [PMID: 33504939 PMCID: PMC7841166 DOI: 10.1038/s41598-021-81898-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 01/21/2023] Open
Abstract
Focal adhesions (FAs) are flat elongated structures that mediate cell migration and link the cytoskeleton to the extracellular matrix. Along the vertical axis FAs were shown to be composed of three layers. We used structured illumination microscopy to examine the longitudinal distribution of four hallmark FA proteins, which we also used as markers for these layers. At the FA ends pointing towards the adherent membrane edge (heads), bottom layer protein paxillin protruded, while at the opposite ends (tails) intermediate layer protein vinculin and top layer proteins zyxin and VASP extended further. At the tail tips, only intermediate layer protein vinculin protruded. Importantly, head and tail compositions were altered during HGF-induced scattering with paxillin heads being shorter and zyxin tails longer. Additionally, FAs at protruding or retracting membrane edges had longer paxillin heads than FAs at static edges. These data suggest that redistribution of FA-proteins with respect to each other along FAs is involved in cell movement.
Collapse
Affiliation(s)
- Karin Legerstee
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Tsion E Abraham
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Wiggert A van Cappellen
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Alex L Nigg
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands.,Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands. .,Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands.
| |
Collapse
|
19
|
Prognostic value of PSMA, c-MET and E-cadherin in salivary duct carcinoma. Oral Oncol 2020; 110:105018. [PMID: 33039794 DOI: 10.1016/j.oraloncology.2020.105018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Salivary duct carcinoma (SDC) is a rare and aggressive subtype of salivary gland cancer. Androgen receptor (AR) (96%) and HER2 (29-46%) expression, and a high propensity for regional lymph node metastases are hallmarks of the disease. We hypothesized that c-MET, E-cadherin, PSMA tumor and PSMA neovascular expression may be prognostic factors in SDC. MATERIALS AND METHODS Expression levels of these proteins were established on tissue microarrays containing 165 primary SDC tumor specimens. Association with survival was studied with Kaplan-Meier curves, and univariable and multivariable Cox regression models. Furthermore, association with lymph node status, AR and HER2 expression, and gender was studied. RESULTS We found that patients with high PSMA tumor expression showed a significantly longer overall survival (OS) (median 83 vs. 43 months, P = 0.022), a trend towards a longer DFS (median 51 vs. 22 months, P = 0.094), and significantly reduced hazard ratio for death in the univariable Cox regression model (HR 0.46, P = 0.034). In the multivariable model only a high number of tumor-positive lymph nodes and high age (>80) at diagnosis were prognostic for poor OS. High PSMA tumor expression was also significantly associated with low N-stage (P = 0.001) and expression was higher in women versus men (P = 0.029). High PSMA tumor expression and E-cadherin loss were significantly associated with strong and weak AR-expression, respectively (P = 0.033 and P = 0.007). None of the factors were significantly associated with HER2 expression. CONCLUSION c-MET, E-cadherin, and tumor and neovascular PSMA expression are no independent prognostic factors in SDC.
Collapse
|
20
|
Lorenc VE, Lima e Silva R, Hackett SF, Fortmann SD, Liu Y, Campochiaro PA. Hepatocyte growth factor is upregulated in ischemic retina and contributes to retinal vascular leakage and neovascularization. FASEB Bioadv 2020; 2:219-233. [PMID: 32259049 PMCID: PMC7133726 DOI: 10.1096/fba.2019-00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/01/2019] [Accepted: 01/31/2020] [Indexed: 11/11/2022] Open
Abstract
In patients with macular edema due to ischemic retinopathy, aqueous levels of hepatocyte growth factor (HGF) correlate with edema severity. We tested whether HGF expression and activity in mice with oxygen-induced ischemic retinopathy supports a role in macular edema. In ischemic retina, HGF was increased in endogenous cells and macrophages associated with retinal neovascularization (NV). HGF activator was increased in and around retinal vessels potentially providing vascular targeting. One day after intravitreous injection of HGF, VE-cadherin was reduced and albumin levels in retina and vitreous were significantly increased indicating vascular leakage. Injection of VEGF caused higher levels of vitreous albumin than HGF, and co-injection of both growth factors caused significantly higher levels than either alone. HGF increased the number of macrophages on the retinal surface, which was blocked by anti-c-Met and abrogated in chemokine (C-C motif) ligand 2 (CCL2)-/- mice. Injection of anti-c-Met significantly decreased leakage within 24 hours and after 5 days it reduced retinal NV in mice with ischemic retinopathy, but had no effect on choroidal NV. These data indicate that HGF is a pro-permeability, pro-inflammatory, and pro-angiogenic factor and along with its activator is increased in ischemic retina providing support for a potential role of HGF in macular edema in ischemic retinopathies.
Collapse
Affiliation(s)
- Valeria E. Lorenc
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Raquel Lima e Silva
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sean F. Hackett
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Seth D. Fortmann
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Yuanyuan Liu
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Present address:
Department of OphthalmologyTianjin Medical University General HospitalTianjinChina
| | - Peter A. Campochiaro
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
21
|
Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:11-34. [PMID: 32304077 DOI: 10.1007/978-3-030-35805-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells offer an unprecedented window into the metastatic cascade, and to some extent can be considered as intermediates in the process of metastasis. They exhibit dynamic oscillations in epithelial to mesenchymal plasticity and provide important opportunities for prognosis, therapy response monitoring, and targeting of metastatic disease. In this manuscript, we review the involvement of epithelial-mesenchymal plasticity in the early steps of metastasis and what we have learned about its contribution to genomic instability and genetic diversity, tumor progression and therapeutic responses using cell culture, mouse models and circulating tumor cells enriched from patients.
