1
|
Zhou Z, Mao X, Jiang C, Li W, Zhou T, Liu M, Sun S, Wang M, Dong N, Wu Q, Zhou H. Deficiencies in corin and atrial natriuretic peptide-mediated signaling impair endochondral ossification in bone development. Commun Biol 2024; 7:1380. [PMID: 39443661 PMCID: PMC11500007 DOI: 10.1038/s42003-024-07077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Corin is a protease that activates atrial natriuretic peptide (ANP), a hormone in cardiovascular homeostasis. Structurally, ANP is similar to C-type natriuretic peptide (CNP) crucial in bone development. Here, we examine the role of corin and ANP in chondrocyte differentiation and bone formation. We show that in Corin and Nppa (encoding ANP) knockout (KO) mice, chondrocyte differentiation is impaired, resulting in shortened limb long bones. In adult mice, Corin and Nppa deficiency impairs bone density and microarchitecture. Molecular studies in cartilages from newborn Corin and Nppa KO mice and in cultured chondrocytes indicate that corin and ANP act in chondrocytes via cGMP-dependent protein kinase G signaling to inhibit mitogen-activated protein kinase phosphorylation and stimulate glycogen synthase kinase-3β phosphorylation and β-catenin upregulation. These results indicate that corin and ANP signaling regulates chondrocyte differentiation in bone development and homeostasis, suggesting that enhancing ANP signaling may improve bone quality in patients with osteoporosis.
Collapse
Affiliation(s)
- Zibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaoyu Mao
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Chun Jiang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Haibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Lin TH, Wang HC, Tseng YL, Yeh ML. A bioactive composite scaffold enhances osteochondral repair by using thermosensitive chitosan hydrogel and endothelial lineage cell-derived chondrogenic cell. Mater Today Bio 2024; 28:101174. [PMID: 39211289 PMCID: PMC11357856 DOI: 10.1016/j.mtbio.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Articular cartilage regeneration is a major challenge in orthopedic medicine. Endothelial progenitor cells (EPCs) are a promising cell source for regenerative medicine applications. However, their roles and functions in cartilage regeneration are not well understood. Additionally, thermosensitive chitosan hydrogels have been widely used in tissue engineering, but further development of these hydrogels incorporating vascular lineage cells for cartilage repair is insufficient. Thus, this study aimed to characterize the ability of EPCs to undergo endothelial-mesenchymal stem cell transdifferentiation and chondrogenic differentiation and investigate the ability of chondrogenic EPC-seeded thermosensitive chitosan-graft-poly (N-isopropylacrylamide) (CEPC-CSPN) scaffolds to improve healing in a rabbit osteochondral defect (OCD) model. EPCs were isolated and endothelial-to-mesenchymal transition (EndMT) was induced by transforming growth factor-β1 (TGF-β1); these EPCs are subsequently termed transdifferentiated EPCs (tEPCs). The stem cell-like properties and chondrogenic potential of tEPCs were evaluated by a series of in vitro assays. Furthermore, the effect of CEPC-CSPN scaffolds on OCD repair was evaluated. Our in vitro results confirmed that treatment of EPC with TGF-β1 induced EndMT and the acquisition of stem cell-like properties, producing tEPCs. Upon inducing chondrogenic differentiation of tEPCs (CEPCs), the cells exhibited significantly enhanced chondrogenesis and chondrocyte surface markers after 25 days. The TGF-β1-induced differentiation of EPCs is mediated by both the TGF-β/Smad and extracellular signal-regulated kinase (Erk) pathways. The CEPC-CSPN scaffold reconstructed well-integrated translucent cartilage and repaired subchondral bone in vivo, exhibiting regenerative capacity. Collectively, our results suggest that the CEPC-CSPN scaffold induces OCD repair, representing a promising approach to articular cartilage regeneration.
Collapse
Affiliation(s)
- Tzu-Hsiang Lin
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Medical Imaging Center, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Yau-Lin Tseng
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Medical Imaging Center, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Innovation Headquarters, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| |
Collapse
|
3
|
Komiya H, Sato Y, Kimura H, Kawakami A. Independent mesenchymal progenitor pools respectively produce and maintain osteogenic and chondrogenic cells in zebrafish. Dev Growth Differ 2024; 66:161-171. [PMID: 38193362 PMCID: PMC11457501 DOI: 10.1111/dgd.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Skeletal tissues including cartilage and bones are characteristic features of vertebrates that are crucial for supporting body morphology and locomotion. Studies mainly in mice have shown that osteoblasts and chondroblasts are supplied from several progenitors like the sclerotome cells in the embryonic stage, osteo-chondroprogenitors in growing long bones, and skeletal stem cells of bone marrow in the postnatal period. However, the exact origins of progenitor cells, their lineage relationships, and their potential to differentiate into osteoblasts and chondroblasts from embryos to adult tissues are not well understood. In this study, we conducted clonal cell tracking in zebrafish and showed that sox9a+ cells are already committed to either chondrogenic or osteogenic fates during embryonic stages and that respective progenies are independently maintained as mesenchymal progenitor pools. Once committed, they never change their lineage identities throughout animal life, even through regeneration. In addition, we further revealed that only osteogenic mesenchymal cells replenish the osteoblast progenitor cells (OPCs), a population of reserved tissue stem cells found to be involved in the de novo production of osteoblasts during regeneration and homeostasis in zebrafish. Thus, our clonal cell tracking study in zebrafish firstly revealed that the mesenchymal progenitor cells that are fated to develop into either chondroblasts or osteoblasts serve as respective tissue stem cells to maintain skeletal tissue homeostasis. Such mesenchymal progenitors dedicated to producing either chondroblasts or osteoblasts would be important targets for skeletal tissue regeneration.
Collapse
Grants
- 19K22417 Japan Society for the Promotion of Science
- 22K19306 Japan Society for the Promotion of Science
- 21H04764 Ministry of Education, Culture, Sports, Science, and Technology
- JP23ama121020 Japan Agency for Medical Research and Development
- 19H03232 Ministry of Education, Culture, Sports, Science and Technology
- Japan Society for the Promotion of Science
- Japan Agency for Medical Research and Development
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Hiroaki Komiya
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Yuko Sato
- Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| | - Hiroshi Kimura
- Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
4
|
Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A, Brizuela L, Corti G, Collacchi F, Anghieri G, Magrini A, Ciancaglini P, Millan JL, Davies O, Bottini M. Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles? Biomolecules 2023; 14:42. [PMID: 38254642 PMCID: PMC10813234 DOI: 10.3390/biom14010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.
Collapse
Affiliation(s)
- Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Rene Buchet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Federica Collacchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Genevieve Anghieri
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| | - Owen Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| |
Collapse
|
5
|
Jeyachandran D, Murshed M, Haglund L, Cerruti M. A Bioglass-Poly(lactic-co-glycolic Acid) Scaffold@Fibrin Hydrogel Construct to Support Endochondral Bone Formation. Adv Healthc Mater 2023; 12:e2300211. [PMID: 37462089 PMCID: PMC11468889 DOI: 10.1002/adhm.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Bone tissue engineering using stem cells to build bone directly on a scaffold matrix often fails due to lack of oxygen at the injury site. This may be avoided by following the endochondral ossification route; herein, a cartilage template is promoted first, which can survive hypoxic environments, followed by its hypertrophy and ossification. However, hypertrophy is so far only achieved using biological factors. This work introduces a Bioglass-Poly(lactic-co-glycolic acid@fibrin (Bg-PLGA@fibrin) construct where a fibrin hydrogel infiltrates and encapsulates a porous Bg-PLGA. The hypothesis is that mesenchymal stem cells (MSCs) loaded in the fibrin gel and induced into chondrogenesis degrade the gel and become hypertrophic upon reaching the stiffer, bioactive Bg-PLGA core, without external induction factors. Results show that Bg-PLGA@fibrin induces hypertrophy, as well as matrix mineralization and osteogenesis; it also promotes a change in morphology of the MSCs at the gel/scaffold interface, possibly a sign of osteoblast-like differentiation of hypertrophic chondrocytes. Thus, the Bg-PLGA@fibrin construct can sequentially support the different phases of endochondral ossification purely based on material cues. This may facilitate clinical translation by decreasing in-vitro cell culture time pre-implantation and the complexity associated with the use of external induction factors.
