1
|
Abulghasem EA, Price CA. The influence of CCN family proteins on ovarian physiology and pathology. Reprod Fertil Dev 2025; 37:RD24199. [PMID: 40359309 DOI: 10.1071/rd24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The CCN family of proteins is comprised of six matricellular proteins known to regulate multiple cellular processes such as adhesion, proliferation, differentiation, and apoptosis. CCN proteins are known to function through the binding of integrin receptors and through the regulation of growth factors and cytokines in the context of cardiovascular and skeletal development, injury repair, fibrosis, inflammation and cancer. The expression and roles of several CCNs, particularly CCN1 and CCN2, have been investigated in the ovary as they are effectors of the Hippo signaling pathway, and their role in the development of ovarian fibrosis has been described. Here we review the patterns of expression of CCN1-6 in the ovarian follicle, and the role of CCN2 in follicle development and steroidogenesis, and the expression and potential actions of CCN1-6 in ovarian cancers. We highlight the roles CCNs may play in inflammatory processes, and put forth a case for CCN involvement in the process of ovulation.
Collapse
Affiliation(s)
- El Arbi Abulghasem
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
2
|
Perbal B. The case of Connective Tissue Growth Factor (CTGF) and the pit of misleading and improper nomenclatures. J Cell Commun Signal 2025; 19:e12062. [PMID: 39712858 PMCID: PMC11656398 DOI: 10.1002/ccs3.12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
|
3
|
Ghosh P, Dey A, Nandi S, Majumder R, Das S, Mandal M. CTGF (CCN2): a multifaceted mediator in breast cancer progression and therapeutic targeting. Cancer Metastasis Rev 2025; 44:32. [PMID: 39945880 DOI: 10.1007/s10555-025-10248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 02/01/2025] [Indexed: 03/28/2025]
Abstract
Breast cancer, with its diverse subtypes like ER-positive, HER-2-positive, and triple-negative, presents complex challenges demanding personalized treatment approaches. The intricate interplay of genetic, environmental, and lifestyle factors underscores its status as a primary contributor to cancer-related fatalities in women globally. Understanding the molecular drivers specific to each subtype is crucial for developing effective therapies. In this landscape, connective tissue growth factor (CTGF), also referred to as cellular communication network factor 2 (CCN2), emerges as a significant player. CTGF regulates critical biological activities like cell growth, invasion, and migration, impacting breast cancer development and progression. It modulates breast tumor microenvironment by promoting angiogenesis, activating cancer-associated fibroblasts (CAFs), and inducing inflammation. The activity of CTGF depends on several factors including oxygen levels, hormone signals, and growth factors and differs according to the type of breast cancer. CTGF can regulate breast cancer cells by activating various signaling pathways and modulating the transcription of other genes that are involved in tumor development and metastasis including S100A4, glucose transporter 3 (GLUT3), and vascular endothelial growth factor (VEGF). The matricellular protein can be considered a potential therapeutic target, as it can promote tumor growth and confer drug resistance in breast cancer. Numerous tactics, including neutralizing antibodies, antisense oligonucleotides, natural compounds, recombinant proteins, and short hairpin RNAs have been suggested to block its function. This review highlights the structure of CTGF, regulation of its expression, and current knowledge of its oncogenic role in breast cancer, as well as focusing on potential therapeutic strategies for targeting CTGF in breast cancer.
Collapse
Affiliation(s)
- Priya Ghosh
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Suvendu Nandi
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Ranabir Majumder
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Subhayan Das
- Department of Allied Health Sciences, Brainware University, Kolkata 700125, Barasat, West Bengal, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India.
| |
Collapse
|
4
|
Xu W, Zhong J, Jian J, Zhong F. The interaction between CTGF and VEGF-A in the progression of intervertebral disc fibrosis. Afr Health Sci 2024; 24:276-285. [PMID: 40190527 PMCID: PMC11970167 DOI: 10.4314/ahs.v24i4.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Background Fibrosis in the extracellular matrix of nucleus pulposus (NP) is associated with intervertebral disc degeneration (IVDD). Both connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF)-A are responsible for the pathological basis of NP fibrosis. Our study aims to verify the interaction between CTGF and VEGF-A in a vitro NP cell model. Methodology Collected human NP tissues of different degeneration degree and isolated the NP cells from the non-degenerated NP tissues. Analysed the CTGF and VEGF-A gene expression in the naturally degenerated NP and IL-1β-induced degenerated NP cells. Additionally, interfered wit the CTGF and VEGF-A expression by exogenic protein treatment, siRNA transfection, or specific inhibitor. The expression of CTGF, VEGF-A, collagen I/II/III and aggrecan with protein or mRNA level was determined by immunological staining, western blotting and RT-PCR. Results CTGF and VEGF-A highly expressed in the late-term of degeneration compared to the middle-term, and their expressions were synergistic. Upregulating one of CTGF and VEGF-A could induce the overexpression of the other one and collagen I/III, but suppressed collagen II and aggrecan expression; Besides, the suppression of one of them could inhibited another and collagen I/III expression. Conclusions CTGF and VEGF-A increase in late IVDD. Prevent NP fibrosis by suppressing their interaction.
Collapse
Affiliation(s)
- Wangbing Xu
- Spinal surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiqin Zhong
- Public Health Branch, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianrong Jian
- Recovery physical therapy branch, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Faming Zhong
- Spinal surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Jarczak J, Bujko K, Ratajczak MZ, Kucia M. scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes. Sci Rep 2024; 14:29264. [PMID: 39587190 PMCID: PMC11589151 DOI: 10.1038/s41598-024-79810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
A population of CD133+lin-CD45- and CD34+lin-CD45- very small embryonic-like stem cells (VSELs) has been identified in postnatal human tissues, including bone marrow (BM), mobilized peripheral blood (mPB) and umbilical cord blood (UCB). Under appropriate conditions, VSELs in vitro and in vivo differentiate into tissue-committed stem cells for all three germ layers. Molecular analysis of adult murine BM-purified VSELs revealed that these rare cells deposited during development in adult tissues (i) express a similar transcriptome as embryonic stem cells, (ii) share several markers characteristic for epiblast and migratory primordial germ cells (PGCs), (iii) highly express a polycomb group protein enhancer of zeste drosophila homolog 2 (Ezh2) and finally (iv) display a unique pattern of imprinting at crucial paternally inherited genes that promotes their quiescence. Here, by employing single-cell RNA sequencing we demonstrate for the first time that purified from UCB human VSELs defined by expression of CD34 or CD133 antigens and lack of lineage markers, including CD45 antigen express similar molecular signature as murine BM-derived VSELs. Specifically, unsupervised clustering revealed numerous subpopulations of VSELs including ones i) annotated to germline compartments, ii) regulated by parental imprinting, iii) responding to early developmental fate decisions, iv) transcription factors involved in differentiation and development, including homeobox family of genes, and v) expressing innate immunity and purinergic signaling genes.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland.
| |
Collapse
|
6
|
Yang J, Chen S, Chen K, Wu J, Yuan H. Exploring IRGs as a Biomarker of Pulmonary Hypertension Using Multiple Machine Learning Algorithms. Diagnostics (Basel) 2024; 14:2398. [PMID: 39518365 PMCID: PMC11545203 DOI: 10.3390/diagnostics14212398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a severe disease with poor prognosis and high mortality, lacking simple and sensitive diagnostic biomarkers in clinical practice. This study aims to identify novel diagnostic biomarkers for PAH using genomics research. METHODS We conducted a comprehensive analysis of a large transcriptome dataset, including PAH and inflammatory response genes (IRGs), integrated with 113 machine learning models to assess diagnostic potential. We developed a clinical diagnostic model based on hub genes, evaluating their effectiveness through calibration curves, clinical decision curves, and ROC curves. An animal model of PAH was also established to validate hub gene expression patterns. RESULTS Among the 113 machine learning algorithms, the Lasso + LDA model achieved the highest AUC of 0.741. Differential expression profiles of hub genes CTGF, DDR2, FGFR2, MYH10, and YAP1 were observed between the PAH and normal control groups. A diagnostic model utilizing these hub genes was developed, showing high accuracy with an AUC of 0.87. MYH10 demonstrated the most favorable diagnostic performance with an AUC of 0.8. Animal experiments confirmed the differential expression of CTGF, DDR2, FGFR2, MYH10, and YAP1 between the PAH and control groups (p < 0.05); Conclusions: We successfully established a diagnostic model for PAH using IRGs, demonstrating excellent diagnostic performance. CTGF, DDR2, FGFR2, MYH10, and YAP1 may serve as novel molecular diagnostic markers for PAH.