Collapse
|
22
|
Distinct Localization of Mature HGF from its Precursor Form in Developing and Repairing the Stomach. Int J Mol Sci 2019; 20:ijms20122955. [PMID: 31212972 PMCID: PMC6628191 DOI: 10.3390/ijms20122955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 01/23/2023] Open
Abstract
Hepatocyte growth factor (HGF) is secreted as an inactive single-chain HGF (scHGF); however, only proteolytically processed two-chain HGF (tcHGF) can activate the MET receptor. We investigated the localization of tcHGF and activated/phosphorylated MET (pMET) using a tcHGF-specific antibody. In day 16.5 mouse embryos, total HGF (scHGF + tcHGF) was mainly localized in smooth muscle cells close to, but separate from, MET-positive epithelial cells in endodermal organs, including the stomach. In the adult stomach, total HGF was localized in smooth muscle cells, and tcHGF was mainly localized in the glandular base region. Immunostaining for pMET and Lgr5-driven green fluorescent protein (GFP) indicated that pMET localization overlapped with Lgr5+ gastric stem cells. HGF promoted organoid formation similar to EGF, indicating the potential for HGF to promote the survival and growth of gastric stem cells. pMET and tcHGF localizations changed during regeneration following gastric injury. These results indicate that MET is constantly activated in gastric stem cells and that the localization of pMET differs from the primary localization of precursor HGF but has a close relationship to tcHGF. Our results suggest the importance of the microenvironmental generation of tcHGF in the regulation of development, regeneration, and stem cell behavior.
Collapse
|
23
|
Phosphatase of regenerating liver sensitizes MET to functional activation by hepatocyte growth factor. Biochem J 2019; 476:1419-1431. [PMID: 31036720 DOI: 10.1042/bcj20190071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023]
Abstract
Phosphatase of regenerating liver (PRL) is overexpressed in metastatic cancers and actively drives their malignant progression. Many studies on cultured cancer cells have implied PRL overexpression as a stimulant for cellular signaling involved in cell proliferation. However, its role in the tightly adhered and polarized epithelial cells remains largely uncharacterized. In this study, we show that inducible expression of PRL in MDCK normal epithelial cells sensitized MET, the receptor for hepatocyte growth factor (HGF), to functional activation by HGF. We found that PRL expression amplified tyrosine phosphorylation levels of various proteins, among which MET was identified to be the most abundant. This phosphorylation occurred selectively at Y1234/1235 in the activation loop of MET, whereas phosphorylation of Y1349 in the effector-binding site, which is directly involved in downstream signaling, was almost undetectable. Consistently, PRL overexpression by itself did not cause observable alterations at the cellular level. However, when cells were stimulated with HGF, phosphorylation of Y1349 was much more strongly induced in PRL-expressing cells than in control cells. This resulted in robust cell scattering and tubulogenesis, even with low levels of HGF. Collectively, these results demonstrate a unique role of PRL in regulating MET function, which is known to be crucial for remodeling of epithelial tissues and malignant progression of cancers.
Collapse
|
24
|
Hong DS, LoRusso P, Hamid O, Janku F, Kittaneh M, Catenacci DVT, Chan E, Bekaii-Saab T, Gadgeel SM, Loberg RD, Amore BM, Hwang YC, Tang R, Ngarmchamnanrith G, Kwak EL. Phase I Study of AMG 337, a Highly Selective Small-molecule MET Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res 2019; 25:2403-2413. [PMID: 30425090 PMCID: PMC6892342 DOI: 10.1158/1078-0432.ccr-18-1341] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE This first-in-human, open-label phase I study evaluated AMG 337, an oral, highly selective small-molecule inhibitor of MET in advanced solid tumors.Patients and Methods: Patients enrolled into dose-escalation cohorts received AMG 337 up to 400 mg once daily or up to 250 mg twice daily, following a modified 3+3+3 design. Dose expansion was conducted in MET-amplified patients at the maximum tolerated dose (MTD). Primary endpoints included assessment of adverse events (AEs), establishment of the MTD, and pharmacokinetics; clinical response was a secondary endpoint. RESULTS The safety analysis set included 111 patients who received ≥1 dose of AMG 337. Thirteen patients had ≥1 AE qualifying as dose-limiting toxicity. The MTD was determined to be 300 mg once daily; the MTD for twice-daily dosing was not reached. Most frequent treatment-related AEs were headache (63%) and nausea (31%). Grade ≥3 treatment-related AEs occurred in 23 patients (21%), most commonly headache (n = 6) and fatigue (n = 5). Maximum plasma concentration occurred at 3.0 hours following 300-mg once-daily dosing, indicating AMG 337 absorption soon after treatment. Objective response rate was 9.9% (11/111; 95% CI, 5.1%-17.0%) in all patients and 29.6% (8/27; 95% CI, 13.8%-50.2%) in MET-amplified patients; median (range) duration of response was 202 (51-1,430+) days in all patients and 197 (64-1,430+) days in MET-amplified patients. CONCLUSIONS Oral AMG 337 was tolerated with manageable toxicities, with an MTD and recommended phase II dose of 300 mg once daily. The promising response rate observed in patients with heavily pretreated MET-amplified tumors warrants further investigation.See related commentary by Ma, p. 2375.
Collapse
Affiliation(s)
- David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | | - Omid Hamid
- Melanoma Center, The Angeles Clinic and Research Institute, Los Angeles, California
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muaiad Kittaneh
- Hematology/Oncology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | | | - Emily Chan
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | | | - Shirish M Gadgeel
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Thoracic Oncology, Karmanos Cancer Institute, Detroit, Michigan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Benny M Amore
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., South San Francisco, California
| | - Yuying C Hwang
- Global Biostatistical Sciences, Amgen Inc., Thousand Oaks, California
| | - Rui Tang
- Global Biostatistical Sciences, Amgen Inc., Thousand Oaks, California
| | | | - Eunice L Kwak
- Hematology/Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
25
|
He M, Han T, Wang Y, Wu YH, Qin WS, Du LZ, Zhao CQ. Effects of HGF and KGF gene silencing on vascular endothelial growth factor and its receptors in rat ultraviolet radiation‑induced corneal neovascularization. Int J Mol Med 2019; 43:1888-1899. [PMID: 30816491 DOI: 10.3892/ijmm.2019.4114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/22/2019] [Indexed: 11/05/2022] Open
Abstract
Hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF), two paracrine growth factors, modulate corneal epithelial cell metabolism, apoptosis and survival. Vascular endothelial growth factor (VEGF) serves as a proangiogenic factor in corneal neovascularization (CNV), which is a major cause of vision impairment and corneal blindness. The aim of the present study was to evaluate the ability of HGF and KGF to influence VEGF and its receptor, kinase insert domain receptor (Flk‑1) in corneal injury and CNV in rats induced by ultraviolet radiation (UVR). An UVR‑induced corneal injury rat model was successfully established to characterize the expression patterns of KGF, HGF, VEGF and Flk‑1 in corneal tissues. Corneal epithelial cells were extracted and treated with small interfering RNAs (siRNAs) targeting KGF, HGF or both (si‑KGF, si‑HGF or si‑HGF/KGF). The effects of HGF and KGF were examined through detection of the expression of KGF, HGF, VEGF and Flk‑1, and the evaluation of cell proliferation, cell cycle and cell apoptosis. The expression levels of KGF, HGF, VEGF and Flk‑1 in corneal tissues were increased in the rat model. In the cell experiments, the transfection of si‑HGF/KGF resulted in reductions in VEGF, Flk‑1, KGF and HGF. In addition, decreased cell proliferation and elevated cell apoptosis were found in the corneal epithelial cells from the rat model following KGF and HGF gene silencing. Taken together, these findings suggest that HGF and KGF gene silencing inhibits UVR‑induced corneal epithelial proliferation and CNV and may function as novel targets for corneal wound healing.