Collapse
Affiliation(s)
| | - Monzur Murshed
- Faculty of DentistryDepartment of Medicineand Shriners Hospital for ChildrenMcGill UniversityMontrealQuebecH4A 0A9Canada
| | - Lisbet Haglund
- Experimental SurgeryMcGill UniversityMontrealH3G 2M1Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill UniversityMontrealH3A 0C1Canada
| |
Collapse
|
6
|
Cancedda R, Mastrogiacomo M. Transit Amplifying Cells (TACs): a still not fully understood cell population. Front Bioeng Biotechnol 2023; 11:1189225. [PMID: 37229487 PMCID: PMC10203484 DOI: 10.3389/fbioe.2023.1189225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Maintenance of tissue homeostasis and tissue regeneration after an insult are essential functions of adult stem cells (SCs). In adult tissues, SCs proliferate at a very slow rate within "stem cell niches", but, during tissue development and regeneration, before giving rise to differentiated cells, they give rise to multipotent and highly proliferative cells, known as transit-amplifying cells (TACs). Although differences exist in diverse tissues, TACs are not only a transitory phase from SCs to post-mitotic cells, but they also actively control proliferation and number of their ancestor SCs and proliferation and differentiation of their progeny toward tissue specific functional cells. Autocrine signals and negative and positive feedback and feedforward paracrine signals play a major role in these controls. In the present review we will consider the generation and the role played by TACs during development and regeneration of lining epithelia characterized by a high turnover including epidermis and hair follicles, ocular epithelial surfaces, and intestinal mucosa. A comparison between these different tissues will be made. There are some genes and molecular pathways whose expression and activation are common to most TACs regardless their tissue of origin. These include, among others, Wnt, Notch, Hedgehog and BMP pathways. However, the response to these molecular signals can vary in TACs of different tissues. Secondly, we will consider cultured cells derived from tissues of mesodermal origin and widely adopted for cell therapy treatments. These include mesenchymal stem cells and dedifferentiated chondrocytes. The possible correlation between cell dedifferentiation and reversion to a transit amplifying cell stage will be discussed.
Collapse
Affiliation(s)
- Ranieri Cancedda
- Emeritus Professor, Università degli Studi di Genova, Genoa, Italy
| | - Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università Degli Studi di Genova, Genova, Italy
| |
Collapse
|
7
|
Yue H, Tian Y, Feng X, Bo Y, Xue C, Dong P, Wang J. Novel Peptides Derived from Sea Cucumber Intestine Promotes Osteogenesis by Upregulating Integrin-Mediated Transdifferentiation of Growth Plate Chondrocytes to Osteoblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13212-13222. [PMID: 36205515 DOI: 10.1021/acs.jafc.2c03458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sea cucumber intestine is a major by-product of sea cucumber processing and contains high levels of protein. In this study, we isolated and identified 28 novel osteogenic peptides from sea cucumber intestinal hydrolysis by the activity-tracking method for the first time. In vitro experimental results showed that compared with high molecular weight, the peptides from sea cucumber intestine (SCIP) with molecular weight <3 kDa more significantly promoted the proliferation and mineralized nodules of MC3T3-E1 cell and exhibited potential integrin binding capacity. In vivo experimental results showed that the SCIP supplement significantly increased the longitudinal bone length and elevated the height of the growth plate (especially the hypertrophic zone, 37.2%, p < 0.01) in adolescent mice. Further, immunofluorescence labeling results indicated that the SCIP supplement increased chondrocyte transdifferentiate to osteoblast in the growth plate close to the diaphysis. Mechanistically, transcriptome analysis revealed that the SCIP supplement induced the dedifferentiation of chondrocyte to osteoprogenitor cell via integrin-mediated histone acetylation and then redifferentiated to osteoblast via integrin-mediated Wnt/β-catenin signaling. These results reported for the first time that sea cucumber intestine had the potential to develop into a dietary supplement for promoting osteogenic, and provide new evidence for the mechanism of dietary promotes chondrocyte to osteoblast transdifferentiation.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071 Shandong, China
| | - Xiaoxuan Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Yuying Bo
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 Shandong Province, P.R. China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong, China
| |
Collapse
|
8
|
De Kinderen P, Meester J, Loeys B, Peeters S, Gouze E, Woods S, Mortier G, Verstraeten A. Differentiation of Induced Pluripotent Stem Cells Into Chondrocytes: Methods and Applications for Disease Modeling and Drug Discovery. J Bone Miner Res 2022; 37:397-410. [PMID: 35124831 DOI: 10.1002/jbmr.4524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology allows pathomechanistic and therapeutic investigation of human heritable disorders affecting tissue types whose collection from patients is difficult or even impossible. Among them are cartilage diseases. Over the past decade, iPSC-chondrocyte disease models have been shown to exhibit several key aspects of known disease mechanisms. Concurrently, an increasing number of protocols to differentiate iPSCs into chondrocytes have been published, each with its respective (dis)advantages. In this review we provide a comprehensive overview of the different differentiation approaches, the hitherto described iPSC-chondrocyte disease models and mechanistic and/or therapeutic insights that have been derived from their investigation, and the current model limitations. Key lessons are that the most appropriate differentiation approach is dependent upon the cartilage disease under investigation and that further optimization is still required to recapitulate the in vivo cartilage. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Pauline De Kinderen
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Josephina Meester
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Elvire Gouze
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Geert Mortier
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
9
|
Tschaffon MEA, Reber SO, Schoppa A, Nandi S, Cirstea IC, Aszodi A, Ignatius A, Haffner-Luntzer M. A novel in vitro assay to study chondrocyte-to-osteoblast transdifferentiation. Endocrine 2022; 75:266-275. [PMID: 34529238 PMCID: PMC8763722 DOI: 10.1007/s12020-021-02853-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Endochondral ossification, which involves transdifferentiation of chondrocytes into osteoblasts, is an important process involved in the development and postnatal growth of most vertebrate bones as well as in bone fracture healing. To study the basic molecular mechanisms of this process, a robust and easy-to-use in vitro model is desirable. Therefore, we aimed to develop a standardized in vitro assay for the transdifferentiation of chondrogenic cells towards the osteogenic lineage. METHODS Murine chondrogenic ATDC5 cells were differentiated into the chondrogenic lineage for seven days and subsequently differentiated towards the osteogenic direction. Gene expression analysis of pluripotency, as well as chondrogenic and osteogenic markers, cell-matrix staining, and immunofluorescent staining, were performed to assess the differentiation. In addition, the effects of Wnt3a and lipopolysaccharides (LPS) on the transdifferentiation were tested by their addition to the osteogenic differentiation medium. RESULTS Following osteogenic differentiation, chondrogenically pe-differentiated cells displayed the expression of pluripotency and osteogenic marker genes as well as alkaline phosphatase activity and a mineralized matrix. Co-expression of Col2a1 and Col1a1 after one day of osteogenic differentiation indicated that osteogenic cells had differentiated from chondrogenic cells. Wnt3a increased and LPS decreased transdifferentiation towards the osteogenic lineage. CONCLUSION We successfully established a rapid, standardized in vitro assay for the transdifferentiation of chondrogenic cells into osteogenic cells, which is suitable for testing the effects of different compounds on this cellular process.
Collapse
Affiliation(s)
- Miriam E A Tschaffon
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Ion C Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Attila Aszodi
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Klinikum der Universität München, Martinsried, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
10
|
Zhang T, Tian Y, Wang Q, Fu M, Xue C, Wang J. Comparative Study of DHA with Different Molecular Forms for Ameliorating Osteoporosis by Promoting Chondrocyte-to-Osteoblast Transdifferentiation in the Growth Plate of Ovariectomized Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10562-10571. [PMID: 34464107 DOI: 10.1021/acs.jafc.1c03228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Osteoblasts play a key role in bone remodeling. Recent studies have reported that some hypertrophic chondrocytes co-expressing collagen I(Col I) and collagen X (ColX) could directly transdifferentiate into osteoblasts during endochondral ossification. However, whether nutrition intervention is beneficial to this transformation to improve osteoporosis (OP) remains unknown. In this study, ovariectomy (OVX)-induced OP mice were orally administered with docosahexaenoic acid (DHA) in different molecular forms for 13 weeks. The results showed that both DHA-triglyceride (DHA-TG) and DHA-phosphatidylcholine (DHA-PC) increased the bone mineral density and bone mineral apposition rate in ovariectomized mice, while DHA-ethyl esters (DHA-EE) had little effect. Interestingly, we found that both DHA-PC and DHA-TG increased the height of the growth plate, mainly increasing the number of hypertrophic chondrocytes. Further investigation by simultaneously labeling ColX and ColI indicated that DHA-PC and DHA-TG promoted the number of chondrocyte-transdifferentiated osteoblasts in the growth plate close to the diaphysis, in which DHA-PC performed better than DHA-TG. Apoptosis was not the only fate of hypertrophic chondrocytes. Western blot results showed that both DHA-TG and DHA-PC downregulated the Bax and cleaved-caspase3 expression and upregulated Bcl-2 expression in the growth plate, suggesting that chondrocyte apoptosis is inhibited. Runx2, the key regulator of chondrocyte-to-osteoblast transdifferentiation, was significantly increased by DHA-TG and DHA-PC, while DHA-EE had no effect on the above indicators. To our best knowledge, this is the first report that both DHA-PC and DHA-TG enhanced bone formation via promoting the chondrocyte-to-osteoblast transdifferentiation in the growth plate, contributing to the amelioration of OP. These activities depend on the molecular forms of DHA and their bioavailabilities. Our results provide guidance for the application of fish oil for bone health.