Collapse
Affiliation(s)
| | | | | | | | - Hui Yuan
- Department of Clinical Laboratory Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; (J.Y.); (S.C.); (K.C.); (J.W.)
| |
Collapse
|
7
|
Huo YN, Yang HY, Ke HY, Lin CY, Tsai CS. Androgen receptor activation inhibits endothelial cell migration in vitro and angiogenesis in vivo. Eur J Cell Biol 2024; 103:151456. [PMID: 39288691 DOI: 10.1016/j.ejcb.2024.151456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Our previous research revealed that androgen receptor (AR) activation reduces endothelial cell proliferation via non-genomic pathways. We hypothesized that AR activation might also affect endothelial cell migration, a critical step in angiogenesis. Our data demonstrates that treatment of human umbilical vein endothelial cells (HUVECs) with AR agonists, metribolone (R1881) or dihydrotestosterone (DHT), results in a dose-dependent reduction in migration, which can be reversed by AR antagonists or AR knockdown. Mechanistically, R1881 inhibits HUVEC migration by suppressing RhoA activity through the cSrc/FAK/paxillin pathway and promoting RhoA degradation via RhoA-p27 complex formation, ultimately resulting in RhoA ubiquitination. Transfection with constitutively active RhoA-V14 rescues the inhibitory effect of R1881 on HUVEC migration. Furthermore, R1881 elevates intracellular vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) levels but reduces VEGF secretion from HUVECs. This reduction is attributed to the formation of VEGF-CTGF complexes in the cytosol induced by R1881. Transfection with RhoA-V14 reduces CTGF levels and VEGF-CTGF complex formation, leading to enhanced VEGF secretion. Pre-treatment with WP631, a CTGF inhibitor, mitigates the R1881-induced reduction in VEGF secretion and HUVECs migration. In vivo assessments using zebrafish angiogenesis and mouse matrigel plug assays validate the anti-angiogenic effects of R1881. These findings provide insight into the molecular mechanisms through which AR activation modulates endothelial cell migration and angiogenesis.
Collapse
Affiliation(s)
- Yen-Nien Huo
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsiang-Yu Yang
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; Institute of Preventive Medicine, National Defense Medical Center, Taipei 114, Taipei 114 Taiwan.
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
8
|
Chang H, Ng C, Chen Y, Wang Y, Yu I, Lee LJ, Lee L, Lee K. Elevated reactive aggression in forebrain-specific Ccn2 knockout mice. J Cell Commun Signal 2024; 18:e12040. [PMID: 39524137 PMCID: PMC11544641 DOI: 10.1002/ccs3.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cellular communication network factor 2 (CCN2) is a matricellular protein that plays important roles in connective tissue. CCN2 is also expressed in the nervous system; however, its role is still unclear. To explore CCN2 function in the brain, we generated forebrain-specific Ccn2 knockout (FbCcn2 KO) mice. In this study, we examined the behavioral phenotypes of FbCcn2KO mice. Male mice lacking CCN2 in the forebrain exhibited normal locomotion, sensorimotor gating, and social behaviors but signs of anxiety and elevated reactive aggression. We checked the c-fos expression in aggression-related brain regions following the resident-intruder task (RIT), an aggression test. RIT-induced c-fos levels in the medial amygdala (MeA) were higher in FbCcn2 -/- mice as compared to controls. However, in the prefrontal cortex, RIT-induced c-fos levels in FbCcn2 -/- mice were lower than controls. Our results suggested in male mice lacking CCN2 in the olfaction-related regions, olfactory social cues elicit greater signals in the MeA, resulting in greater reactive aggression in the RIT. Further, lacking CCN2 in the prefrontal cortex, the major area related to inhibitory control and emotion regulation, may lead to signs of anxiety and the failure to suppress aggressive behaviors. Our model is useful in elaborating the mechanism underlying reactive aggression and therapeutic strategies.
Collapse
Affiliation(s)
- Ho‐Ching Chang
- College of MedicineGraduate Institute of Anatomy and Cell BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Chi‐Hou Ng
- College of MedicineGraduate Institute of Anatomy and Cell BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐Fu Chen
- Department of NeurologyChang Gung Memorial HospitalKeelung BranchKeelungTaiwan
| | - Yu‐Chun Wang
- Department of Otolaryngology, Head and Neck SurgeryChi‐Mei Medical CenterTainanTaiwan
| | - I‐Shing Yu
- Laboratory Animal CenterCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Lukas Jyuhn‐Hsiarn Lee
- National Institute of Environmental Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Li‐Jen Lee
- College of MedicineGraduate Institute of Anatomy and Cell BiologyNational Taiwan UniversityTaipeiTaiwan
- College of MedicineInstitute of Brain and Mind SciencesNational Taiwan UniversityTaipeiTaiwan
- Neurobiology and Cognitive Science CenterNational Taiwan UniversityTaipeiTaiwan
| | - Kuang‐Yung Lee
- Department of NeurologyChang Gung Memorial HospitalKeelung BranchKeelungTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| |
Collapse
|
9
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
10
|
Yoshida H, Yokota S, Satoh K, Ishisaki A, Chosa N. Connective tissue growth factor enhances TGF-β1-induced osteogenic differentiation via activation of p38 MAPK in mesenchymal stem cells. J Oral Biosci 2024; 66:68-75. [PMID: 38266705 DOI: 10.1016/j.job.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-β1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-β1, on osteogenic differentiation in MSCs. METHODS UE7T-13 cells were treated with TGF-β1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining. RESULTS Co-treatment with TGF-β1 and CTGF resulted in the suppression of TGF-β1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-β1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-β1. Osteopontin expression was observed only after TGF-β1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-β1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor. CONCLUSIONS CTGF enhances TGF-β1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Hironori Yoshida
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan; Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
11
|
Silver RM. E Carwile LeRoy, MD. Rheum Dis Clin North Am 2024; 50:33-45. [PMID: 37973284 DOI: 10.1016/j.rdc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
E. Carwile LeRoy, M.D. was a pioneer in the study of systemic sclerosis (SSc, scleroderma). His early medical training was strongly influenced by notable clinical investigators including Dr Kenneth Brinkhous, Dr Charles Christian and Dr Albert Sjoerdsma. Dr LeRoy is remembered for his seminal observations on the over-production of collagen by scleroderma fibroblasts and for his vascular hypothesis on the pathogenesis of scleroderma. The Division of Rheumatology & Immunology at the Medical University of South Carolina, established by Dr LeRoy, is world renowned for its clinical and translational studies of scleroderma and has produced many of the leaders in the international scleroderma community.
Collapse
Affiliation(s)
- Richard M Silver
- Division of Rheumatology & Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, Charleston, SC 29425, USA.
| |
Collapse
|
12
|
Li H, Dong J, Cui L, Liu K, Guo L, Li J, Wang H. The effect and mechanism of selenium supplementation on the proliferation capacity of bovine endometrial epithelial cells exposed to lipopolysaccharide in vitro under high cortisol background. J Anim Sci 2024; 102:skae021. [PMID: 38289713 PMCID: PMC10889726 DOI: 10.1093/jas/skae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3β (GSK-3β) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of β-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Kogiso T, Takayanagi K, Ishizuka T, Otsuka M, Inai K, Ogasawara Y, Horiuchi K, Taniai M, Tokushige K. Serum level of full-length connective tissue growth factor reflects liver fibrosis stage in patients with Fontan-associated liver disease. PLoS One 2024; 19:e0296375. [PMID: 38166061 PMCID: PMC10760884 DOI: 10.1371/journal.pone.0296375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Chronic liver disease leads to liver fibrosis, and an accurate diagnosis of the fibrosis stage is crucial for medical management. Connective tissue growth factor (CTGF) is produced by endothelial cells and platelets and plays a central role in inducing fibrosis in various organs. In the present study, we tested the validity of measuring the serum levels of two types of CTGF to estimate the biopsy-confirmed liver fibrosis stage. METHODS We used two detection antibodies targeting the N- and C-terminal of CTGF to measure the serum levels of two forms of CTGF consisting of its full length and its N-terminal fragment. We analyzed the level of CTGF (via enzyme-linked immunosorbent assay) and the liver fibrosis stage in 38 patients with Fontan-associated liver disease (FALD) (26 cases of which were diagnosed pathologically). Correlations were determined by multivariate analysis and the area under the receiver operating characteristic curve. The 65 patients with nonalcoholic fatty liver disease (NAFLD) were included as a disease control group for examination. RESULTS Full-length CTGF was significantly inversely correlated with liver fibrosis in patients with FALD. Although the platelet count was also associated with the liver fibrosis stage, full-length CTGF was more closely correlated with the fibrosis stage. Furthermore, the level of full-length CTGF was inversely associated with high central venous pressure. Conversely, the serum level of CTGF was not correlated with the fibrosis stage in NAFLD. CONCLUSION The serum level of full-length CTGF may be useful for estimating the liver fibrosis stage in patients with FALD.