Collapse
Affiliation(s)
- Min He
- Department of Ophthalmology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Tao Han
- Clinical Medical College, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yan Wang
- Bayi Children's Hospital Affiliated to PLA Army General Hospital, Beijing 100700, P.R. China
| | - Yao-Hong Wu
- Department of Ophthalmology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wei-Shan Qin
- Department of Ophthalmology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling-Zhen Du
- Department of Ophthalmology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chang-Qing Zhao
- Department of Otolaryngology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
26
|
Van Cutsem E, Karaszewska B, Kang YK, Chung HC, Shankaran V, Siena S, Go NF, Yang H, Schupp M, Cunningham D. A Multicenter Phase II Study of AMG 337 in Patients with MET-Amplified Gastric/Gastroesophageal Junction/Esophageal Adenocarcinoma and Other MET-Amplified Solid Tumors. Clin Cancer Res 2018; 25:2414-2423. [PMID: 30366938 DOI: 10.1158/1078-0432.ccr-18-1337] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/26/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE MET gene amplification is associated with poor prognosis in gastric/gastroesophageal junction/esophageal (G/GEJ/E) cancers. We determined antitumor activity, safety, and pharmacokinetics of the small-molecule MET inhibitor AMG 337 in MET-amplified G/GEJ/E adenocarcinoma or other solid tumors.Patients and Methods: In this phase II, single-arm study, adults with MET-amplified G/GEJ/E adenocarcinoma (cohort 1) or other MET-amplified solid tumors (cohort 2) received AMG 337 300 mg/day orally in 28-day cycles. The primary endpoint was objective response rate (ORR; cohort 1). Secondary endpoints included ORR (cohort 2), progression-free survival (PFS), overall survival (OS), and safety. RESULTS Of 2101 patients screened for MET amplification, 132 were MET-amplified and 60 were enrolled: 45 in cohort 1, and 15 in cohort 2. Fifty-six patients (97%) had metastatic disease; 57 had prior lines of therapy (1 prior line, 29%; ≥2 prior lines, 69%). A protocol-permitted review showed efficacy that was lower-than-expected based on preliminary data from a first-in-human study, and enrollment was stopped. Fifty-eight patients received ≥1 AMG 337 dose. ORR in cohort 1 was 18% (8 partial responses). No responses were observed in cohort 2. Of 54 evaluable patients, median (95% CI) PFS and OS were 3.4 (2.2-5.0) and 7.9 (4.8-10.9) months, respectively. The most frequent adverse events (AEs) were headache (60%), nausea (38%), vomiting (38%), and abdominal pain, decreased appetite, and peripheral edema (33% each); 71% had grade ≥3 AEs and 59% had serious AEs. CONCLUSIONS AMG 337 showed antitumor activity in MET-amplified G/GEJ/E adenocarcinoma but not in MET-amplified non-small-cell lung cancer.See related commentary by Ma, p. 2375.
Collapse
Affiliation(s)
- Eric Van Cutsem
- Department of Digestive Oncology, University Hospitals Gasthuisberg, Leuven, and KU Leuven, Leuven, Belgium.
| | | | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Cheol Chung
- Department of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Veena Shankaran
- Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Salvatore Siena
- Department of Hematology and Oncology, Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda and Dipartimento di Oncologia and Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Ning F Go
- Clinical Biomarkers and Diagnostics, Amgen Inc., Thousand Oaks, California
| | - Hui Yang
- Global Biostatistical Sciences, Amgen Inc., Thousand Oaks, California
| | - Marco Schupp
- Global Development, Amgen (Europe) GmbH, Zug, Switzerland
| | - David Cunningham
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
27
|
Otsuka T, Imura T, Nakagawa K, Shrestha L, Takahashi S, Kawahara Y, Sueda T, Kurisu K, Yuge L. Simulated Microgravity Culture Enhances the Neuroprotective Effects of Human Cranial Bone-Derived Mesenchymal Stem Cells in Traumatic Brain Injury. Stem Cells Dev 2018; 27:1287-1297. [DOI: 10.1089/scd.2017.0299] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Imura
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Looniva Shrestha
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Takahashi
- Department of Cardiovascular Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | | | - Taijiro Sueda
- Department of Cardiovascular Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
| |
Collapse
|
28
|
Coleman DT, Gray AL, Kridel SJ, Cardelli JA. Palmitoylation regulates the intracellular trafficking and stability of c-Met. Oncotarget 2018; 7:32664-77. [PMID: 27081699 PMCID: PMC5078042 DOI: 10.18632/oncotarget.8706] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
c-Met is a receptor tyrosine kinase whose activity can promote both mitogenic and motogenic phenotypes involved in tissue development and cancer progression. Herein, we report the first evidence that c-Met is palmitoylated and that palmitoylation facilitates its trafficking and stability. Inhibition of palmitoylation reduced the expression of c-Met in multiple cancer cell lines post-transcriptionally. Using surface biotinylation, confocal microscopy, and metabolic labeling we determined that inhibition of palmitoylation reduces the stability of newly synthesized c-Met and causes accumulation at the Golgi. Acyl-biotin exchange and click chemistry-based palmitate labeling indicated the c-Met β-chain is palmitoylated, and site-directed mutagenesis revealed two likely cysteine palmitoylation sites. Moreover, by monitoring palmitoylation kinetics during the biosynthesis and trafficking of c-Met, we revealed that stable palmitoylation occurs in the endoplasmic reticulum prior to cleavage of the 170 kDa c-Met precursor to the mature 140 kDa form. Our data suggest palmitoylation is required for egress from the Golgi for transport to the plasma membrane. These findings introduce palmitoylation as a critical modification of c-Met, providing a novel therapeutic target for c-Met-driven cancers.