Collapse
Affiliation(s)
- Tianqi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, Shandong, China
| | - Qinghui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Meng Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| |
Collapse
|
11
|
Cai X, Daniels O, Cucchiarini M, Madry H. Ectopic models recapitulating morphological and functional features of articular cartilage. Ann Anat 2021; 237:151721. [PMID: 33753232 DOI: 10.1016/j.aanat.2021.151721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Articular cartilage is an extremely specialized connective tissue which covers all diarthrodial joints. Implantation of chondrogenic cells without or with additional biomaterial scaffolds in ectopic locationsin vivo generates substitutes of cartilage with structural and functional characteristics that are used in fundamental investigations while also serving as a basis for translational studies. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant ectopic models, among which subcutaneous, intramuscular, and kidney capsule transplantation and elaborates on implanted cells and biomaterial scaffolds and on their use to recapitulate morphological and functional features of articular cartilage. Although the absence of a physiological joint environment and biomechanical stimuli is the major limiting factor, ectopic models are an established component for articular cartilage research aiming to generate a bridge between in vitro data and the clinically more relevant translational orthotopic in vivo models when their limitations are considered.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Oliver Daniels
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
12
|
Biochemical and histopathologic assessment of effects of acitretin on epiphyseal growth plate in rats. Postepy Dermatol Alergol 2020; 37:346-352. [PMID: 32792874 PMCID: PMC7394155 DOI: 10.5114/ada.2020.95983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022] Open
Abstract
Introduction Acitretin is a commonly used retinoid in dermatology. Although there are generally known side effects, the effects on the epiphyseal plaque and bone metabolism are not clear in the literature. Aim To histopathologically investigate the effects on the epiphyseal plate and assess variations in bone metabolism caused by acitretin. Material and methods Three groups were formed with 10 rats in each group. The 1st group (n = 10, 5 male, 5 female) were administered 10 mg/kg/day oral acitretin solution and the 2nd group (n = 10, 5 male, 5 female) were administered 3 mg/kg/day oral acitretin solution. The control group were given normal standard feed and water. Rats were sacrificed at the end of 4 weeks. The proximal tibias were excised and histopathologically and immunohistochemically assessed. Biochemical assessment was also carried out. Results Staining with haematoxylin-eosin found reductions in the epiphyseal plate in the 1st and 2nd group compared to the control group, though this situation was not statistically significant. Immunohistochemical studies did not encounter Type II collagen in the epiphyseal bone, proliferative zone and hypertrophic zone in the control group, low dose acitretin solution group and high dose acitretin solution group. Type II collagen was not observed in osteoids and osteoblasts. Type I collagen was not observed in the hypertrophic zone and proliferative zone of any group. Conclusions Our data show that though acitretin caused degeneration of the epiphyseal plate, it did not cause clear thinning and we identified no significant variations in bone metabolism markers.
Collapse
|
13
|
Jing Y, Wang Z, Li H, Ma C, Feng J. Chondrogenesis Defines Future Skeletal Patterns Via Cell Transdifferentiation from Chondrocytes to Bone Cells. Curr Osteoporos Rep 2020; 18:199-209. [PMID: 32219639 PMCID: PMC7717675 DOI: 10.1007/s11914-020-00586-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to obtain a better understanding of how chondrogenesis defines skeletal development via cell transdifferentiation from chondrocytes to bone cells. RECENT FINDINGS A breakthrough in cell lineage tracing allows bone biologists to trace the cell fate and demonstrate that hypertrophic chondrocytes can directly transdifferentiate into bone cells during endochondral bone formation. However, there is a knowledge gap for the biological significance of this lineage extension and the mechanisms controlling this process. This review first introduces the history of the debate on the cell fate of chondrocytes in endochondral bone formation; then summarizes key findings obtained in recent years, which strongly support a new theory: the direct cell transdifferentiation from chondrocytes to bone cells precisely connects chondrogenesis (for providing a template of the future skeleton, classified as phase I) and osteogenesis (for finishing skeletal construction, or phase II) in a continuous lineage-linked process of endochondral bone formation and limb elongation; and finally outlines nutrition factors and molecules that regulate the cell transdifferentiation process during the relay from chondrogenesis to osteogenesis.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, , West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chi Ma
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Jian Feng
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| |
Collapse
|
14
|
Miura Y, Kanazawa S. Osteochondrogenesis derived from synovial fibroblasts in inflammatory arthritis model. Inflamm Regen 2020; 40:7. [PMID: 32377275 PMCID: PMC7193371 DOI: 10.1186/s41232-020-00115-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic joint inflammation, which forms pannus with bone destruction. Bony ankylosis is also observed following inflammation; however, the mechanism behind this aberrant bone formation in RA had remained unclear. Based on our recent findings obtained using a novel arthritis model called D1BC mouse, we found that synovial fibroblasts in pannus consist of at least three different populations with the osteochondrogenic lineage being predominant. We also found endochondral ossification like that in embryonic bone development adjacent to invasive synovial fibroblasts. Such ectopic endochondral ossification leads to the failure of bone repair and results in ankylosis. In this review, we describe the character of synovial fibroblasts toward the osteochondrogenic lineage and ectopic endochondral ossification in an inflammatory arthritis mouse model.
Collapse
Affiliation(s)
- Yoko Miura
- Department of Neurodeveopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 Japan
| | - Satoshi Kanazawa
- Department of Neurodeveopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 Japan
| |
Collapse
|
15
|
Spieker J, Frieß JL, Sperling L, Thangaraj G, Vogel-Höpker A, Layer PG. Cholinergic control of bone development and beyond. Int Immunopharmacol 2020; 83:106405. [PMID: 32208165 DOI: 10.1016/j.intimp.2020.106405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
There is ample evidence that cholinergic actions affect the health status of bones in vertebrates including man. Nicotine smoking, but also exposure to pesticides or medical drugs point to the significance of cholinergic effects on bone status, as reviewed here in Introduction. Then, we outline processes of endochondral ossification, and review respective cholinergic actions. In Results, we briefly summarize our in vivo and in vitro studies on bone development of chick and mouse [1,2], including (i) expressions of cholinergic components (AChE, BChE, ChAT) in chick embryo, (ii) characterisation of defects during skeletogenesis in prenatal ChE knockout mice, (iii) loss-of-function experiments with beads soaked in cholinergic components and implanted into chicken limb buds, and finally (iv) we use an in vitro mesenchymal 3D-micromass model that mimics cartilage and bone formation, which also had revealed complex crosstalks between cholinergic, radiation and inflammatory mechanisms [3]. In Discussion, we evaluate non-cholinergic actions of cholinesterases during bone formation by considering: (i) how cholinesterases could function in adhesive mechanisms; (ii) whether and how cholinesterases can form bone-regulatory complexes with alkaline phosphatase (ALP) and/or ECM components, which could regulate cell division, migration and adhesion. We conclude that cholinergic actions in bone development are driven mainly by classic cholinergic, but non-neural cycles (e.g., by acetylcholine); in addition, both cholinesterases can exert distinct ACh-independent roles. Considering their tremendous medical impact, these results bring forward novel research directions that deserve to be pursued.
Collapse
Affiliation(s)
- Janine Spieker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Johannes L Frieß
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Laura Sperling
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Gopenath Thangaraj
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Astrid Vogel-Höpker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Paul G Layer
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany.
| |
Collapse
|
16
|
Pazzaglia UE, Reguzzoni M, Casati L, Sibilia V, Zarattini G, Raspanti M. New morphological evidence of the 'fate' of growth plate hypertrophic chondrocytes in the general context of endochondral ossification. J Anat 2020; 236:305-316. [PMID: 31820452 PMCID: PMC6956435 DOI: 10.1111/joa.13100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 01/10/2023] Open
Abstract
The 'fate' of growth plate hypertrophic chondrocytes has been long debated with two opposing theories: cell apoptosis or survival with transformation into osteogenic cells. This study was carried out on the proximal tibial growth plate of rabbits using light microscopy, scanning and transmission electron microscopy. We focused particularly on the orientation of the specimens included in order to define the mineral deposition and the vascular invasion lines and obtain histological and ultrastructural images at the corresponding height of the plate. Chondrocyte morphology transformation through the maturation process (characterized by vesicles and then large cytoplasmic lacunae before condensation, fragmentation and disappearance of the nuclear chromatin) did not correspond to that observed in the 'in vitro' apoptosis models. These findings rather suggested the passage of free water from the cartilage matrix into a still live cell (swelling). The level of these changes suggested a close relationship with the mineral deposition line. Furthermore, the study provided evidence that the metaphyseal capillaries could advance inside the columns of stacked hypertrophic chondrocytes (delimited by the intercolumnar septa) without the need for calcified matrix resorption because the thin transverse septa between the stacked chondrocyte (below the mineral deposition line) were not calcified. The zonal distribution of cell types (hypertrophic chondrocytes, osteoblasts, osteoclasts and macrophages) did not reveal osteoclasts or chondroclasts at this level. Morphological and morphometric analysis recorded globular masses of an amorphous, necrotic material in a zone 0-70 μm below the vascular invasion line occasionally surrounded by a membrane (indicated as 'hypertrophic chondrocyte ghosts'). These masses and the same material not bound by a membrane were surrounded by a large number of macrophages and other blood cell precursors, suggesting this could be the cause of macrophage recall and activation. The most recent hypotheses based on genetic and lineage tracing studies stating that hypertrophic chondrocytes can survive and transform into osteoblasts and osteocytes (trans-differentiation) were not confirmed by the ultrastructural morphology or by the zonal comparative counting and distribution of cell types below the vascular invasion line.