Collapse
Affiliation(s)
- Tomomi Kogiso
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kayo Takayanagi
- Division of Transplant Immunology, Central Clinical Laboratories, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tsutomu Ishizuka
- Division of Transplant Immunology, Central Clinical Laboratories, Tokyo Women’s Medical University, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kei Inai
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuri Ogasawara
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kentaro Horiuchi
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Makiko Taniai
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Katsutoshi Tokushige
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Isshiki T, Naiel S, Vierhout M, Otsubo K, Ali P, Tsubouchi K, Yazdanshenas P, Kumaran V, Dvorkin-Gheva A, Kolb MRJ, Ask K. Therapeutic strategies to target connective tissue growth factor in fibrotic lung diseases. Pharmacol Ther 2024; 253:108578. [PMID: 38103794 DOI: 10.1016/j.pharmthera.2023.108578] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-β. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada; Department of Respiratory Medicine, Toho University School of Medicine, 6-11-1 Omori Nisi, Ota-ku, Tokyo 143-8541, Japan
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kohei Otsubo
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Pareesa Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kazuya Tsubouchi
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Parichehr Yazdanshenas
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Vaishnavi Kumaran
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada.
| |
Collapse
|
15
|
Shimizu M, Yoshimatsu G, Morita Y, Tanaka T, Sakata N, Tagashira H, Wada H, Kodama S. Rescue of murine hind limb ischemia via angiogenesis and lymphangiogenesis promoted by cellular communication network factor 2. Sci Rep 2023; 13:20029. [PMID: 37973852 PMCID: PMC10654495 DOI: 10.1038/s41598-023-47485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Critical limb ischemia (CLI) is caused by severe arterial blockage with reduction of blood flow. The aim of this study was to determine whether therapeutic angiogenesis using cellular communication network factor 2 (CCN2) would be useful for treating CLI in an animal model. Recombinant CCN2 was administered intramuscularly to male C57BL/6J mice with hind limb ischemia. The therapeutic effect was evaluated by monitoring blood flow in the ischemic hind limb. In an in vivo assay, CCN2 restored blood flow in the ischemic hind limb by promoting both angiogenesis and lymphangiogenesis. VEGF-A and VEGF-C expression levels increased in the ischemic limb after treatment with CCN2. In an in vitro assay, CCN2 promoted proliferation of vascular and lymphatic endothelial cells, and it upregulated expression of Tgfb1 followed by expression of Vegfc and Vegfr3 in lymphatic endothelial cells under hypoxia. Suppression of Tgfb1 did not affect the activity of CCN2, activation of the TGF-β/SMAD signaling pathway, or expression of Vegfr3 in lymphatic endothelial cells. In summary, treatment using recombinant CCN2 could be a promising therapeutic strategy for CLI.
Collapse
Affiliation(s)
- Masayuki Shimizu
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.
| | - Yuichi Morita
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Hideaki Tagashira
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Hideichi Wada
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.
| |
Collapse
|
16
|
Hassan MDS, Razali N, Abu Bakar AS, Abu Hanipah NF, Agarwal R. Connective tissue growth factor: Role in trabecular meshwork remodeling and intraocular pressure lowering. Exp Biol Med (Maywood) 2023; 248:1425-1436. [PMID: 37873757 PMCID: PMC10657592 DOI: 10.1177/15353702231199466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-β) and is regulated via TGF-β SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-β avoids the consequences of interfering with the pleotropic effects of TGF-β. Both CTGF and its upstream mediator, TGF-β, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.
Collapse
Affiliation(s)
| | - Norhafiza Razali
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Amy Suzana Abu Bakar
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Noor Fahitah Abu Hanipah
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University (IMU), 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Yin H, Liu N, Zhou X, Chen J, Duan L. The advance of CCN3 in fibrosis. J Cell Commun Signal 2023:10.1007/s12079-023-00778-3. [PMID: 37378812 DOI: 10.1007/s12079-023-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xianming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China.
| |
Collapse
|
18
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
19
|
Qin Y, Wu G, Jin J, Wang H, Zhang J, Liu L, Zhao H, Wang J, Yang X. A fully human connective tissue growth factor blocking monoclonal antibody ameliorates experimental rheumatoid arthritis through inhibiting angiogenesis. BMC Biotechnol 2023; 23:6. [PMID: 36869335 PMCID: PMC9985226 DOI: 10.1186/s12896-023-00776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Connective tissue growth factor (CTGF) plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA) by facilitating angiogenesis and is a promising therapeutic target for RA treatment. Herein, we generated a fully human CTGF blocking monoclonal antibody (mAb) through phage display technology. RESULTS A single-chain fragment variable (scFv) with a high affinity to human CTGF was isolated through screening a fully human phage display library. We carried out affinity maturation to elevate its affinity for CTGF and reconstructed it into a full-length IgG1 format for further optimization. Surface plasmon resonance (SPR) data showed that full-length antibody IgG mut-B2 bound to CTGF with a dissociation constant (KD) as low as 0.782 nM. In the collagen-induced arthritis (CIA) mice, IgG mut-B2 alleviated arthritis and decreased the level of pro-inflammatory cytokines in a dose-dependent manner. Furthermore, we confirmed that the TSP-1 domain of CTGF is essential for the interaction. Additionally, the results of Transwell assays, tube formation experiments, and chorioallantoic membrane (CAM) assays showed that IgG mut-B2 could effectively inhibit angiogenesis. CONCLUSION The fully human mAb that antagonizes CTGF could effectively alleviate arthritis in CIA mice, and its mechanism is tightly associated with the TSP-1 domain of CTGF.
Collapse
Affiliation(s)
- Yang Qin
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Gan Wu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.,Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying, Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Jin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Hao Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Heping Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China. .,Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying, Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
20
|
Kubota S, Kawaki H, Perbal B, Takigawa M, Kawata K, Hattori T, Nishida T. Do not overwork: cellular communication network factor 3 for life in cartilage. J Cell Commun Signal 2023:10.1007/s12079-023-00723-4. [PMID: 36745317 DOI: 10.1007/s12079-023-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/07/2023] Open
Abstract
Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| |
Collapse
|
21
|
Madaro A, Nilsson J, Whatmore P, Roh H, Grove S, Stien LH, Olsen RE. Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:97-116. [PMID: 36574113 PMCID: PMC9935726 DOI: 10.1007/s10695-022-01163-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Farmed Atlantic salmon (Salmo salar) welfare and performance can be strongly influenced by stress episodes caused by handling during farming practices. To better understand the changes occurring after an acute stress response, we exposed a group of Atlantic salmon parr to an acute stressor, which involved netting and transferring fish to several new holding tanks. We describe a time-course response to stress by sampling parr in groups before (T0) and 10, 20, 30, 45, 60, 120, 240, 300, and 330 min post-stress. A subgroup of fish was also subjected to the same stressor for a second time to assess their capacity to respond to the same challenge again within a short timeframe (ReStressed). Fish plasma was assessed for adrenocorticotropic hormone (ACTH), cortisol, and ions levels. Mucus cortisol levels were analyzed and compared with the plasma cortisol levels. At 5 selected time points (T0, 60, 90, 120, 240, and ReStressed), we compared the head kidney transcriptome profile of 10 fish per time point. The considerably delayed increase of ACTH in the plasma (60 min post-stress), and the earlier rise of cortisol levels (10 min post-stress), suggests that cortisol release could be triggered by more rapidly responding factors, such as the sympathetic system. This hypothesis may be supported by a high upregulation of several genes involved in synaptic triggering, observed both during the first and the second stress episodes. Furthermore, while the transcriptome profile showed few changes at 60 min post-stress, expression of genes in several immune-related pathways increased markedly with each successive time point, demonstrating the role of the immune system in fish coping capacity. Although many of the genes discussed in this paper are still poorly characterized, this study provides new insights regarding the mechanisms occurring during the stress response of salmon parr and may form the basis for a useful guideline on timing of sampling protocols.