Collapse
Affiliation(s)
- David T Coleman
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alana L Gray
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Steven J Kridel
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 25157, USA
| | - James A Cardelli
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
29
|
Gayrard C, Bernaudin C, Déjardin T, Seiler C, Borghi N. Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J Cell Biol 2018; 217:1063-1077. [PMID: 29311227 PMCID: PMC5839785 DOI: 10.1083/jcb.201706013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023] Open
Abstract
β-Catenin is a transcription cofactor proposed to be released from E-cadherin upon mechanically induced phosphorylation. However, evidence for this mechanism is lacking. Gayrard et al. show instead that during epithelial-to-mesenchymal transition, Src- and multicellular confinement–dependent FAK-induced cytoskeleton remodeling causes E-cadherin tension relaxation and phosphorylation-independent β-catenin nuclear translocation from the membrane. In epithelia, E-cadherin cytoplasmic tail is under cytoskeleton-generated tension via a link that contains β-catenin. A cotranscription factor, β-catenin, is also active in morphogenetic processes associated with epithelial-to-mesenchymal transition. β-Catenin signaling appears mechanically inducible and was proposed to follow phosphorylation-induced β-catenin release from E-cadherin. Evidence for this mechanism is lacking, and whether E-cadherin tension is involved is unknown. To test this, we combined quantitative fluorescence microscopies with genetic and pharmacological perturbations of epithelial-to-mesenchymal transition–induced cells in culture. We showed that β-catenin nuclear activity follows a substantial release from the membrane specific to migrating cells and requires multicellular deconfinement and Src activity. Selective nuclear translocation occurs downstream of focal adhesion kinase activation, which targets E-cadherin tension relaxation through actomyosin remodeling. In contrast, phosphorylations of the cadherin/catenin complex are not substantially required. These data demonstrate that E-cadherin acts as a sensor of intracellular mechanics in a crosstalk with cell-substrate adhesions that target β-catenin signaling.
Collapse
Affiliation(s)
- Charlène Gayrard
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Clément Bernaudin
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Théophile Déjardin
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Cynthia Seiler
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Nicolas Borghi
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| |
Collapse
|
30
|
Analogs of the hepatocyte growth factor and macrophage-stimulating protein hinge regions act as Met and Ron dual inhibitors in pancreatic cancer cells. Anticancer Drugs 2017; 27:766-79. [PMID: 27314431 DOI: 10.1097/cad.0000000000000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is among the leading causes of cancer death in the USA, with limited effective treatment options. A major contributor toward the formation and persistence of pancreatic cancer is the dysregulation of the hepatocyte growth factor (HGF)/Met (HGF receptor) and the macrophage-stimulating protein (MSP)/Ron (MSP receptor) systems. These systems normally mediate a variety of cellular behaviors including proliferation, survival, and migration, but are often overactivated in pancreatic cancer and contribute toward cancer progression. Previous studies have shown that HGF must dimerize to activate Met. Small-molecule antagonists with homology to a 'hinge' region within the putative dimerization domain of HGF have been developed that bind to HGF and block dimerization, therefore inhibiting Met signaling. Because of the structural and sequence homology between MSP and HGF, we hypothesized that the inhibition of HGF by the hinge analogs may extend to MSP. The primary aim of this 'proof-of-concept' study was to determine whether hinge analogs could inhibit cellular responses to both HGF and MSP in pancreatic cancer cells. Our results showed that these compounds inhibited HGF and MSP activity. Hinge analog treatment resulted in decreased Met and Ron activation, and suppressed malignant cell behaviors including proliferation, migration, and invasion in pancreatic cancer cells in vitro. These results suggest that the hinge analogs represent a novel group of molecules that may offer a therapeutic approach for the treatment of pancreatic cancer and warrant further development and optimization.
Collapse
|
31
|
Owusu BY, Bansal N, Venukadasula PKM, Ross LJ, Messick TE, Goel S, Galemmo RA, Klampfer L. Inhibition of pro-HGF activation by SRI31215, a novel approach to block oncogenic HGF/MET signaling. Oncotarget 2017; 7:29492-506. [PMID: 27121052 PMCID: PMC5045412 DOI: 10.18632/oncotarget.8785] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/28/2016] [Indexed: 01/05/2023] Open
Abstract
The binding of hepatocyte growth factor (HGF) to its receptor MET activates a signaling cascade that promotes cell survival, proliferation, cell scattering, migration and invasion of malignant cells. HGF is secreted by cancer cells or by tumor-associated fibroblasts as pro-HGF, an inactive precursor. A key step in the regulation of HGF/MET signaling is proteolytic processing of pro-HGF to its active form by one of the three serine proteases, matriptase, hepsin or HGF activator (HGFA).We developed SRI 31215, a small molecule that acts as a triplex inhibitor of matriptase, hepsin and HGFA and mimics the activity of HAI-1/2, endogenous inhibitors of HGF activation. We demonstrated that SRI 31215 inhibits fibroblast-induced MET activation, epithelial-mesenchymal transition and migration of cancer cells. SRI 31215 overcomes primary resistance to cetuximab and gefitinib in HGF-producing colon cancer cells and prevents fibroblast-mediated resistance to EGFR inhibitors. Thus, SRI 31215 blocks signaling between cancer cells and fibroblasts and inhibits the tumor-promoting activity of cancer-associated fibroblasts.Aberrant HGF/MET signaling supports cell survival, proliferation, angiogenesis, invasion and metastatic spread of cancer cells, establishing HGF and MET as valid therapeutic targets. Our data demonstrate that inhibitors of HGF activation, such as SRI 31215, merit investigation as potential therapeutics in tumors that are addicted to HGF/MET signaling. The findings reported here also indicate that inhibitors of HGF activation overcome primary and acquired resistance to anti-EGFR therapy, providing a rationale for concurrent inhibition of EGFR and HGF to prevent therapeutic resistance and to improve the outcome of cancer patients.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Oncology, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Namita Bansal
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | | | - Larry J Ross
- High Throughput Screening, Southern Research, Drug Discovery Division, Birmingham, AL, USA
| | - Troy E Messick
- The Wistar Institute, Southern Research, Philadelphia, PA, USA
| | - Sanjay Goel
- Albert Einstein Cancer Center, Southern Research, Bronx, NY, USA
| | - Robert A Galemmo
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Lidija Klampfer
- Department of Oncology, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| |
Collapse
|
32
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
33
|
Activated HGF-c-Met Axis in Head and Neck Cancer. Cancers (Basel) 2017; 9:cancers9120169. [PMID: 29231907 PMCID: PMC5742817 DOI: 10.3390/cancers9120169] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes.