Collapse
Affiliation(s)
| | | | - Lavinia Casati
- BIOMETRADepartment of Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Valeria Sibilia
- BIOMETRADepartment of Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The goal of the review is to summarize the current knowledge on the process of chondrocyte-to-osteoblast transdifferentiation during endochondral bone formation and its potential implications in fracture healing and disease. RECENT FINDINGS Lineage tracing experiments confirmed the transdifferentiation of chondrocytes into osteoblasts. More recent studies lead to the discovery of molecules involved in this process, as well as to the hypothesis that these cells may re-enter a stem cell-like phase prior to their osteoblastic differentiation. This review recapitulates the current knowledge regarding chondrocyte transdifferentiating into osteoblasts, the developmental and postnatal events where transdifferentiation appears to be relevant, and the molecules implicated in this process.
Collapse
Affiliation(s)
- Lena Ingeborg Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University Münster, Munster, Germany
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University Münster, Munster, Germany.
| |
Collapse
|
18
|
Ahmed MF, El-Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y, Li B. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 2019; 17:4154-4166. [PMID: 30988793 PMCID: PMC6447915 DOI: 10.3892/etm.2019.7414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
The use of bone marrow mesenchymal stem cells (BMSCs) has great potential in cell therapy, particularly in the orthopedic field. BMSCs represent a valuable renewable cell source that have been successfully utilized to treat damaged skeletal tissue and bone defects. BMSCs can be induced to differentiate into osteogenic lineages via the addition of inducers to the growth medium. The present study examined the effects of all-trans retinoic acid (ATRA) and curcumin on the osteogenic differentiation of mouse BMSCs. Morphological changes, the expression levels of the bone-associated gene markers bone morphogenetic protein 2, runt-related transcription factor and osterix during differentiation, an in vitro mineralization assay, and changes in osteocalcin expression revealed that curcumin supplementation promoted the osteogenic differentiation of BMSCs. By contrast, the application of ATRA increased osteogenic differentiation during the early stages, but during the later stages, it decreased the mineralization of differentiated cells. In addition, to the best of our knowledge, the present study is the first to examine the effect of curcumin on the osteogenic potency of mouse embryonic fibroblasts (MEFs) after reprogramming with human lim mineralization protein (hLMP-3), which is a positive osteogenic regulator. The results revealed that curcumin-supplemented culture medium increased hLMP-3 osteogenic potency compared with that of MEFs cultured in the non-supplemented medium. The present results demonstrate that enrichment of the osteogenic culture medium with curcumin, a natural osteogenic inducer, increased the osteogenic differentiation capacity of BMSCs as well as that of MEFs reprogrammed with hLMP-3.
Collapse
Affiliation(s)
- Mahmoud F Ahmed
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Mohamed S Yusuf
- College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yani Zhang
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
19
|
Weiss-Bilka HE, Brill JA, Ravosa MJ. Non-sutural basicranium-derived cells undergo a unique mineralization pathway via a cartilage intermediate in vitro. PeerJ 2018; 6:e5757. [PMID: 30386695 PMCID: PMC6202976 DOI: 10.7717/peerj.5757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/14/2018] [Indexed: 11/20/2022] Open
Abstract
The basicranium serves as a key interface in the mammalian skull, interacting with the calvarium, facial skeleton and vertebral column. Despite its critical function, little is known about basicranial bone formation, particularly on a cellular level. The goal of this study was therefore to cultivate a better understanding of basicranial development by isolating and characterizing the osteogenic potential of cells from the neonatal murine cranial base. Osteoblast-like basicranial cells were isolated, seeded in multicellular aggregates (designated micromasses), and cultured in osteogenic medium in the presence or absence of bone morphogenetic protein-6 (BMP6). A minimal osteogenic response was observed in control osteogenic medium, while BMP6 treatment induced a chondrogenic response followed by up-regulation of osteogenic markers and extensive mineralization. This response appears to be distinct from prior analyses of the calvarium and long bones, as basicranial cells did not mineralize under standard osteogenic conditions, but rather required BMP6 to stimulate mineralization, which occurred via an endochondral-like process. These findings suggest that this site may be unique compared to other cranial elements as well as the limb skeleton, and we propose that the distinct characteristics of these cells may be a function of the distinct properties of the basicranium: endochondral ossification, dual embryology, and complex loading environment.
Collapse
Affiliation(s)
- Holly E. Weiss-Bilka
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Justin A. Brill
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Matthew J. Ravosa
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
20
|
Javaheri B, Caetano-Silva SP, Kanakis I, Bou-Gharios G, Pitsillides AA. The Chondro-Osseous Continuum: Is It Possible to Unlock the Potential Assigned Within? Front Bioeng Biotechnol 2018; 6:28. [PMID: 29619368 PMCID: PMC5871702 DOI: 10.3389/fbioe.2018.00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 01/08/2023] Open
Abstract
Endochondral ossification (EO), by which long bones of the axial skeleton form, is a tightly regulated process involving chondrocyte maturation with successive stages of proliferation, maturation, and hypertrophy, accompanied by cartilage matrix synthesis, calcification, and angiogenesis, followed by osteoblast-mediated ossification. This developmental sequence reappears during fracture repair and in osteoarthritic etiopathology. These similarities suggest that EO, and the cells involved, are of great clinical importance for bone regeneration as it could provide novel targeted approaches to increase specific signaling to promote fracture healing, and if regulated appropriately in the treatment of osteoarthritis. The long-held accepted dogma states that hypertrophic chondrocytes are terminally differentiated and will eventually undergo apoptosis. In this mini review, we will explore recent evidence from experiments that revisit the idea that hypertrophic chondrocytes have pluripotent capacity and may instead transdifferentiate into a specific sub-population of osteoblast cells. There are multiple lines of evidence, including our own, showing that local, selective alterations in cartilage extracellular matrix (ECM) remodeling also indelibly alter bone quality. This would be consistent with the hypothesis that osteoblast behavior in long bones is regulated by a combination of their lineage origins and the epigenetic effects of chondrocyte-derived ECM which they encounter during their recruitment. Further exploration of these processes could help to unlock potential novel targets for bone repair and regeneration and in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Soraia P Caetano-Silva
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Ioannis Kanakis
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
21
|
Varela-Eirin M, Loureiro J, Fonseca E, Corrochano S, Caeiro JR, Collado M, Mayan MD. Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Res Rev 2018; 42:56-71. [PMID: 29258883 DOI: 10.1016/j.arr.2017.12.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/20/2017] [Accepted: 12/15/2017] [Indexed: 01/15/2023]
Abstract
Ageing processes play a major contributing role for the development of Osteoarthritis (OA). This prototypic degenerative condition of ageing is the most common form of arthritis and is accompanied by a general decline, chronic pain and mobility deficits. The disease is primarily characterized by articular cartilage degradation, followed by subchondral bone thickening, osteophyte formation, synovial inflammation and joint degeneration. In the early stages, osteoarthritic chondrocytes undergo phenotypic changes that increase cell proliferation and cluster formation and enhance the production of matrix-remodelling enzymes. In fact, chondrocytes exhibit differentiation plasticity and undergo phenotypic changes during the healing process. Current studies are focusing on unravelling whether OA is a consequence of an abnormal wound healing response. Recent investigations suggest that alterations in different proteins, such as TGF-ß/BMPs, NF-Kß, Wnt, and Cx43, or SASP factors involved in signalling pathways in wound healing response, could be directly implicated in the initiation of OA. Several findings suggest that osteoarthritic chondrocytes remain in an immature state expressing stemness-associated cell surface markers. In fact, the efficacy of new disease-modifying OA drugs that promote chondrogenic differentiation in animal models indicates that this may be a drug-sensible state. In this review, we highlight the current knowledge regarding cellular plasticity in chondrocytes and OA. A better comprehension of the mechanisms involved in these processes may enable us to understand the molecular pathways that promote abnormal repair and cartilage degradation in OA. This understanding would be advantageous in identifying novel targets and designing therapies to promote effective cartilage repair and successful joint ageing by preventing functional limitations and disability.
Collapse
Affiliation(s)
- Marta Varela-Eirin
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Jesus Loureiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eduardo Fonseca
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | | | - Jose R Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria D Mayan
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|
22
|
Bottini M, Mebarek S, Anderson KL, Strzelecka-Kiliszek A, Bozycki L, Simão AMS, Bolean M, Ciancaglini P, Pikula JB, Pikula S, Magne D, Volkmann N, Hanein D, Millán JL, Buchet R. Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. Biochim Biophys Acta Gen Subj 2018; 1862:532-546. [PMID: 29108957 PMCID: PMC5801150 DOI: 10.1016/j.bbagen.2017.11.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.