Collapse
Affiliation(s)
| | | | - Paul Whatmore
- Department of eResearch, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia
| | - HyeongJin Roh
- Institute of Marine Research, NO-5984, Matredal, Norway
| | - Søren Grove
- Institute of Marine Research, NO-5984, Matredal, Norway
- Fish Health Group, Norwegian Veterinary Institute, 1433, Ås, Norway
| | - Lars H Stien
- Institute of Marine Research, NO-5984, Matredal, Norway
| | - Rolf Erik Olsen
- Institute of Marine Research, NO-5984, Matredal, Norway
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
22
|
Peidl A, Nguyen J, Chitturi P, Riser BL, Leask A. Using the Bleomycin-Induced Model of Fibrosis to Study the Contribution of CCN Proteins to Scleroderma Fibrosis. Methods Mol Biol 2023; 2582:309-321. [PMID: 36370359 DOI: 10.1007/978-1-0716-2744-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Approximately 45% of the deaths in the developed world result from conditions with a fibrotic component. Although no specific, focused anti-fibrotic therapies have been approved for clinical use, a long-standing concept is that targeting CCN proteins may be useful to treat fibrosis. Herein, we summarize current data supporting the concept that targeting CCN2 may be a viable anti-fibrotic approach to treat scleroderma. Testing this hypothesis has been made possible by using a mouse model of inflammation-driven skin and lung fibrosis.
Collapse
Affiliation(s)
- Alexander Peidl
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Bruce L Riser
- BLR Bio LLC, Kenosha, WI, USA
- Center for Cancer Cell Biology, Immunology and Infection, Department of Physiology and Biophysics, and Department of Medicine Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
23
|
Yuan Z, Wang J, Zhang H, Chai Y, Xu Y, Miao Y, Yuan Z, Zhang L, Jiang Z, Yu Q. Glycocholic acid aggravates liver fibrosis by promoting the up-regulation of connective tissue growth factor in hepatocytes. Cell Signal 2023; 101:110508. [PMID: 36341984 DOI: 10.1016/j.cellsig.2022.110508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
AIMS The precise role of bile acid in the progression of liver fibrosis has yet to be elucidated. In this study, common bile duct ligation was used as an in vivo mouse model for the evaluation of bile acids that promote liver connective tissue growth factor expression. MAIN METHODS Primary rat and mice hepatocytes, as well as primary rat hepatic stellate and HepaRG cells were evaluated as in vitro models for promoting the expression of connective tissue growth factor by bile acids. KEY FINDINGS Compared with taurochenodeoxycholic acid, glycochenodeoxycholic acid, and taurocholic acid, glycocholic acid (GCA) most strongly promoted the secretion of connective tissue growth factor in mouse primary hepatocytes, rat primary hepatocytes and HepaRGs. GCA did not directly promote the activation of hepatic stellate cells. The administration of GCA in mice with ligated bile ducts promotes the progression of liver fibrosis, which may promote the yes-associated protein of hepatocytes into the nucleus, resulting in the hepatocytes secreting more connective tissue growth factor for hepatic stellate cell activation. In conclusion, our data showed that GCA can induce the expression of connective tissue growth factor in hepatocytes by promoting the nuclear translocation of yes-associated protein, thereby activating hepatic stellate cells. SIGNIFICANCE Our findings help to elucidate the contribution of GCA to the progression of hepatic fibrosis in cholestatic disease and aid the clinical monitoring of cholestatic liver fibrosis development.
Collapse
Affiliation(s)
- Zihang Yuan
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Haoran Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yunxia Xu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinwei Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Lee SY. Endothelial cell‑derived connective tissue growth factor stimulates fibroblast differentiation into myofibroblasts through integrin αVβ3. Exp Ther Med 2022; 25:30. [PMID: 36561611 PMCID: PMC9748665 DOI: 10.3892/etm.2022.11730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Connective tissue growth factor (CTGF) is expressed at high levels in blood vessels, where it functions as a regulator of a number of physiological processes, such as cell proliferation, angiogenesis and wound healing. In addition, CTGF has been reported to be involved in various pathological processes, such as tumor development and tissue fibrosis. However, one of the main roles of CTGF is to promote the differentiation of fibroblasts into myofibroblasts, a process that is involved in disease progression. Therefore, the present study aimed to investigate the possible mechanism by which pathological changes in the microvasculature can direct the activation of fibroblasts into myofibroblasts in the context of hypoxia/reoxygenation (H/R). Human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts were used in the present study. The expression levels of CTGF were determined by western blot analysis and reverse transcription-semi-quantitative PCR. To analyze the paracrine effect of HUVECs on fibroblasts, HUVECs were infected with CTGF-expressing adenovirus and then the culture supernatant of HUVECs was collected to treat fibroblasts. The formation of α-smooth muscle actin (α-SMA) stress fibers in fibroblasts were observed by immunofluorescence staining. It was found that H/R significantly increased CTGF expression in HUVECs. CTGF was also able to directly induce the differentiation of fibroblasts into myofibroblasts. In addition, the culture supernatant from CTGF-overexpressing HUVECs stimulated the formation of α-SMA stress fibers in fibroblasts, which was inhibited by treatment with a functional blocking antibody against integrin αVβ3 and to a lesser degree by a blocking antibody against α6 integrin. The mechanism of CTGF upregulation by H/R in HUVECs was then evaluated, where it was found that the CTGF protein was more stable in the H/R group compared with that in the normoxic control group. These findings suggest that CTGF expressed and secreted by vascular endothelial cells under ischemia/reperfusion conditions can exert a paracrine influence on neighboring fibroblasts, which may in turn promote myofibroblast-associated diseases. This association may hold potential as a therapeutic target.
Collapse
Affiliation(s)
- Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, Jeollabuk-do 54538, Republic of Korea,Department of Biomedical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do 54538, Republic of Korea,Correspondence to: Professor Seo-Yeon Lee, Department of Pharmacology, Wonkwang University School of Medicine, 460 Iksan-daero, Iksan, Jeollabuk-do 54538, Republic of Korea
| |
Collapse
|
25
|
Fibroblast Growth Factors and Cellular Communication Network Factors: Intimate Interplay by the Founding Members in Cartilage. Int J Mol Sci 2022; 23:ijms23158592. [PMID: 35955724 PMCID: PMC9369280 DOI: 10.3390/ijms23158592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication network factors (CCN) family is composed of six members that manipulate extracellular signaling networks. FGFs and CCNs are structurally and functionally distinct, except for the common characteristics as matricellular proteins. Both play significant roles in the development of a variety of tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed and grow through a process designated endochondral ossification, in which chondrocytes play the central role. The growth plate cartilage is the place where endochondral ossification occurs, and articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2, one of the founding members of this family, and all of the CCNs represented by CCN2, which is required for proper skeletal development, can be found therein. Research over a decade has revealed direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF and CCN genes by FGF signaling. In this review, after a brief introduction of these two families, molecular and genetic interactions between CCN and FGF family members in cartilage, and their biological effects, are summarized. The molecular interplay represents the mutual involvement of the other in their molecular functions, leading to collaboration between CCN2 and FGFs during skeletal development.