Collapse
|
34
|
Han Z, Wu Y, Wang K, Xiao Y, Cheng Z, Sun X, Shen B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Res 2017; 7:41. [PMID: 28485003 PMCID: PMC5422222 DOI: 10.1186/s13550-017-0286-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/17/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mesenchymal-epithelial transition factor also named c-MET is a receptor tyrosine kinase for the hepatocyte growth factor that plays a pivotal role in tumorigenesis. c-MET-targeted therapies have been tested in preclinical models and patients, with significant benefits for cancer treatment. In recent years, many studies have shown that the expression level and activation status of c-MET are closely correlated to c-MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the c-MET status during and prior to targeted therapy. Molecular imaging allows the monitoring of abnormal alterations of c-MET in real time and in vivo. RESULTS In this review, we initially summarize the recent advances in c-MET-targeted molecular imaging, with a special focus on the development of imaging agents ranging in size from monoclonal antibody to small molecule. The aim of this review is to report the preclinical results and clinical application of all molecular imaging studies completed until now for in vivo detection of c-MET in cancer, in order to be beneficial to development of molecular probe and the combination of molecular imaging technologies for in vivo evaluation of c-MET. Various molecular probe targeted to c-MET possesses distinctive advantages and disadvantages. For example, antibody-based probes have high binding affinity but with long metabolic cycle as well as remarkable immunogenicity. CONCLUSIONS Although studies for c-MET-targeted molecular imaging have made many important advances, most of imaging agents specifically target to extracellular area of c-MET receptor; however, it is difficult to reflect entirely activation of c-MET. Therefore, small molecule probes based on tyrosine kinase inhibitors, which could target to intracellular area of c-MET without any immunogenicity, should be paid more attention.
Collapse
Affiliation(s)
- Zhaoguo Han
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yadi Xiao
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Xilin Sun
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Baozhong Shen
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
35
|
The Differences of c-Met Expression Between AFP-Producing Gastric Cancer and Common Gastric Cancer. Int Surg 2017. [DOI: 10.9738/intsurg-d-16-00043.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background
Alpha-fetoprotein (AFP)–producing gastric cancer is a distinct type of gastric cancer with a high incidence of liver metastasis. c-Met is considered to play an important role in liver metastasis of gastric cancer.
Objective
The purpose of this study was to compare the expression of c-Met in AFP-producing gastric cancer and gastric cancers not producing AFP.
Methods
We evaluated 23 patients with AFP-producing gastric cancer (AFP+) and 18 patients with common gastric cancer (AFP–) were evaluated for c-Met expression using immunohistochemical analysis.
Results
The incidence of c-Met expression in 2 groups was the same (P > 0.05), but the AFP+ group had a higher strong positive rate of c-Met expression than the AFP– group (P < 0.01).
Conclusion
The higher expression of c-Met might be the reason for the high incidence of liver metastasis in AFP-producing gastric cancer.
Collapse
|
36
|
Siddiqui-Jain A, Hoj JP, Hargiss JB, Hoj TH, Payne CJ, Ritchie CA, Herron SR, Quinn C, Schuler JT, Hansen MDH. Pyridine-pyrimidine amides that prevent HGF-induced epithelial scattering by two distinct mechanisms. Bioorg Med Chem Lett 2017; 27:3992-4000. [PMID: 28780159 DOI: 10.1016/j.bmcl.2017.07.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/25/2022]
Abstract
Stimulation of cultured epithelial cells with scatter factor/hepatocyte growth factor (HGF) results in individual cells detaching and assuming a migratory and invasive phenotype. Epithelial scattering recapitulates cancer progression and studies have implicated HGF signaling as a driver of cancer metastasis. Inhibitors of HGF signaling have been proposed to act as anti-cancer agents. We previously screened a small molecule library for compounds that block HGF-induced epithelial scattering. Most hits identified in this screen exhibit anti-mitotic properties. Here we assess the biological mechanism of a compound that blocks HGF-induced scattering with limited anti-mitotic activity. Analogs of this compound have one of two distinct activities: inhibiting either cell migration or cell proliferation with cell cycle arrest in G2/M. Each activity bears unique structure-activity relationships. The mechanism of action of anti-mitotic compounds is by inhibition of microtubule polymerization; these compounds entropically and enthalpically bind tubulin in the colchicine binding site, generating a conformational change in the tubulin dimer.
Collapse
Affiliation(s)
- Adam Siddiqui-Jain
- Frost Biologic, Inc., 5201 South Green St., Suite 160, Salt Lake City, UT 84123, USA
| | - Jacob P Hoj
- Frost Biologic, Inc., 5201 South Green St., Suite 160, Salt Lake City, UT 84123, USA
| | - J Blade Hargiss
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Taylor H Hoj
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Carter J Payne
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Collin A Ritchie
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | | | | | - Jeffrey T Schuler
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Marc D H Hansen
- Frost Biologic, Inc., 5201 South Green St., Suite 160, Salt Lake City, UT 84123, USA; Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA.
| |
Collapse
|
37
|
Targeting the hepatocyte growth factor/Met pathway in cancer. Biochem Soc Trans 2017; 45:855-870. [PMID: 28673936 DOI: 10.1042/bst20160132] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase, drives mitogenesis, motogenesis and morphogenesis in a wide spectrum of target cell types and embryologic, developmental and homeostatic contexts. Typical paracrine HGF/Met signaling is regulated by HGF activation at target cell surfaces, HGF binding-induced receptor activation, internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis, tumor angiogenesis and invasiveness, and tumor metastasis in many types of cancer, leading to the rapid growth of pathway-targeted anticancer drug development programs. We review here HGF and Met structure and function, basic properties of HGF/Met pathway antagonists now in clinical development, and recent clinical trial results. Presently, the main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of effective therapy combinations. The wealth of basic information, analytical reagents and model systems available regarding normal and oncogenic HGF/Met signaling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective cancer treatment.