Collapse
Affiliation(s)
- Massimo Bottini
- University of Rome Tor Vergata, Department of Experimental Medicine and Surgery, 00133 Roma, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Saida Mebarek
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France
| | - Karen L Anderson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Agnieszka Strzelecka-Kiliszek
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Lukasz Bozycki
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ana Maria Sper Simão
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Joanna Bandorowicz Pikula
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Slawomir Pikula
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - David Magne
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France
| | - Niels Volkmann
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dorit Hanein
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rene Buchet
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France.
| |
Collapse
|
23
|
Hinton RJ, Jing Y, Jing J, Feng JQ. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair. J Dent Res 2016; 96:23-30. [PMID: 27664203 DOI: 10.1177/0022034516668321] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The formation of the mandibular condylar cartilage (MCC) and its subchondral bone is an important but understudied topic in dental research. The current concept regarding endochondral bone formation postulates that most hypertrophic chondrocytes undergo programmed cell death prior to bone formation. Under this paradigm, the MCC and its underlying bone are thought to result from 2 closely linked but separate processes: chondrogenesis and osteogenesis. However, recent investigations using cell lineage tracing techniques have demonstrated that many, perhaps the majority, of bone cells are derived via direct transformation from chondrocytes. In this review, the authors will briefly discuss the history of this idea and describe recent studies that clearly demonstrate that the direct transformation of chondrocytes into bone cells is common in both long bone and mandibular condyle development and during bone fracture repair. The authors will also provide new evidence of a distinct difference in ossification orientation in the condylar ramus (1 ossification center) versus long bone ossification formation (2 ossification centers). Based on our recent findings and those of other laboratories, we propose a new model that contrasts the mode of bone formation in much of the mandibular ramus (chondrocyte-derived) with intramembranous bone formation of the mandibular body (non-chondrocyte-derived).
Collapse
Affiliation(s)
- R J Hinton
- 1 Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Y Jing
- 1 Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - J Jing
- 1 Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - J Q Feng
- 1 Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
24
|
Chai YW, Lee EH, Gubbe JD, Brekke JH. 3D Cell Culture in a Self-Assembled Nanofiber Environment. PLoS One 2016; 11:e0162853. [PMID: 27632425 PMCID: PMC5025053 DOI: 10.1371/journal.pone.0162853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/28/2016] [Indexed: 01/31/2023] Open
Abstract
The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young's modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease.
Collapse
Affiliation(s)
- Yi Wen Chai
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - Eu Han Lee
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - John D. Gubbe
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - John H. Brekke
- BRTI Life Sciences, Two Harbors, MN, United States of America
| |
Collapse
|
25
|
Javaheri B, Hopkinson M, Poulet B, Pollard AS, Shefelbine SJ, Chang YM, Francis-West P, Bou-Gharios G, Pitsillides AA. Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo. PLoS One 2016; 11:e0159657. [PMID: 27519049 PMCID: PMC4982603 DOI: 10.1371/journal.pone.0159657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/05/2016] [Indexed: 11/25/2022] Open
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages.
Collapse
Affiliation(s)
- Behzad Javaheri
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
- * E-mail:
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Andrea S. Pollard
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Yu-Mei Chang
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Philippa Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
26
|
Masuda E, Shirai K, Maekubo K, Hirai Y. A newly established culture method highlights regulatory roles of retinoic acid on morphogenesis and calcification of mammalian limb cartilage. Biotechniques 2015; 58:318-24. [DOI: 10.2144/000114300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/25/2015] [Indexed: 11/23/2022] Open
Abstract
During mammalian embryogenesis, sclerotome-derived chondrocytes in the limb bud are arranged into a complicated bone shape with specific areas undergoing hypertrophy and calcification, creating a region-specific mineralized pattern in the cartilage. To follow chondrogenesis progression in vitro, we isolated limb cartilage from mice on embryonic day 13 (E13) and cultured it at the air-liquid interface after microsurgical removal of the ectoderm/epidermis. Explants underwent proper morphogenesis, giving rise to complete templates for limb bones in vitro. We found that region-specific calcification patterns resembling limbs of prepartum mature embryos could be induced in explants using culture medium containing high concentrations of CaCl2 (Ca), ascorbic acid (AA), and β-glycerophosphoric acid (BGP). In this culture system, excess amounts of all-trans retinoic acid (RA) severely disrupted morphogenesis and calcification patterns in limb cartilage. These effects were more pronounced in forearms than in phalanges. Although dissociated, the nascent chondrocytes in culture did not give rise to cartilage units even though augmented calcification was induced in these cell aggregates in the presence of RA. Taken together, our newly established culture system revealed that RA independently regulates three-dimensional morphogenesis and calcification.
Collapse
Affiliation(s)
- Eizo Masuda
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Kota Shirai
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Kenji Maekubo
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Yohei Hirai
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
- Research Center for Intelligent Bio-Materials, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
27
|
Nasu M, Takayama S, Umezawa A. Endochondral ossification model system: designed cell fate of human epiphyseal chondrocytes during long-term implantation. J Cell Physiol 2015; 230:1376-88. [PMID: 25640995 DOI: 10.1002/jcp.24882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/05/2014] [Indexed: 01/31/2023]
Abstract
The aim of this study is to establish a recapitulation system of human endochondral ossification as a paradigm of developmental engineering. Chondrocytes were isolated from the epiphyseal cartilage of the supernumerary digits of infants with polydactyly. In vivo studies showed that implanted chondrocytes exhibited cartilaginous regeneration over a short period of time and subsequent endochondral ossification with a marrow cavity. Tracing studies revealed that cells of donor origin at the periphery of the cartilage migrated into the center of the cartilage and transformed into osteoblasts, adipocytes, and endothelial cells. Bone marrow was formed through anastomosis with the recipient endothelial system at 13 weeks, and from the migration of recipient hematopoietic cells at 50 weeks. This study provides a human endochondral ossification model system with transdifferentiation of the donor cells at the periphery of the cartilage. J. Cell. Physiol. 230: 1376-1388, 2015. © 2015 Wiley Periodicals, Inc., A Wiley Company.
Collapse
Affiliation(s)
- Michiyo Nasu
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | |
Collapse
|
28
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
29
|
Park J, Gebhardt M, Golovchenko S, Perez-Branguli F, Hattori T, Hartmann C, Zhou X, deCrombrugghe B, Stock M, Schneider H, von der Mark K. Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage. Biol Open 2015; 4:608-21. [PMID: 25882555 PMCID: PMC4434812 DOI: 10.1242/bio.201411031] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
According to the general understanding, the chondrocyte lineage terminates with the elimination of late hypertrophic cells by apoptosis in the growth plate. However, recent cell tracking studies have shown that murine hypertrophic chondrocytes can survive beyond “terminal” differentiation and give rise to a progeny of osteoblasts participating in endochondral bone formation. The question how chondrocytes convert into osteoblasts, however, remained open. Following the cell fate of hypertrophic chondrocytes by genetic lineage tracing using BACCol10;Cre induced YFP-reporter gene expression we show that a progeny of Col10Cre-reporter labelled osteoprogenitor cells and osteoblasts appears in the primary spongiosa and participates – depending on the developmental stage – substantially in trabecular, endosteal, and cortical bone formation. YFP+ trabecular and endosteal cells isolated by FACS expressed Col1a1, osteocalcin and runx2, thus confirming their osteogenic phenotype. In searching for transitory cells between hypertrophic chondrocytes and trabecular osteoblasts we identified by confocal microscopy a novel, small YFP+Osx+ cell type with mitotic activity in the lower hypertrophic zone at the chondro-osseous junction. When isolated from growth plates by fractional enzymatic digestion, these cells termed CDOP (chondrocyte-derived osteoprogenitor) cells expressed bone typical genes and differentiated into osteoblasts in vitro. We propose the Col10Cre-labeled CDOP cells mark the initiation point of a second pathway giving rise to endochondral osteoblasts, alternative to perichondrium derived osteoprogenitor cells. These findings add to current concepts of chondrocyte-osteocyte lineages and give new insight into the complex cartilage-bone transition process in the growth plate.