Collapse
|
26
|
Li Z, Cong X, Kong W. Matricellular proteins: Potential biomarkers and mechanistic factors in aortic aneurysms. J Mol Cell Cardiol 2022; 169:41-56. [DOI: 10.1016/j.yjmcc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
27
|
Wang S, Fang L, Cong L, Chung JPW, Li TC, Chan DYL. Myostatin: a multifunctional role in human female reproduction and fertility - a short review. Reprod Biol Endocrinol 2022; 20:96. [PMID: 35780124 PMCID: PMC9250276 DOI: 10.1186/s12958-022-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Myostatin (MSTN) is member of the transforming growth factor β (TGF-β) superfamily and was originally identified in the musculoskeletal system as a negative regulator of skeletal muscle growth. The functional roles of MSTN outside of the musculoskeletal system have aroused researchers' interest in recent years, with an increasing number of studies being conducted in this area. Notably, the expression of MSTN and its potential activities in various reproductive organs, including the ovary, placenta, and uterus, have recently been examined. Numerous studies published in the last few years demonstrate that MSTN plays a critical role in human reproduction and fertility, including the regulation of follicular development, ovarian steroidogenesis, granule-cell proliferation, and oocyte maturation regulation. Furthermore, findings from clinical samples suggest that MSTN may play a key role in the pathogenesis of several reproductive disorders such as uterine myoma, preeclampsia (PE), ovary hyperstimulation syndrome (OHSS), and polycystic ovarian syndrome (PCOS). There is no comprehensive review regarding to MSTN related to the female reproductive system in the literature. This review serves as a summary of the genes in reproductive medicine and their potential influence. We summarized MSTN expression in different compartments of the female reproductive system. Subsequently, we discuss the role of MSTN in both physiological and several pathological conditions related to the female fertility and reproduction-related diseases.
Collapse
Affiliation(s)
- Sijia Wang
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Luping Cong
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Jacqueline Pui Wah Chung
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Tin Chiu Li
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - David Yiu Leung Chan
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China.
| |
Collapse
|
28
|
Golal E, Balci CN, Ustunel I, Acar N. The investigation of hippo signaling pathway in mouse uterus during peri-implantation period. Arch Gynecol Obstet 2022; 307:1795-1809. [PMID: 35708783 DOI: 10.1007/s00404-022-06660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Events in the uterus during the peri-implantation period include embryo development, acquisition of uterine receptivity, implantation and decidualization. Hippo signaling pathway regulates cell proliferation, apoptosis and differentiation. We aimed to determine localization and expressions of pYAP (Phospho Yes-associated protein), YAP (Yes-associated protein), TEAD1 (TEA domain family member 1) and CTGF (Connective tissue growth factor), members of the Hippo signaling pathway, in the mouse uterus during the peri-implantation period. METHODS Pregnant mice were randomly separated into 5 groups: 1st, 4th, 5th, 6th, and 8th days of pregnancy groups. Non-pregnant female mice in estrous phase were included in the estrous group. Uteri and implantation sites were collected. Also, inter-implantation sites were collected from the 5th day of pregnancy group. pYAP, YAP, TEAD-1 and CTGF were detected by immunohistochemistry and Western blotting. RESULTS We observed that the expressions of YAP, TEAD-1 and CTGF were increased in the luminal and glandular epithelium on the 1st and 4th days of pregnancy when epithelial proliferation occurred. pYAP expression was high, and YAP and CTGF expressions were low in the luminal epithelium of the implantation sites on the 5th day of pregnancy, when epithelial differentiation occurred. pYAP expression was low, YAP and CTGF expressions were high at implantation sites on the 6th and 8th days of pregnancy, where decidua was formed. CONCLUSION Our findings suggest that the Hippo signaling pathway might be involved in implantation and decidualization. Our findings will guide further studies and may help to elucidate underlying causes of implantation failure and pregnancy loss.
Collapse
Affiliation(s)
- Ezgi Golal
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
29
|
Kubota S, Kawata K, Hattori T, Nishida T. Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration. Int J Mol Sci 2022; 23:ijms23115887. [PMID: 35682564 PMCID: PMC9180607 DOI: 10.3390/ijms23115887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin–yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin–yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described.
Collapse
|
30
|
Ma J, Chen J, Li Y, Zhang-Peng X, Wei H, Li W, Hu F, Zhang Y. Electrochemical immuno determination of connective tissue growth factor levels on nitrogen-doped graphene. Mikrochim Acta 2022; 189:187. [PMID: 35397015 DOI: 10.1007/s00604-022-05237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/19/2022] [Indexed: 11/29/2022]
Abstract
Connective tissue growth factor (CTGF) is a disease marker of rheumatoid arthritis (RA), and its rapid and sensitive detection is essential for the diagnosis of RA. In this work, a three-dimensional pore structure of alkali-activated nitrogen-doped graphene (aN-G) was used as an electrode modification material, and a label-free electrochemical immunosensor for the sensitive detection of CTGF was successfully constructed by the formation of an amide bond between amino groups in protein and carboxyl groups on the carbon surface. Under optimized conditions, the sensor achieved accurate detection of CTGF in the wide range of 0.0625 ~ 2000 pg mL-1. It had good accuracy (95.0 ~ 100.1%), repeatability (1.2 ~ 2.2%), stability, selectivity, and a low limit of detection (0.0424 pg mL-1, S/N = 3). The sensor was used in serum samples of patients with RA, and CTGF was also successfully detected. Based on this, the electrochemical sensor is expected to become an effective method for RA diagnosis and treatment effect evaluation.
Collapse
Affiliation(s)
- Jing Ma
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Junhui Chen
- Department of Pediatrics, Gansu Province People's Hospital, 204 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - YuanYuan Li
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Xinru Zhang-Peng
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Hong Wei
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Wen Li
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Fangdi Hu
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China.
| | - Yan Zhang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, China.
| |
Collapse
|
31
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
32
|
Hashiguchi S, Tanaka T, Mano R, Kondo S, Kodama S. CCN2-induced lymphangiogenesis is mediated by the integrin αvβ5-ERK pathway and regulated by DUSP6. Sci Rep 2022; 12:926. [PMID: 35042954 PMCID: PMC8766563 DOI: 10.1038/s41598-022-04988-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lymphangiogenesis is essential for the development of the lymphatic system and is important for physiological processes such as homeostasis, metabolism and immunity. Cellular communication network factor 2 (CCN2, also known as CTGF), is a modular and matricellular protein and a well-known angiogenic factor in physiological and pathological angiogenesis. However, its roles in lymphangiogenesis and intracellular signaling in lymphatic endothelial cells (LECs) remain unclear. Here, we investigated the effects of CCN2 on lymphangiogenesis. In in vivo Matrigel plug assays, exogenous CCN2 increased the number of Podoplanin-positive vessels. Subsequently, we found that CCN2 induced phosphorylation of ERK in primary cultured LECs, which was almost completely inhibited by the blockade of integrin αvβ5 and partially decreased by the blockade of integrin αvβ3. CCN2 promoted direct binding of ERK to dual-specific phosphatase 6 (DUSP6), which regulated the activation of excess ERK by dephosphorylating ERK. In vitro, CCN2 promoted tube formation in LECs, while suppression of Dusp6 further increased tube formation. In vivo, immunohistochemistry also detected ERK phosphorylation and DUSP6 expression in Podoplanin-positive cells on CCN2-supplemented Matrigel. These results indicated that CCN2 promotes lymphangiogenesis by enhancing integrin αvβ5-mediated phosphorylation of ERK and demonstrated that DUSP6 is a negative regulator of excessive lymphangiogenesis by CCN2.