Collapse
|
38
|
Hypoxic pathobiology of breast cancer metastasis. Biochim Biophys Acta Rev Cancer 2017; 1868:239-245. [PMID: 28526262 DOI: 10.1016/j.bbcan.2017.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/13/2017] [Accepted: 05/13/2017] [Indexed: 12/14/2022]
Abstract
Dissemination of breast cancer cells (BCCs) to distant sites (metastasis) is the ultimate cause of mortality in patients with breast cancer. Hypoxia (low O2) is a microenvironmental hallmark of most solid cancers arising as a mismatch between cellular O2 consumption and supply. Hypoxic selection of BCCs triggers molecular and cellular adaptations dependent upon hypoxia-inducible factors (HIFs), a family of evolutionarily conserved transcriptional activators that coordinate the expression of numerous genes controlling each step of the metastatic process. In this review, we summarize current advances in the understanding of HIF-driven molecular mechanisms that promote BCC metastatic dissemination and patient mortality. In addition, we discuss the clinical and therapeutic implications of HIF targeting in breast cancers.
Collapse
|
39
|
Reim D, Choi YS, Yoon HM, Park B, Eom BW, Kook MC, Ryu KW, Choi IJ, Joo J, Kim YW. Alpha-fetoprotein is a significant prognostic factor for gastric cancer: Results from a propensity score matching analysis after curative resection. Eur J Surg Oncol 2017; 43:1542-1549. [PMID: 28511775 DOI: 10.1016/j.ejso.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prognosis of alpha-fetoprotein positive gastric cancer (AFPP-GC) remains elusive so far due to disparities in cohort size and baseline characteristics in previous studies. A propensity score matching (PSM) analysis as well as multivariable model was performed for unbiased evaluation of the outcome in AFPGC. METHODS Among 3034 gastric cancer patients who underwent curative gastric cancer surgery (R0, M0) at the National Cancer Center, Korea between 2002 and 2007, we identified 97 patients being positive for AFP either by elevation of serum-AFP levels >10 μg/L or by immunohistochemical staining. Due to marked disparities in baseline characteristics and cohort size, propensity-score-matching was performed which matched 87 AFPP-GC patients to the same number of AFP-negative gastric cancer (AFPN-GC) patients. Baseline characteristics were compared using χ2-test. Survival curves were compared using the Kaplan-Meier-method and multivariable regression analysis was performed to evaluate the effect of AFP-positivity while adjusting the effects of confounding variables. RESULTS AFPP-GC and AFPN-GC patients revealed marked disparities in patient cohorts. After PSM, groups were balanced for age, sex, tumor size, BMI, tumor location, grade of differentiation, presence of lymphatic vessel infiltration (LVI), Lauren histologic type and stage distribution. In multivariable regression analysis of the PSM-groups, only AFP-positivity and pathologic stage were predictive for overall survival (HR 2.98, CI 95% {1.7-5.1}, p < 0.0001). Five-year-survival rates were significantly worse for AFPP-GC patients (57.9% vs. 76.1%, p = 0.014). Recurrence was significantly more frequent in AFPP-GC patients (p = 0.003). CONCLUSION AFP can be considered as an independent negative predictor of overall and recurrence-free survival in patients with gastric cancer.
Collapse
Affiliation(s)
- D Reim
- Gastric Cancer Branch, Research Institute & Hospital, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea; Klinikum Rechts der Isar der Technischen Universität München, Department of Surgery, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Y-S Choi
- Gastric Cancer Branch, Research Institute & Hospital, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea
| | - H M Yoon
- Gastric Cancer Branch, Research Institute & Hospital, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea
| | - B Park
- Biometric Research Branch, Clinical Research Coordination Center, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea
| | - B W Eom
- Gastric Cancer Branch, Research Institute & Hospital, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea
| | - M-C Kook
- Gastric Cancer Branch, Research Institute & Hospital, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea
| | - K W Ryu
- Gastric Cancer Branch, Research Institute & Hospital, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea
| | - I J Choi
- Gastric Cancer Branch, Research Institute & Hospital, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea
| | - J Joo
- Biometric Research Branch, Clinical Research Coordination Center, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea.
| | - Y-W Kim
- Gastric Cancer Branch, Research Institute & Hospital, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si Gyeonggi-do, 410-769, Republic of Korea.
| |
Collapse
|
40
|
Matsumoto K, Umitsu M, De Silva DM, Roy A, Bottaro DP. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci 2017; 108:296-307. [PMID: 28064454 PMCID: PMC5378267 DOI: 10.1111/cas.13156] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Signaling driven by hepatocyte growth factor (HGF) and MET receptor facilitates conspicuous biological responses such as epithelial cell migration, 3‐D morphogenesis, and survival. The dynamic migration and promotion of cell survival induced by MET activation are bases for invasion–metastasis and resistance, respectively, against targeted drugs in cancers. Recent studies indicated that MET in tumor‐derived exosomes facilitates metastatic niche formation and metastasis in malignant melanoma. In lung cancer, gene amplification‐induced MET activation and ligand‐dependent MET activation in an autocrine/paracrine manner are causes for resistance to epidermal growth factor receptor tyrosine kinase inhibitors and anaplastic lymphoma kinase inhibitors. Hepatocyte growth factor secreted in the tumor microenvironment contributes to the innate and acquired resistance to RAF inhibitors. Changes in serum/plasma HGF, soluble MET (sMET), and phospho‐MET have been confirmed to be associated with disease progression, metastasis, therapy response, and survival. Higher serum/plasma HGF levels are associated with therapy resistance and/or metastasis, while lower HGF levels are associated with progression‐free survival and overall survival after treatment with targeted drugs in lung cancer, gastric cancer, colon cancer, and malignant melanoma. Urinary sMET levels in patients with bladder cancer are higher than those in patients without bladder cancer and associated with disease progression. Some of the multi‐kinase inhibitors that target MET have received regulatory approval, whereas none of the selective HGF‐MET inhibitors have shown efficacy in phase III clinical trials. Validation of the HGF‐MET pathway as a critical driver in cancer development/progression and utilization of appropriate biomarkers are key to development and approval of HGF‐MET inhibitors for clinical use.