Collapse
Affiliation(s)
- Jung Park
- Dept. Exp. Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany Department of Pediatrics, Division of Molecular Pediatrics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Matthias Gebhardt
- Dept. Exp. Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Svitlana Golovchenko
- Dept. Exp. Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Francesc Perez-Branguli
- Junior Research Group III, Nikolaus-Fiebiger Center of Molecular Medicine, University Hospital, 91054 Erlangen, Germany
| | - Takako Hattori
- Dept. of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City,700-8525, Japan
| | - Christine Hartmann
- Dept. of Bone- and Skeletal Research, Institute of Experimental Musculoskeletal Medicine (IEMM), University Hospital Muenster, 48149 Muenster, Germany
| | - Xin Zhou
- Dept. Genetics, MDAnderson Cancer Center, Houston, TX 77030, USA
| | | | - Michael Stock
- Dept. Internal Medicine III, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Holm Schneider
- Department of Pediatrics, Division of Molecular Pediatrics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Klaus von der Mark
- Dept. Exp. Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
30
|
Tsang KY, Chan D, Cheah KSE. Fate of growth plate hypertrophic chondrocytes: death or lineage extension? Dev Growth Differ 2015; 57:179-92. [PMID: 25714187 DOI: 10.1111/dgd.12203] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 01/06/2023]
Abstract
The vertebrate growth plate is an essential tissue that mediates and controls bone growth. It forms through a multistep differentiation process in which chondrocytes differentiate, proliferate, stop dividing and undergo hypertrophy, which entails a 20-fold increase in size. Hypertrophic chondrocytes are specialized cells considered to be the end state of the chondrocyte differentiation pathway, and are essential for bone growth. They are characterized by expression of type X collagen encoded by the Col10a1 gene, and synthesis of a calcified cartilage matrix. Whether hypertrophy marks a transition preceding osteogenesis, or it is the terminal differentiation stage of chondrocytes with cell death as the ultimate fate has been the subject of debate for over a century. In this review, we revisit this debate in the light of new findings arising from genetic-mediated lineage tracing studies showing that hypertrophic chondrocytes can survive at the chondro-osseous junction and further make the transition to become osteoblasts and osteocytes. The contribution of chondrocytes to the osteoblast lineage has important implications in bone development, disease and repair.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
31
|
Abstract
Bone physiology and stem cells were tightly intertwined with one another, both conceptually and experimentally, long before the current explosion of interest in stem cells and so-called regenerative medicine. Bone is home to the two best known and best characterized systems of postnatal stem cells, and it is the only organ in which two stem cells and their dependent lineages coordinate the overall adaptive responses of two major physiological systems. All along, the nature and the evolutionary significance of the interplay of bone and hematopoiesis have remained a major scientific challenge, but also allowed for some of the most spectacular developments in cell biology-based medicine, such as hematopoietic stem cell transplantation. This question recurs in novel forms at multiple turning points over time: today, it finds in the biology of the "niche" its popular phrasing. Entirely new avenues of investigation emerge as a new view of bone in physiology and medicine is progressively established. Looking at bone and stem cells in a historical perspective provides a unique case study to highlight the general evolution of science in biomedicine since the end of World War II to the present day. A paradigm shift in science and in its relation to society and policies occurred in the second half of the XXth century, with major implications thereof for health, industry, drug development, market and society. Current interest in stem cells in bone as in other fields is intertwined with that shift. New opportunities and also new challenges arise. This article is part of a Special Issue entitled "Stem cells and bone".
Collapse
Affiliation(s)
- Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
32
|
Xing W, Cheng S, Wergedal J, Mohan S. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling. J Bone Miner Res 2014; 29:2262-75. [PMID: 24753031 PMCID: PMC4487616 DOI: 10.1002/jbmr.2256] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 01/05/2023]
Abstract
Thyroid hormones (THs) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC) because the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, micro-computed tomography (µCT) evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised owing to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that whereas all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of thyroid stimulating hormone receptor mutant (Tshr(-/-) ) mice induced expression of Indian hedgehog (Ihh) and Osx in type 2 collagen (Col2)-expressing chondrocytes in the SOC at day 7, which subsequently differentiate into type 10 collagen (Col10)/osteocalcin-expressing chondro/osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day-old mice with 10 ng/mL TH increased expression of Osx, Col10, alkaline phosphatase (ALP), and osteocalcin in the epiphysis by sixfold to 60-fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral small hairpin RNA (shRNA) significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro/osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix-producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - Jon Wergedal
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
33
|
|
34
|
Enishi T, Yukata K, Takahashi M, Sato R, Sairyo K, Yasui N. Hypertrophic chondrocytes in the rabbit growth plate can proliferate and differentiate into osteogenic cells when capillary invasion is interposed by a membrane filter. PLoS One 2014; 9:e104638. [PMID: 25121501 PMCID: PMC4133260 DOI: 10.1371/journal.pone.0104638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/10/2014] [Indexed: 01/16/2023] Open
Abstract
The fate of hypertrophic chondrocytes during endochondral ossification remains controversial. It has long been thought that the calcified cartilage is invaded by blood vessels and that new bone is deposited on the surface of the eroded cartilage by newly arrived cells. The present study was designed to determine whether hypertrophic chondrocytes were destined to die or could survive to participate in new bone formation. In a rabbit experiment, a membrane filter with a pore size of 1 µm was inserted in the middle of the hypertrophic zone of the distal growth plate of ulna. In 33 of 37 animals, vascular invasion was successfully interposed by the membrane filter. During 8 days, the cartilage growth plate was enlarged, making the thickness 3-fold greater than that of the nonoperated control side. Histological examination demonstrated that the hypertrophic zone was exclusively elongated. At the terminal end of the growth plate, hypertrophic chondrocytes extruded from their territorial matrix into the open cavity on the surface of the membrane filter. The progenies of hypertrophic chondrocytes (PHCs) were PCNA positive and caspase-3 negative. In situ hybridization studies demonstrated that PHCs did not express cartilage matrix proteins anymore but expressed bone matrix proteins. Immunohistochemical studies also demonstrated that the new matrix produced by PHCs contained type I collagen, osteonectin, and osteocalcin. Based on these results, we concluded that hypertrophic chondrocytes switched into bone-forming cells after vascular invasion was interposed in the normal growth plate.
Collapse
Affiliation(s)
- Tetsuya Enishi
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kiminori Yukata
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuhiko Takahashi
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ryosuke Sato
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Sairyo
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, Japan
| | - Natsuo Yasui
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, Japan
- * E-mail:
| |
Collapse
|
35
|
Fernández I, Tiago DM, Laizé V, Leonor Cancela M, Gisbert E. Retinoic acid differentially affects in vitro proliferation, differentiation and mineralization of two fish bone-derived cell lines: different gene expression of nuclear receptors and ECM proteins. J Steroid Biochem Mol Biol 2014; 140:34-43. [PMID: 24291400 DOI: 10.1016/j.jsbmb.2013.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 10/22/2013] [Accepted: 11/19/2013] [Indexed: 12/23/2022]
Abstract
Retinoic acid (RA), the main active metabolite of vitamin A, regulates vertebrate morphogenesis through signaling pathways not yet fully understood. Such process involves the specific activation of retinoic acid and retinoid X receptors (RARs and RXRs), which are nuclear receptors of the steroid/thyroid hormone receptor superfamily. Teleost fish are suitable models to study vertebrate development, such as skeletogenesis. Cell systems capable of in vitro mineralization have been developed for several fish species and may provide new insights into the specific cellular and molecular events related to vitamin A activity in bone, complementary to in vivo studies. This work aims at investigating the in vitro effects of RA (0.5 and 12.5 μM) on proliferation, differentiation and extracellular matrix (ECM) mineralization of two gilthead seabream bone-derived cell lines (VSa13 and VSa16), and at identifying molecular targets of its action through gene expression analysis. RA induced phenotypic changes and cellular proliferation was inhibited in both cell lines in a cell type-dependent manner (36-59% in VSa13 and 17-46% in VSa16 cells). While RA stimulated mineral deposition in VSa13 cell cultures (50-62% stimulation), it inhibited the mineralization of extracellular matrix in VSa16 cells (11-57% inhibition). Expression of hormone receptor genes (rars and rxrs), and extracellular matrix-related genes such as matrix and bone Gla proteins (mgp and bglap), osteopontin (spp1) and type I collagen (col1a1) were differentially regulated upon exposure to RA in proliferating, differentiating and mineralizing cultures of VSa13 and VSa16 cells. Altogether, our results show: (i) RA affects proliferative and mineralogenic activities in two fish skeletal cell types and (ii) that during phenotype transitions, specific RA nuclear receptors and bone-related genes are differentially expressed in a cell type-dependent manner.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centro de Ciências do Mar (CCMAR/CIMAR-LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Unitat de Cultius Experimentals, Crta. del Poble Nou s/n, 43540 Sant Carles de la Ràpita, Spain.
| | - Daniel M Tiago
- Centro de Ciências do Mar (CCMAR/CIMAR-LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR/CIMAR-LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - M Leonor Cancela
- Centro de Ciências do Mar (CCMAR/CIMAR-LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Unitat de Cultius Experimentals, Crta. del Poble Nou s/n, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
36
|
Sweeney E, Roberts D, Lin A, Guldberg R, Jacenko O. Defective endochondral ossification-derived matrix and bone cells alter the lymphopoietic niche in collagen X mouse models. Stem Cells Dev 2013; 22:2581-95. [PMID: 23656481 DOI: 10.1089/scd.2012.0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders.