Collapse
Affiliation(s)
- Shiho Hashiguchi
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryosuke Mano
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Seiji Kondo
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
33
|
Ismaeel A, Miserlis D, Papoutsi E, Haynatzki G, Bohannon WT, Smith RS, Eidson JL, Casale GP, Pipinos II, Koutakis P. Endothelial cell-derived pro-fibrotic factors increase TGF-β1 expression by smooth muscle cells in response to cycles of hypoxia-hyperoxia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166278. [PMID: 34601016 PMCID: PMC8629962 DOI: 10.1016/j.bbadis.2021.166278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The vascular pathology of peripheral artery disease (PAD) encompasses abnormal microvascular architecture and fibrosis in response to ischemia-reperfusion (I/R) cycles. We aimed to investigate the mechanisms by which pathological changes in the microvasculature direct fibrosis in the context of I/R. METHODS Primary human aortic endothelial cells (ECs) were cultured under cycles of normoxia-hypoxia (NH) or normoxia-hypoxia-hyperoxia (NHH) to mimic I/R. Primary human aortic smooth muscle cells (SMCs) were cultured and treated with media from the ECs. FINDINGS The mRNA and protein expression of the pro-fibrotic factors platelet derived growth factor (PDGF)-BB and connective tissue growth factor (CTGF) were significantly upregulated in ECs undergoing NH or NHH cycles. Treatment of SMCs with media from ECs undergoing NH or NHH cycles led to significant increases in TGF-β1, TGF-β pathway signaling intermediates, and collagen expression. Addition of neutralizing antibodies against PDGF-BB and CTGF to the media blunted the increases in TGF-β1 and collagen expression. Treatment of SMCs with PAD patient-derived serum also led to increased TGF-β1 levels. INTERPRETATION In an in-vitro model of I/R, which recapitulates the pathophysiology of PAD, increased secretion of PDGF-BB and CTGF by ECs was shown to be predominantly driving TGF-β1-mediated expression by SMCs. These cell culture experiments help elucidate the mechanism and interaction between ECs and SMCs in microvascular fibrosis associated with I/R. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of I/R. FUNDING National Institute on Aging at the National Institutes of Health grant number R01AG064420. RESEARCH IN CONTEXT Evidence before this study: Previous studies in gastrocnemius biopsies from peripheral artery disease (PAD) patients showed that transforming growth factor beta 1 (TGF-β1), the most potent inducer of pathological fibrosis, is increased in the vasculature of PAD patients and correlated with collagen deposition. However, the exact cellular source of TGF-β1 remained unclear. Added value of this study: Exposing cells to cycles of normoxia-hypoxia-hyperoxia (NHH) resulted in pathological changes that are consistent with human PAD. This supports the idea that the use of NHH may be a reliable, novel in vitro model of PAD useful for studying associated pathophysiological mechanisms. Furthermore, pro-fibrotic factors (PDGF-BB and CTGF) released from endothelial cells were shown to induce a fibrotic phenotype in smooth muscle cells. This suggests a potential interaction between these cell types in the microvasculature that drives increased TGF-β1 expression and collagen deposition. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of ischemia-reperfusion.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, 8300 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, 984375 Nebraska Medical Center, Omaha, NE 68198-4375, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - Jack L Eidson
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198-2500, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198-2500, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA.
| |
Collapse
|
34
|
Song M, Zhang Y, Sun Y, Kong M, Han S, Wang C, Wang Y, Xu D, Tu Q, Zhu K, Sun C, Li G, Zhao H, Ma X. Inhibition of RhoA/MRTF-A signaling alleviates nucleus pulposus fibrosis induced by mechanical stress overload. Connect Tissue Res 2022; 63:53-68. [PMID: 34420462 DOI: 10.1080/03008207.2021.1952193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM : Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, and clinically useful drugs for IDD are unavailable. Mechanical stress overload-induced fibrosis plays a critical role in IDD. RhoA/MRTF-A signaling is known to regulate tissue fibrosis; however, the effect of RhoA/MRTF-A on the development of IDD is unclear. MATERIALS AND METHODS : The expression of aggrecan, collagen I, collagen II, MMP-12, CTGF, and MRTF-A in nucleus pulposus (NP) samples from IDD patients and controls was detected by immunohistochemical staining. Primary nucleus pulposus cells (NPCs) were isolated and cultured to establish an overload strain model treated with or without CCG-1423. The protein levels of RhoA, ROCK2, MRTF-A, CTGF, and MMP-12 as well as fibrosis-associated proteins were detected by western blotting and immunofluorescence. RESULTS : Collagen I, MMP-12, and CTGF were significantly upregulated, and aggrecan and collagen II were significantly downregulated in the IDD samples. The cellular localization of MRTF-A was associated with intervertebral disc (IVD) degeneration. Overloaded strain enhanced the nuclear translocation of MRTF-A and changed the NPC morphology from spindle-shaped to long strips. Additional experiments showed that RhoA, ROCK2, MRTF-A, SRF, MMP-12, and CTGF were upregulated; however, aggrecan and collagen II were downregulated in NPCs under overload strain. CCG-1423, a RhoA/MRTF-A pathway inhibitor, reversed strain-induced fibrosis. CONCLUSION : Mechanical stress activates RhoA/MRTF-A signaling to promote extracellular matrix (ECM) degeneration in the NP, which is associated with the development of IDD. Our findings suggest that the RhoA/MRTF-A inhibitor CCG-1423 can alleviate NPC degeneration caused by overload stress and has potential as a therapeutic agent for IDD.
Collapse
Affiliation(s)
- Mengxiong Song
- Department of Orthopaedic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Yiran Zhang
- Shandong Institute of Orthopaedics and Traumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Sun
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Kong
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuo Han
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Derong Xu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qihao Tu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Zhu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Sun
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Li
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuexiao Ma
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
36
|
Takeuchi-Igarashi H, Tachibana T, Murakashi E, Kubota S, Numabe Y. Effect of cellular communication network factor 2/connective tissue growth factor on tube formation by endothelial cells derived from human periodontal ligaments. Arch Oral Biol 2021; 132:105279. [PMID: 34628139 DOI: 10.1016/j.archoralbio.2021.105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To clarify the role of cellular communication network factor 2/connective tissue growth factor (CCN2/CTGF) in periodontal tissue regeneration by investigating, the proliferative and tubulogenic responses of human endothelial cells obtained from the periodontal ligament to CCN2/CTGF. DESIGN Endothelial cells were seeded on agar gel medium with or without 50 ng/mL recombinant CCN2/CTGF (rCCN2/CTGF) and cultured for 6 h. Cells were morphologically and phenotypically analyzed by immunofluorescent microscopy. A colorimetric assay was used to evaluate cell proliferation, and transmission electron microscopy (TEM) was used for ultrastructural analysis. RESULTS The proliferation of endothelial cells was best promoted by rCCN2/CTGF at 50 ng/mL. In the control group, tube formation was not observed within 6 h. In contrast, endothelial cells seeded on the agar with 50 ng/mL rCCN2/CTGF clearly showed proliferation with network formation. Under a two-dimensional culture condition, a dense network of endothelial cells was not constructed on the plastic bottom. However, drastic morphological change was observed in the endothelial cells on the agar containing rCCN2/CTGF. The endothelial cells in the dense network were interconnected with each other and showed a tube-like structure. Tight junctions or adherens junctions were observed between the adjoining endothelial cells in the dense network. CONCLUSIONS CCN2/CTGF was found to promote the proliferation and tubulogenesis of endothelial cells from the periodontal ligament. These results suggest that CCN2/CTGF may contribute to the regeneration of damaged periodontal tissue by activating the remaining endothelial cells.
Collapse
Affiliation(s)
- Hiroko Takeuchi-Igarashi
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan; Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Etsuko Murakashi
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| | - Yukihiro Numabe
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| |
Collapse
|
37
|
Zhang L, Tan J, Liu YP, Liu X, Luo M. Curcumin relieves the arecoline-induced fibrosis of oral mucosal fibroblasts via inhibiting HIF-1α/TGF-β/CTGF signaling pathway: an in vitro study. Toxicol Res (Camb) 2021; 10:631-638. [PMID: 34141177 DOI: 10.1093/toxres/tfab046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Oral submacosal fibrosis (OSF) has been recognized as one of the oral potentially malignant disorders. Areca nut chewing is implicated in this pathological fibrosis. The current treatments for OSF have failed to achieve the desired curative effect. Here, we propose that curcumin has excellent therapeutic effect on OSF and explore its specific mechanism. Transwell assay was performed to detected cell migration. Flow cytometry was used to measured apoptosis. And MTT assay was performed to test cell viability. Gene and protein levels were detected by quantitative real-time polymerase chain reaction (qPCR) and western blotting. Our results displayed that curcumin treatment reduced fibrosis-related molecules (collagen type I alpha 1, collagen type III alpha 1, tissue inhibitor of metalloprotease 2) in arecoline-treated oral mucosal fibroblasts and elevated matrix metalloproteinase 2 expression. Additionally, curcumin could suppress cell proliferation and migration, and enhance the apoptosis of arecoline-treated normal oral mucosal fibroblasts. Most importantly, the hypoxia-inducible factor-1α (HIF-1α), transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) expressions in arecoline-treated normal oral mucosal fibroblasts were reduced after exposure to curcumin, whereas the activation of HIF-1α/TGF-β/CTGF axis reversed curcumin's effect on improving fibrosis of arecoline-treated normal oral mucosal fibroblasts. Therefore, curcumin alleviated oral submucosal fibrosis via inhibiting HIF-1α/TGF-β/CTGF axis. In summary, curcumin effectively inhibited the migration and proliferation and promoted apoptosis in arecoline-induced normal oral mucosal fibroblasts by inactivating HIF-1α/TGF-β/CTGF pathway. And curcumin might be a potential therapeutic drug for OSF treatment.