Collapse
Affiliation(s)
- Kunio Matsumoto
- Division of Tumor Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masataka Umitsu
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Dinuka M De Silva
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arpita Roy
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Szturz P, Raymond E, Abitbol C, Albert S, de Gramont A, Faivre S. Understanding c-MET signalling in squamous cell carcinoma of the head & neck. Crit Rev Oncol Hematol 2017; 111:39-51. [DOI: 10.1016/j.critrevonc.2017.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/28/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
|
42
|
Imamura R, Matsumoto K. Hepatocyte growth factor in physiology and infectious diseases. Cytokine 2017; 98:97-106. [PMID: 28094206 DOI: 10.1016/j.cyto.2016.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 01/14/2023]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic cytokine composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. The receptor for HGF was identified as the c-met proto-oncogene product of transmembrane receptor tyrosine kinase. HGF-induced signaling through the receptor Met provokes dynamic biological responses that support morphogenesis, regeneration, and the survival of various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Characterization of tissue-specific Met knockout mice has further indicated that the HGF-Met system modulates immune cell functions and also plays an inhibitory role in the progression of chronic inflammation and fibrosis. However, the biological actions that are driven by the HGF-Met pathway all play a role in the acquisition of the malignant characteristics in tumor cells, such as invasion, metastasis, and drug resistance in the tumor microenvironment. Even though oncogenic Met signaling remains the major research focus, the HGF-Met axis has also been implicated in infectious diseases. Many pathogens try to utilize host HGF-Met system to establish comfortable environment for infection. Their strategies are not only simply change the expression level of HGF or Met, but also actively hijack HGF-Met system and deregulating Met signaling using their pathogenic factors. Consequently, the monitoring of HGF and Met expression, along with real-time detection of Met activation, can be a beneficial biomarker of these infectious diseases. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. Likewise, manipulating the HGF-Met system with complete control will lead to a tailor made treatment for those infectious diseases.
Collapse
Affiliation(s)
- Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
43
|
Colombi A, Scianna M, Preziosi L. Coherent modelling switch between pointwise and distributed representations of cell aggregates. J Math Biol 2016; 74:783-808. [PMID: 27423897 DOI: 10.1007/s00285-016-1042-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/19/2016] [Indexed: 02/03/2023]
Abstract
Biological systems are typically formed by different cell phenotypes, characterized by specific biophysical properties and behaviors. Moreover, cells are able to undergo differentiation or phenotypic transitions upon internal or external stimuli. In order to take these phenomena into account, we here propose a modelling framework in which cells can be described either as pointwise/concentrated particles or as distributed masses, according to their biological determinants. A set of suitable rules then defines a coherent procedure to switch between the two mathematical representations. The theoretical environment describing cell transition is then enriched by including cell migratory dynamics and duplication/apoptotic processes, as well as the kinetics of selected diffusing chemicals influencing the system evolution. Finally, biologically relevant numerical realizations are presented: in particular, they deal with the growth of a tumor spheroid and with the initial differentiation stages of the formation of the zebrafish posterior lateral line. Both phenomena mainly rely on cell phenotypic transition and differentiated behaviour, thereby constituting biological systems particularly suitable to assess the advantages of the proposed model.
Collapse
Affiliation(s)
- A Colombi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - M Scianna
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| | - L Preziosi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
44
|
Kumar D, Kandl C, Hamilton CD, Shnayder Y, Tsue TT, Kakarala K, Ledgerwood L, Sun XS, Huang HJ, Girod D, Thomas SM. Mitigation of Tumor-Associated Fibroblast-Facilitated Head and Neck Cancer Progression With Anti-Hepatocyte Growth Factor Antibody Ficlatuzumab. JAMA Otolaryngol Head Neck Surg 2016; 141:1133-9. [PMID: 26540318 DOI: 10.1001/jamaoto.2015.2381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IMPORTANCE Ficlatuzumab can be used to treat head and neck squamous cell carcinoma (HNSCC) by inhibiting c-Met receptor-mediated cell proliferation, migration, and invasion. OBJECTIVE To understand the effect of ficlatuzumab on HNSCC proliferation, migration, and invasion. DESIGN, SETTING, AND PARTICIPANTS The effects of ficlatuzumab on HNSCC proliferation, invasion, and migration were tested. Mitigation of c-Met and downstream signaling was assessed by immunoblotting. The tumor microenvironment has emerged as an important factor in HNSCC tumor progression. The most abundant stromal cells in HNSCC tumor microenvironment are tumor-associated fibroblasts (TAFs). We previously reported that TAFs facilitate HNSCC growth and metastasis. Furthermore, activation of the c-Met tyrosine kinase receptor by TAF-secreted hepatocyte growth factor (HGF) facilitates tumor invasion. Ficlatuzumab is a humanized monoclonal antibody that sequesters HGF, preventing it from binding to and activating c-Met. We hypothesized that targeting the c-Met pathway with ficlatuzumab will mitigate TAF-mediated HNSCC proliferation, migration, and invasion. Representative HNSCC cell lines HN5, UM-SCC-1, and OSC-19 were used in these studies. EXPOSURES FOR OBSERVATIONAL STUDIES The HNSCC cell lines were treated with ficlatuzumab, 0 to 100 µg/mL, for 24 to 72 hours. MAIN OUTCOMES AND MEASURES Ficlatuzumab inhibited HNSCC progression through c-Met and mitogen-activated protein kinase (MAPK) signaling pathway. RESULTS Ficlatuzumab significantly reduced TAF-facilitated HNSCC cell proliferation (HN5, P < .001; UM-SCC-1, P < .001), migration (HN5, P = .002; UM-SCC-1, P = .01; and OSC-19, P = .04), and invasion (HN5, P = .047; UM-SCC-1, P = .03; and OSC-19, P = .04) through a 3-dimensional peptide-based hydrogel (PGmatrix). In addition, ficlatuzumab also inhibited the phosphorylation of c-Met at Tyr1234/1235 and p44/42 MAPK in HNSCC cells exposed to recombinant HGF. CONCLUSIONS AND RELEVANCE We demonstrate that neutralizing TAF-derived HGF with ficlatuzumab effectively mitigates c-Met signaling and decreases HNSCC proliferation, migration, and invasion. Thus, ficlatuzumab effectively mitigates stromal influences on HNSCC progression.