Collapse
Affiliation(s)
- Elizabeth Sweeney
- 1 Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
37
|
Investigation of chondrocyte hypertrophy and cartilage calcification in a full-depth articular cartilage explants model. Rheumatol Int 2012; 33:401-11. [DOI: 10.1007/s00296-012-2368-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/11/2012] [Indexed: 11/26/2022]
|
38
|
Abstract
Highly pure, recombinant human osteoinductive proteins make it possible to consider programmable osteoneogenesis. Until recently, it was believed that a bioresorbable excipient or physiologic solution would suffice to transport osteoinductive agents from source to wound. After considering surgical requirements, particular bone wound circumstances, scarcity of collateral circulation, phenotype plasticity of mesenchymal progenitor cells, and the morphogens' pleiotrophic effects, it becomes clear that the issue of controlled, programmable osteoneogenesis is a more complicated proposition than can be addressed solely by application of osteoinductive protein. The essential characteristics of a manufactured bone graft substitute (BGS) device are dictated by demands placed on such a device by the surgeons who will employ them and the cells that will occupy them. This review outlines a design process for BGS devices that (1) begins by surveying BGS requirements gathered from the literature from 1991 to 1995, (2) briefly reviews recent in vitro studies of rhBMP-2 and OP- 1, (3) describes commonly encountered circumstances of recipient wound beds, (4) describes behaviors of mesenchymal cells involved in connective tissue repair and regeneration, and (5) concludes with a rationale for design of an osteoinductive bone graft substitute. Emerging from this process is a composite device consisting of a bioresorbable structural polymer, a filamentous velour of hyaluronan (HY), and an osteoinductive protein. The structural polymer, D,D-L,L-polylactic acid, fabricated in the architecture of cancellous bone, is capable of maintaining its structural and architectural properties after being thoroughly saturated with water. Within its interstices is located a filamentous velour of hyaluronan which, when fully hydrated, becomes a viscoelastic gel. It is anticipated that the osteoinductive protein will either be carried on the dried hyaluronic acid velour or in solution via the viscoelastic HY gel.
Collapse
Affiliation(s)
- J H Brekke
- THM Biomedical, Inc., Waterfront Plaza-Suite #608, 325 Lake Ave. South, Duluth, Minnesota 55802
| |
Collapse
|
39
|
Kramer J, Hegert C, Hargus G, Rohwedel J. Chondrocytes derived from mouse embryonic stem cells. Cytotechnology 2011; 41:177-87. [PMID: 19002954 DOI: 10.1023/a:1024835025011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our knowledge of cellular differentiation processes during chondro- and osteogenesis, in particular the complex interaction of differentiation factors, is still limited. We used the model system of embryonic stem (ES) cell differentiation in vitro via cellular aggregates, so called embryoid bodies (EBs), to analyze chondrogenic and osteogenic differentiation. ES cells differentiated into chondrocytes and osteocytes throughout a series of developmental stages resembling cellular differentiation events during skeletal development in vivo. A lineage from pluripotent ES cells via mesenchymal, prechondrogenic cells, chondrocytes and hypertrophicchondrocytes up to osteogenic cells was characterized. Furthermore, we found evidence for another osteogenic lineage, bypassing the chondrogenic stage. Together our results suggest that this in vitro system will be helpful to answer so far unacknowledged questions regarding chondrogenic and osteogenic differentiation. For example, we isolated an as yet unknown cDNA fragment from ES cell-derived chondrocytes, which showed a developmentally regulated expression pattern during EB differentiation. Considering ES cell differentiation as an alternative approach for cellular therapy, we used two different methods to obtain pure chondrocyte cultures from the heterogenous EBs. First, members of the transforming growth factor (TGF)-beta family were applied and found to modulate chondrogenic differentiation but were not effective enough to produce sufficient amounts of chondrocytes. Second, chondrocytes were isolated from EBs by micro-manipulation. These cells initially showed dedifferentiation into fiboblastoid cells in culture, but later redifferentiated into mature chondrocytes. However, a small amount of chondrocytes isolated from EBs transdifferentiated into other mesenchymal cell types, indicating that chondrocytes derived from ES cells posses a distinct differentiation plasticity.
Collapse
Affiliation(s)
- Jan Kramer
- Department of Medical Molecular Biology, University of Lübeck, Lübeck, Germany
| | | | | | | |
Collapse
|
40
|
Li ZY, Xiong SH, Hu M, Zhang CS. Epithelial membrane protein 1 inhibits human spinal chondrocyte differentiation. Anat Rec (Hoboken) 2011; 294:1015-24. [PMID: 21538935 DOI: 10.1002/ar.21395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 02/21/2011] [Accepted: 03/09/2011] [Indexed: 11/05/2022]
Abstract
The molecular mechanisms underlying human spinal chondrocyte differentiation remain unclear. We recently demonstrated that epithelial membrane protein 1 (EMP1) is highly expressed in degenerative intervertebral discs. EMP1 is involved in the differentiation of multiple cell types, including progenitor/pre-B cells, neurons, and podocytes. Therefore, we hypothesize that EMP1 may participate in the differentiation of spinal chondrocytes. We cultured chondrocytes from human nucleus pulposus. Through lentivirus-mediated knockdown and overexpression of EMP1, we find that EMP1 promotes cell proliferation and survival, alters cell morphology and cell cycle, reduces cell condensation, and inhibits cell hypertrophy and the expression of chondrocyte maturation markers such as collagen X, aggrecan, sex-determining region Y (SRY)-box 9, and runt-related transcription factor 2. We also show that EMP1 is not expressed in the ossification center of vertebrae but is highly expressed in the nucleus pulposus and growth plate, where chondrocytes are immature and endochondral ossification has not occurred. These results suggest that EMP1 inhibits human spinal chondrocyte differentiation.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Department of Human Anatomy, Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|
41
|
Ytteborg E, Torgersen J, Baeverfjord G, Takle H. Morphological and molecular characterization of developing vertebral fusions using a teleost model. BMC PHYSIOLOGY 2010; 10:13. [PMID: 20604916 PMCID: PMC2909226 DOI: 10.1186/1472-6793-10-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/06/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Spinal disorders are a major cause of disability for humans and an important health problem for intensively farmed animals. Experiments have shown that vertebral deformities present a complex but comparable etiology across species. However, the underlying molecular mechanisms involved in bone deformities are still far from understood. To further explicate the mechanisms involved, we have examined the fundamental aspects of bone metabolism and pathogenesis of vertebral fusions in Atlantic salmon (Salmo salar). RESULTS Experimentally, juvenile salmon were subjected to hyperthermic conditions where more than 28% developed fused vertebral bodies. To characterize the fusion process we analyzed an intermediate and a terminal stage of the pathology by using x-ray, histology, immunohistochemistry, real-time quantitative PCR and in situ hybridization. At early stage in the fusion process, disorganized and proliferating osteoblasts were prominent at the growth zones of the vertebral body endplates. PCNA positive cells further extended along the rims of fusing vertebral bodies. During the developing pathology, the marked border between the osteoblast growth zones and the chondrocytic areas connected to the arches became less distinct, as proliferating cells and chondrocytes blended through an intermediate zone. This cell proliferation appeared to be closely linked to fusion of opposing arch centra. During the fusion process a metaplastic shift appeared in the arch centra where cells in the intermediate zone between osteoblasts and chondrocytes co-expressed mixed signals of chondrogenic and osteogenic markers. A similar shift also occurred in the notochord where proliferating chordoblasts changed transcription profile from chondrogenic to also include osteogenic marker genes. In progressed fusions, arch centra and intervertebral space mineralized. CONCLUSION Loss of cell integrity through cell proliferation and metaplastic shifts seem to be key events in the fusion process. The fusion process involves molecular regulation and cellular changes similar to those found in mammalian deformities, indicating that salmon is suitable for studying general bone development and to be a comparative model for spinal deformities.
Collapse
Affiliation(s)
- Elisabeth Ytteborg
- Nofima Marin AS, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Jacob Torgersen
- Nofima Marin AS, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Grete Baeverfjord
- Nofima Marin AS, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Harald Takle
- Nofima Marin AS, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- AVS Chile SA, Imperial 0655, Of. 3A, Puerto Varas, Chile
| |
Collapse
|
42
|
James AW, Levi B, Xu Y, Carre AL, Longaker MT. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 2010; 125:1352-1361. [PMID: 20134361 DOI: 10.1097/prs.0b013e3181d62980] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND In utero retinoid exposure results in numerous craniofacial malformations, including craniosynostosis. Although many malformations associated with retinoic acid syndrome are associated with neural crest defects, the specific mechanisms of retinoid-induced craniosynostosis remain unclear. The authors used the culture of mouse cranial suture-derived mesenchymal cells to probe the potential cellular mechanisms of this teratogen to better elucidate mechanisms of retinoid-induced suture fusion. METHODS Genes associated with retinoid signaling were assayed in fusing (posterofrontal) and patent (sagittal, coronal) sutures by quantitative real-time polymerase chain reaction. Cultures of mouse suture-derived mesenchymal cells from the posterofrontal suture were established from 4-day-old mice. Cells were cultured with all-trans retinoic acid (1 and 5 muM). Proliferation, osteogenic differentiation, and specific gene expression were assessed. RESULTS Mouse sutures were found to express genes necessary for retinoic acid synthesis, binding, and signal transduction, demonstrated by quantitative real-time polymerase chain reaction (Raldh1, Raldh2, Raldh3, and Rbp4). These genes were not found to be differentially expressed in fusing as compared with patent cranial sutures in vivo. Addition of retinoic acid enhanced the osteogenic differentiation of suture-derived mesenchymal cells in vitro, including up-regulation of alkaline phosphatase activity and Runx2 expression. Contemporaneously, cellular proliferation was repressed, as shown by proliferative cell nuclear antigen expression. The pro-osteogenic effect of retinoic acid was accompanied by increased gene expression of several hedgehog and bone morphogenetic protein ligands. CONCLUSIONS Retinoic acid represses proliferation and enhances osteogenic differentiation of suture-derived mesenchymal cells. These in vitro data suggest that retinoid exposure may lead to premature cranial suture fusion by means of enhanced osteogenesis and hedgehog and bone morphogenetic protein signaling.