Collapse
Affiliation(s)
| | - Jin Tan
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, P.R. China
| | - Yi-Ping Liu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, P.R. China
| | - Xun Liu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, P.R. China
| | - Mang Luo
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, P.R. China
| |
Collapse
|
38
|
The Emerging Roles of CCN3 Protein in Immune-Related Diseases. Mediators Inflamm 2021; 2021:5576059. [PMID: 34393649 PMCID: PMC8356028 DOI: 10.1155/2021/5576059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/24/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
The CCN proteins are a family of extracellular matrix- (ECM-) associated proteins which currently consist of six secreted proteins (CCN1-6). CCN3 protein, also known as nephroblastoma overexpressed protein (NOV), is a member of the CCN family with multiple biological functions, implicated in major cellular processes such as cell growth, migration, and differentiation. Recently, CCN3 has emerged as a critical regulator in a variety of diseases, including immune-related diseases, including rheumatology arthritis, osteoarthritis, and systemic sclerosis. In this review, we will briefly introduce the structure and function of the CCN3 protein and summarize the roles of CCN3 in immune-related diseases, which is essential to understand the functions of the CCN3 in immune-related diseases.
Collapse
|
39
|
Wang Y, Chang T, Wu T, Ye W, Wang Y, Dou G, Du H, Hui Y, Guo C. Connective tissue growth factor promotes retinal pigment epithelium mesenchymal transition via the PI3K/AKT signaling pathway. Mol Med Rep 2021; 23:389. [PMID: 33760200 PMCID: PMC8008218 DOI: 10.3892/mmr.2021.12028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a disease leading to the formation of contractile preretinal membranes (PRMs) and is one of the leading causes of blindness. Connective tissue growth factor (CTGF) has been identified as a possible key determinant of progressive tissue fibrosis and excessive scarring. Therefore, the present study investigated the role and mechanism of action of CTGF in PVR. Immunohistochemical staining was performed to detect the expression of CTGF, fibronectin and collagen type III in PRMs from patients with PVR. The effects and mechanisms of recombinant human CTGF and its upstream regulator, TGF‑β1, on epithelial‑mesenchymal transition (EMT) and the synthesis of extracellular matrix (ECM) by retinal pigment epithelium (RPE) cells were investigated using reverse transcription‑quantitative PCR, western blotting and a [3H]proline incorporation assay. The data indicated that CTGF, fibronectin and collagen type III were highly expressed in PRMs. In vitro, CTGF significantly decreased the expression of the epithelial markers ZO‑1 and E‑cadherin and increased that of the mesenchymal markers fibronectin, N‑cadherin and α‑smooth muscle actin in a concentration‑dependent manner. Furthermore, the expression of the ECM protein collagen type III was upregulated by CTGF. However, the trends in expression for the above‑mentioned markers were reversed after knocking down CTGF. The incorporation of [3H]proline into RPE cells was also increased by CTGF. In addition, 8‑Bromoadenosine cAMP inhibited CTGF‑stimulated collagen synthesis and transient transfection of RPE cells with a CTGF antisense oligonucleotide inhibited TGF‑β1‑induced collagen synthesis. The phosphorylation of PI3K and AKT in RPE cells was promoted by CTGF and TGF‑β1 and the latter promoted the expression of CTGF. The results of the present study indicated that CTGF may promote EMT and ECM synthesis in PVR via the PI3K/AKT signaling pathway and suggested that targeting CTGF signaling may have a therapeutic or preventative effect on PVR.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianfang Chang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yusheng Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guorui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongjun Du
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yannian Hui
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Changmei Guo
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
40
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|
41
|
Kim H, Son S, Ko Y, Shin I. CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene 2021; 40:2667-2681. [PMID: 33692467 DOI: 10.1038/s41388-021-01731-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
Connective tissue growth factor (CTGF), also known as CCN2, is a member of the CCN protein family of secreted proteins with roles in diverse biological processes. CTGF regulates biological functions such as cell proliferation, migration, adhesion, wound healing, and angiogenesis. In this study, we demonstrate a mechanistic link between CTGF and enhanced aerobic glycolysis in triple-negative breast cancer (TNBC). We found that CTGF is overexpressed in TNBC and high CTGF expression is correlated with a poor prognosis. Also, CTGF was required for in vivo tumorigenesis and in vitro proliferation, migration, invasion, and adhesion of TNBC cells. Our results indicate that extracellular CTGF binds directly to integrin αvβ3, activating the FAK/Src/NF-κB p65 signaling axis, which results in transcriptional upregulation of Glut3. Neutralization of CTGF decreased cell proliferation, migration, and invasion through downregulation of Glut3-mediated glycolytic phenotypes. Overall, our work suggests a novel function for CTGF as a modulator of cancer metabolism, indicating that CTGF is a potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yunhyo Ko
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea. .,Natural Science Institute, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
42
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
43
|
Shah AM, Jain K, Desai RS, Bansal S, Shirsat P, Prasad P, Bodhankar K. The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and its Malignant Transformation-An Immunohistochemical Study. Head Neck Pathol 2021; 15:817-830. [PMID: 33544386 PMCID: PMC8384978 DOI: 10.1007/s12105-020-01270-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Connective tissue growth factor (CTGF), a matricellular protein of the CCN family of extracellular matrix-associated heparin-binding proteins, is highly expressed in various organ fibrosis and several malignant tumors. Although a few studies have been conducted using CTGF in oral submucous fibrosis (OSF) and oral squamous cell carcinoma, no study has demonstrated its relation with various stages of OSF and its malignant transformation. The present study investigated the possible role of CTGF in the pathogenesis of OSF and its malignant transformation by using immunohistochemistry. Ten formalin-fixed paraffin-embedded tissue blocks, each of Stage 1 OSF, Stage 2 OSF, Stage 3 OSF, Stage 4 OSF, well- differentiated squamous cell carcinoma (WDSCC) with OSF and WDSCC without OSF were stained for CTGF by immunohistochemistry. Ten cases of healthy buccal mucosa (NOM) were included as controls. The present study demonstrated a statistically significant expression of CTGF in the epithelium and connective tissue of OSF and WDSCC with and without OSF cases against its complete absence in NOM. We observed an upregulation of CTGF expression from NOM to various stages of OSF to WDSCC with or without OSF. A gradual upregulation of the CTGF expression in various stages of OSF to WDSCC (with and without OSF) against its complete absence in NOM suggests that CTGF plays an important role in the pathogenesis of OSF and its malignant transformation.
Collapse
Affiliation(s)
| | - Kejal Jain
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Rajiv S. Desai
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Shivani Bansal
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Pankaj Shirsat
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Pooja Prasad
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Kshitija Bodhankar
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| |
Collapse
|
44
|
Influence of microcurrent on the modulation of remodelling genes in a wound healing assay. Mol Biol Rep 2021; 48:1233-1241. [PMID: 33475929 DOI: 10.1007/s11033-021-06135-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
The literature has shown the beneficial effects of microcurrent (MC) therapy on tissue repair. We investigated if the application of MC at 10 μA/90 s could modulate the expression of remodeling genes transforming growth factor beta (Tgfb), connective tissue growth factor (Ctgf), insulin-like growth factor 1 (Igf1), tenascin C (Tnc), Fibronectin (Fn1), Scleraxis (Scx), Fibromodulin (Fmod) and tenomodulin in NIH/3T3 fibroblasts in a wound healing assay. The cell migration was analyzed between days 0 and 4 in both fibroblasts (F) and fibroblasts + MC (F+MC) groups. On the 4th day, cell viability and gene expression were also analyzed after daily MC application. Higher expression of Ctgf and lower expression of Tnc and Fmod, respectively, were observed in the F+MC group in relation to F group (p < 0.05), and no difference was observed between the groups for the genes Tgfb, Fn1 and Scx. In cell migration, a higher number of cells in the scratch region was observed in group F+MC (p < 0.05) compared to group F on the 4th day, and the cell viability assay showed no difference between the groups. In conclusion, MC therapy at an intensity/time of 10 μA/90 s with 4 daily applications did not affect cell viability, stimulated fibroblasts migration with the involvement of Ctgf, and reduced the Tnc and Fmod expression.