Collapse
Affiliation(s)
- Dhruv Kumar
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City
| | - Christopher Kandl
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City
| | | | - Yelizaveta Shnayder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City
| | - Terance Ted Tsue
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City
| | - Kiran Kakarala
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City
| | - Levi Ledgerwood
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City
| | - Xiuzhi Susan Sun
- Departments of Grain Science and Industry, and Biological and Agricultural Engineering, Kansas State University, Kansas City
| | | | - Douglas Girod
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City4Department of Cancer Biology, University of Kansas Medical Center, Kansas City5Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City6Universi
| |
Collapse
|
45
|
Fajardo-Puerta AB, Mato Prado M, Frampton AE, Jiao LR. Gene of the month: HGF. J Clin Pathol 2016; 69:575-9. [DOI: 10.1136/jclinpath-2015-203575] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
Abstract
Hepatocyte growth factor (HGF) is a multifunctional cytokine with important roles in cell proliferation, survival, motility and morphogenesis. Secreted by cells of mesenchymal origin, HGF is the specific ligand for the tyrosine-kinase receptor c-MET (cellular mesenchymal-epithelial transition), also called MET, which is expressed in different types of epithelial, endothelial and haematopoietic progenitor cells. The HGF/MET axis is involved in several biological processes, such as embryogenesis, organogenesis, adult tissue regeneration (including wound healing and liver regeneration) and carcinogenesis, for both solid and haematological malignancies.1 2 HGF and its particular interaction with the MET receptor have been extensively investigated in the last decades and remain the focus of numerous clinical trials.3–8 This short review focuses on HGF structure and function, as well as its roles in liver regeneration and different types of tumours.
Collapse
|
46
|
Han Z, Harris PKW, Karmakar P, Kim T, Owusu BY, Wildman SA, Klampfer L, Janetka JW. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer. ChemMedChem 2016; 11:585-99. [PMID: 26889658 DOI: 10.1002/cmdc.201500600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Peter K W Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Ben Y Owusu
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - Scott A Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Lidija Klampfer
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.
| |
Collapse
|
47
|
Abstract
Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.
Collapse
|
48
|
Haider MT, Hunter KD, Robinson SP, Graham TJ, Corey E, Dear TN, Hughes R, Brown NJ, Holen I. Rapid modification of the bone microenvironment following short-term treatment with Cabozantinib in vivo. Bone 2015; 81:581-592. [PMID: 26279137 PMCID: PMC4768060 DOI: 10.1016/j.bone.2015.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/18/2015] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Bone metastasis remains incurable with treatment restricted to palliative care. Cabozantinib (CBZ) is targeted against multiple receptor tyrosine kinases involved in tumour pathobiology, including hepatocyte growth factor receptor (MET) and vascular endothelial growth factor receptor 2 (VEGFR-2). CBZ has demonstrated clinical activity in advanced prostate cancer with resolution of lesions visible on bone scans, implicating a potential role of the bone microenvironment as a mediator of CBZ effects. We characterised the effects of short-term administration of CBZ on bone in a range of in vivo models to determine how CBZ affects bone in the absence of tumour. METHODS Studies were performed in a variety of in vivo models including male and female BALB/c nude mice (age 6-17-weeks). Animals received CBZ (30 mg/kg, 5× weekly) or sterile H2O control for 5 or 10 days. Effects on bone integrity (μCT), bone cell activity (PINP, TRAP ELISA), osteoblast and osteoclast number/mm trabecular bone surface, area of epiphyseal growth plate cartilage, megakaryocyte numbers and bone marrow composition were assessed. Effects of longer-term treatment (15-day & 6-week administration) were assessed in male NOD/SCID and beige SCID mice. RESULTS CBZ treatment had significant effects on the bone microenvironment, including reduced osteoclast and increased osteoblast numbers compared to control. Trabecular bone structure was altered after 8 administrations. A significant elongation of the epiphyseal growth plate, in particular the hypertrophic chondrocyte zone, was observed in all CBZ treated animals irrespective of administration schedule. Both male and female BALB/c nude mice had increased megakaryocyte numbers/mm(2) tissue after 10-day CBZ treatment, in addition to vascular ectasia, reduced bone marrow cellularity and extravasation of red blood cells into the extra-vascular bone marrow. All CBZ-induced effects were transient and rapidly lost following cessation of treatment. CONCLUSION Short-term administration of CBZ induces rapid, reversible effects on the bone microenvironment in vivo highlighting a potential role in mediating treatment responses.
Collapse
Affiliation(s)
| | - Keith D Hunter
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| | - Simon P Robinson
- CR-UK Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, Surrey, UK.
| | - Timothy J Graham
- CR-UK Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, Surrey, UK.
| | - Eva Corey
- Department of Urology, University of Washington Medical Center, Seattle, WA, USA.
| | - T Neil Dear
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Russell Hughes
- Department of Oncology, University of Sheffield, Sheffield, UK.
| | - Nicola J Brown
- Department of Oncology, University of Sheffield, Sheffield, UK.
| | - Ingunn Holen
- Department of Oncology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
49
|
Protrusive activity guides changes in cell-cell tension during epithelial cell scattering. Biophys J 2015; 107:555-563. [PMID: 25099795 DOI: 10.1016/j.bpj.2014.06.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/23/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022] Open
Abstract
Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.
Collapse
|
50
|
Moran-Jones K, Brown LM, Samimi G. INC280, an orally available small molecule inhibitor of c-MET, reduces migration and adhesion in ovarian cancer cell models. Sci Rep 2015; 5:11749. [PMID: 26138303 PMCID: PMC5155610 DOI: 10.1038/srep11749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
5-year survival rates for ovarian cancer are approximately 40%, and for women diagnosed at late stage (the majority), just 27%. This indicates a dire need for new treatments to improve survival rates. Recent molecular characterization has greatly improved our understanding of the disease and allowed the identification of potential new targets. One such pathway of interest is the HGF/c-MET axis. Activation of the HGF/c-MET axis has been demonstrated in certain ovarian tumours, and been found to be associated with decreased overall survival, suggesting its potential as a therapeutic target. The objective of this study was to determine the efficacy of a novel, highly potent, orally-bioavailable c-MET inhibitor, INC280, in blocking cell phenotypes important in ovarian cancer metastasis. Using in vitro and ex vivo models, we demonstrate that INC280 inhibits HGF-induced c-MET, and reduces downstream signalling. HGF-stimulated chemotactic and random migration are decreased by INC280 treatment, to levels seen in non-stimulated cells. Additionally, HGF-induced adhesion of cancer cells to peritoneal tissue is significantly decreased by INC280 treatment. Overall, these data indicate that INC280 inhibits many cell behaviours that promote ovarian cancer metastasis, and merits further investigation as a therapeutic candidate in the treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kim Moran-Jones
- 1] Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, NSW, Australia [2] St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, NSW, Australia
| | - Laura M Brown
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Goli Samimi
- 1] Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, NSW, Australia [2] St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, NSW, Australia
| |
Collapse
|