Collapse
Affiliation(s)
- Aaron W James
- Stanford and San Francisco, Calif. From the Hagey Pediatric Regenerative Research Laboratory, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, and the University of California, San Francisco, School of Medicine
| | | | | | | | | |
Collapse
|
43
|
Hardmeier R, Redl H, Marlovits S. Effects of mechanical loading on collagen propeptides processing in cartilage repair. J Tissue Eng Regen Med 2010; 4:1-11. [PMID: 19842116 DOI: 10.1002/term.211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Injured articular cartilage has poor reparative capabilities and if left untreated may develop into osteoarthritis. Unsatisfactory results with conventional treatment methods have brought as an alternative treatment the development of matrix autologous chondrocyte transplants (MACTs). Recent evidence proposes that the maintenance of the original phenotype by isolated chondrocytes grown in a scaffold transplant is linked to mechanical compression, because macromolecules, particularly collagen, of the extracellular matrix have the ability to 'self-assemble'. In load-bearing tissues, collagen is abundantly present and mechanical properties depend on the collagen fibre architecture. Study of the active changes in collagen architecture is the focus of diverse fields of research, including developmental biology, biomechanics and tissue engineering. In this review, the structural model of collagen assembly is presented in order to understand how scaffold geometry plays a critical role in collagen propeptide processing and chondrocyte development. When physical forces are applied to different cell-based scaffolds, the resulting specific twist of the scaffolds might be accompanied by changes in the fibril pattern synthesis of the new collagen. The alteration in the scaffolds due to mechanical stress is associated with cellular signalling communication and the preservation of N-terminus procollagen moieties, which would regulate both the collagen synthesis and the diameter of the fibre. The structural difference would also affect actin stabilization, cytoskeleton remodelling and proteoglycan assembly. These effects seemed to be dependent on the magnitude and duration of the physical stress. This review will contribute to the understanding of mechanisms for collagen assembly in both a natural and an artificial environment.
Collapse
|
44
|
Ishizeki K, Kagiya T, Fujiwara N, Otsu K, Harada H. Expression of osteogenic proteins during the intrasplenic transplantation of Meckel's chondrocytes: A histochemical and immunohistochemical study. ACTA ACUST UNITED AC 2010; 72:1-12. [PMID: 19789408 DOI: 10.1679/aohc.72.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Meckel's chondrocytes, derived from the ectomesenchyme, have the potential to transform into other phenotypes. In this study, we transplanted cell pellets of Meckel's chondrocytes into isogenic mouse spleens and analyzed their phenotypic transformation into osteogenic cells using histological and immunohistochemical methods. With the increasing duration of transplantation, chondrocytes were incorporated into splenic tissues and formed a von Kossa-positive calcified matrix containing calcium and phosphoric acid, similar to that of intact bone. Type I, II, and X collagens, and the bone-marker proteins osteocalcin, osteopontin, osteonectin, and bone morphogenetic protein-2 (BMP-2) were immunolocalized in the matrix formed by the transplanted chondrocytes. Osteopontin and osteonectin were detected in the calcified matrix at earlier stages than osteocalcin and BMP-2. Type II collagen was expressed during the first week of transplantation, and type X collagen-positive cells appeared scattered during the initial stage of calcification, these collagens being later replaced by type I collagen formed by osteocyte-like cells. Electron microscopic observations revealed that chondrocytes surrounded by the calcified matrix transformed into spindle-shaped osteocytic cells accompanying the formation of bone-type thick-banded collagen fibrils. These results suggest that phenotypic switching of Meckel's chondrocytes can occur under in vivo conditions at a cellular morphological level.
Collapse
Affiliation(s)
- Kiyoto Ishizeki
- Department of Oral Anatomy II, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Japan.
| | | | | | | | | |
Collapse
|
45
|
Ishizeki K, Kagiya T, Fujiwara N, Otsu K, Harada H. Biological Significance of Site-specific Transformation of Chondrocytes in Mouse Meckel’s Cartilage. J Oral Biosci 2010. [DOI: 10.2330/joralbiosci.52.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Biological Significance of Site-specific Transformation of Chondrocytes in Mouse Meckel's Cartilage. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80042-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Bueno EM, Bilgen B, Barabino GA. Hydrodynamic Parameters Modulate Biochemical, Histological, and Mechanical Properties of Engineered Cartilage. Tissue Eng Part A 2009; 15:773-85. [DOI: 10.1089/ten.tea.2008.0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ericka M. Bueno
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts
| | - Bahar Bilgen
- Department of Orthopaedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Gilda A. Barabino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
48
|
Global age-dependent differences in gene expression in response to calvarial injury. J Craniofac Surg 2009; 19:1292-301. [PMID: 18812854 DOI: 10.1097/scs.0b013e3181843609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Children less than 2 years of age are capable of healing large calvarial defects, whereas adults have been found to lack this endogenous ability. In this study, we used microarray analysis to compare genomewide expression patterns during active regeneration after injury with calvaria in skeletally immature and mature mice. Parietal bone defects were created in 6-day-old (juvenile) and 60-day-old (adult) mice using a 4-mm trephine bit (n = 20 mice per age group). The calvarial disc was removed, leaving the underlying dura mater intact. Two weeks after injury, the region of regeneration with the underlying dura mater was harvested, and RNA was extracted for microarray analysis. The 25 most differentially upregulated genes in juvenile regenerates compared with adults were listed, as well as selected bone-related genes. In addition, QRT-PCR confirmation of specific genes was performed for validation. Juvenile regenerates expressed significantly greater amounts of BMP-2, -4, -7, as well as FGF-2 and its receptor FGFR-1. Various other growth factors were also noted to be upregulated, including IGF-2 and Ptn. This corresponded with the increased expression of markers for osteogenic differentiation of Sparc and Oc. Markers of osteoclast activity, Acp5, Ctsk, and Mmp2, were noted to be greater in juvenile regenerates compared with adults. The observation of Mmp14 upregulation, however, highlights the importance of balanced osteoclast-mediated bone resorption for ultimate healing. The 2 most differentially regulated genes, transthyretin (Ttr) and prostaglandin D2 synthase (Ptgds), highlight the potential role of retinoic acid signaling and the prostaglandin axis on skeletal regeneration. These findings underscore the multitude of biomolecular mechanisms at play, allowing juvenile calvaria to heal after injury. The identification of various growth factors and cytokines involved also suggests novel therapeutic strategies for tissue-engineering purposes.
Collapse
|
49
|
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA.
| | | |
Collapse
|
50
|
Bueno EM, Bilgen B, Barabino GA. Wavy-Walled Bioreactor Supports Increased Cell Proliferation and Matrix Deposition in Engineered Cartilage Constructs. ACTA ACUST UNITED AC 2005; 11:1699-709. [PMID: 16411815 DOI: 10.1089/ten.2005.11.1699] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hydrodynamic forces in bioreactors can decisively influence extracellular matrix deposition in engineered cartilage constructs. In the present study, the reduced fluid shear, high-axial mixing environment provided by a wavy-walled bioreactor was exploited in the cultivation of cartilage constructs using polyglycolic acid scaffolds seeded with bovine articular chondrocytes. Increased growth as defined by weight, cell proliferation and extracellular matrix deposition was observed in cartilage constructs from wavy-walled bioreactors in comparison with those from spinner flasks cultured under the same conditions. The wet weight composition of 4-week constructs from the wavy-walled bioreactor was similar to that of spinner flask constructs, but the former were 60% heavier due to equally higher incorporation of extracellular matrix and 30% higher cell population. It is most likely that increased construct matrix incorporation was a result of increased mitotic activity of chondrocytes cultured in the environment of the wavy-walled bioreactor. A layer of elongated cells embedded in type I collagen formed at the periphery of wavy-walled bioreactor and spinner flask constructs, possibly as a response to local shear forces. On the basis of the robustness and reproducibility of the extracellular matrix composition of cartilage constructs, the wavy-walled bioreactor demonstrated promise as an experimental cartilage tissue-engineering vessel. Increased construct growth in the wavy-walled bioreactor may lead to enhanced mechanical properties and expedited in vitro cultivation.
Collapse
Affiliation(s)
- Ericka M Bueno
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|