Collapse
|
45
|
Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 2020; 7:511-524. [PMID: 33358571 DOI: 10.1016/j.trecan.2020.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Despite the dramatic advances in cancer research over the decades, effective therapeutic strategies are still urgently needed. Increasing evidence indicates that connective tissue growth factor (CTGF), a multifunctional signaling modulator, promotes cancer initiation, progression, and metastasis by regulating cell proliferation, migration, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). CTGF is also involved in the tumor microenvironment in most of the nodes, including angiogenesis, inflammation, and cancer-associated fibroblast (CAF) activation. In this review, we comprehensively discuss the expression of CTGF and its regulation, oncogenic role, clinical relevance, targeting strategies, and therapeutic agents. Herein, we propose that CTGF is a promising cancer therapeutic target that could potentially improve the clinical outcomes of cancer patients.
Collapse
|
46
|
Sun C, Zhang H, Liu X. Emerging role of CCN family proteins in fibrosis. J Cell Physiol 2020; 236:4195-4206. [PMID: 33222181 DOI: 10.1002/jcp.30171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis is a common pathological change characterized by the excessive accumulation of fibrous connective tissue. Once uncontrolled, this pathological progress can lead to irreversible damage to the structure and function of organs, which is a serious threat to human health and life. Actually, the disability and death of patients caused by many chronic diseases have a closed relationship with fibrosis. The CCN protein family, including six members, is a small group of matrix proteins exhibiting structurally similar features. In the past 20 years, different biological functions of CCN proteins have been identified in various diseases. Of note, it has been recently shown that they are implicated in the key pathological process of fibrosis. In this review, we summarize the current status of knowledge regarding the role of CCN proteins involved in the pathogenesis of fibrosis diseases in detail. Furthermore, we highlight some of the underlying interaction mechanisms of CCN protein acting in fibrosis that helps to develop new drugs and determine appropriate clinical strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Zhang
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhui Liu
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Li H, Yang T, Fei Z. miR‑26a‑5p alleviates lipopolysaccharide‑induced acute lung injury by targeting the connective tissue growth factor. Mol Med Rep 2020; 23:5. [PMID: 33179083 PMCID: PMC7673325 DOI: 10.3892/mmr.2020.11643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the regulatory functions of microRNA (miR)‑26a‑5p on lipopolysaccharide (LPS)‑induced acute lung injury (ALI) and its molecular mechanisms. The role of miR‑26a‑5p on an ALI mouse model was evaluated by examining the histological changes, wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, malondialdehyde (MDA) expression levels in lung tissues and the survival of ALI mice. Moreover, the protein concentration and the number of neutrophils and lymphocytes in bronchoalveolar lavage fluid (BALF) was analyzed. To explore the effect of miR‑26a‑5p on inflammatory responses and apoptosis, the expression levels of tumour necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6 and apoptosis were measured by ELISA, terminal deoxynucleotidyl transferase‑mediated dUTP nick end labelling staining and flow cytometry in BALF, A549 cells and lung tissues. B‑cell lymphoma‑2 (Bcl‑2), Bax and cleaved caspase‑3 in lung tissues were measured by western blotting and reverse transcription‑quantitative PCR. Connective tissue growth factor (CTGF) was predicted as a direct target of miR‑26a‑5p using dual luciferase reporter assay. The present study sought to determine whether CTGF overexpression reversed the effect of miR‑26a‑5p on apoptosis and inflammatory responses in LPS‑induced A549 cells. The data revealed that miR‑26a‑5p overexpression ameliorated LPS‑induced ALI, which was implicated by fewer histopathological changes, W/D ratio, apoptosis in lung tissues and the survival of ALI mice. Moreover, miR‑26a‑5p overexpression alleviated LPS‑induced inflammatory responses in ALI mice via the reduction of total protein, neutrophil and lymphocyte counts and the expression levels of TNF‑α, IL‑1β, IL‑6, MDA and MPO activity in BALF. Similarly, miR‑26a‑5p overexpression decreased apoptosis and the expression of TNF‑α, IL‑1β and IL‑6 in LPS‑induced A549 cells. CTGF was a direct target of miR‑26a‑5p. CTGF overexpression reversed the effect of miR‑26a‑5p on cell apoptosis and inflammatory responses in LPS‑induced A549 cells. The present study demonstrated that miR‑26a‑5p could attenuate lung inflammation and apoptosis in LPS‑induced ALI by targeting CTGF.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Child Healthcare, Zibo Women & Children Hospital, Zibo, Shandong 255000, P.R. China
| | - Tingting Yang
- Department of Child Healthcare, Zibo Women & Children Hospital, Zibo, Shandong 255000, P.R. China
| | - Zhaoxia Fei
- General Internal Medicine, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
48
|
Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front Cell Dev Biol 2020; 8:593269. [PMID: 33195264 PMCID: PMC7658337 DOI: 10.3389/fcell.2020.593269] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule involved in different biological processes, such as cell proliferation, angiogenesis, and wound healing, as well as multiple pathologies, such as tumor development and tissue fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood, a commonly accepted theory is that the interactions between different protein domains in CTGF and other various regulatory proteins and ligands contribute to its variety of functions. Here, we highlight the structure of each domain of CTGF and its biology functions in physiological conditions. We further summarized main diseases that are deeply influenced by CTGF domains and the potential targets of these diseases. Finally, we address the advantages and disadvantages of current drugs targeting CTGF and provide the perspective for the drug discovery of the next generation of CTGF inhibitors based on aptamers.
Collapse
Affiliation(s)
- Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
49
|
Cardoso FDO, Zaverucha-do-Valle T, Almeida-Souza F, Abreu-Silva AL, Calabrese KDS. Modulation of Cytokines and Extracellular Matrix Proteins Expression by Leishmania amazonensis in Susceptible and Resistant Mice. Front Microbiol 2020; 11:1986. [PMID: 32983013 PMCID: PMC7487551 DOI: 10.3389/fmicb.2020.01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Leishmaniases are a complex of diseases with a broad spectrum of clinical forms, which depend on the parasite species, immunological status, and genetic background of the host. In the Leishmania major model, susceptibility is associated with the Th2 pattern of cytokines production, while resistance is associated with Th1 response. However, the same dichotomy does not occur in L. amazonensis-infected mice. Cytokines are key players in these diseases progression, while the extracellular matrix (ECM) components participate in the process of parasite invasion as well as lesion healing. In this article, we analyzed the influence of host genetics on the expression of cytokines, inducible nitric oxide synthase (iNOS), and ECM proteins, as well as the parasite load in mice with different genetic backgrounds infected by L. amazonensis. C57BL/10 and C3H/He mice were subcutaneously infected with 106L. amazonensis promastigotes. Lesion kinetics, parasite load, cytokines, iNOS, and ECM proteins expression were measured by quantitative PCR (qPCR) in the footpad, draining lymph nodes, liver, and spleen at early (24 h and 30 days) and late phase (120 and 180 days) of infection. Analysis of lesion kinetics showed that C57BL/10 mice developed ulcerative lesions at the inoculation site after L. amazonensis infection, while C3H/He showed slight swelling in the footpad 180 days after infection. C57BL/10 showed progressive enhancement of parasite load in all analyzed organs, while C3H/He mice showed extremely low parasite loads. Susceptible C57BL/10 mice showed high levels of TGF-β mRNA in the footpad early in infection and high levels of proinflammatory cytokines mRNA (IL-12, TNF-α, and IFN-γ) and iNOS in the late phase of the infection. There is an association between increased expression of fibronectin, laminin, collagen III and IV, and TGF-β. On the other hand, resistant C3H/He mice presented a lower repertory of cytokines mRNA expression when compared with susceptible C57BL/10 mice, basically producing TNF-α, collagen IV, and laminin early in infection. The findings of our study indicate that L. amazonensis infection induces different cytokine expression in resistant and susceptible mice but not like the L. major model. An organ-compartmentalized cytokine response was observed in our model. Host genetics determine this response, which modulates ECM proteins expression.
Collapse
Affiliation(s)
- Flávia de Oliveira Cardoso
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tânia Zaverucha-do-Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Souza
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, São Luís, Brazil
| | - Ana Lúcia Abreu-Silva
- Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, São Luís, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
A novel peptide binding to the C-terminal domain of connective tissue growth factor for the treatment of bleomycin-induced pulmonary fibrosis. Int J Biol Macromol 2020; 156:1464-1473. [DOI: 10.1016/j.ijbiomac.2019.11.192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/31/2019] [Accepted: 11/23/2019] [Indexed: 11/20/2022]
|