1
|
Wassing IE, Nishiyama A, Shikimachi R, Jia Q, Kikuchi A, Hiruta M, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes. SCIENCE ADVANCES 2024; 10:eadp5753. [PMID: 39178260 PMCID: PMC11343034 DOI: 10.1126/sciadv.adp5753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency, centromeric instability, and facial anomalies syndrome, characterized by DNA hypomethylation at heterochromatin. It remains unclear why CDCA7-HELLS is the sole nucleosome remodeling complex whose deficiency abrogates the maintenance of DNA methylation. We here identify the unique zinc-finger domain of CDCA7 as an evolutionarily conserved hemimethylation-sensing zinc finger (HMZF) domain. Cryo-electron microscopy structural analysis of the CDCA7-nucleosome complex reveals that the HMZF domain can recognize hemimethylated CpG in the outward-facing DNA major groove within the nucleosome core particle, whereas UHRF1, the critical activator of the maintenance methyltransferase DNMT1, cannot. CDCA7 recruits HELLS to hemimethylated chromatin and facilitates UHRF1-mediated H3 ubiquitylation associated with replication-uncoupled maintenance DNA methylation. We propose that the CDCA7-HELLS nucleosome remodeling complex assists the maintenance of DNA methylation on chromatin by sensing hemimethylated CpG that is otherwise inaccessible to UHRF1 and DNMT1.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
2
|
Wassing IE, Nishiyama A, Hiruta M, Jia Q, Shikimachi R, Kikuchi A, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is a hemimethylated DNA adaptor for the nucleosome remodeler HELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572350. [PMID: 38187757 PMCID: PMC10769307 DOI: 10.1101/2023.12.19.572350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, characterized by hypomethylation at heterochromatin. The unique zinc-finger domain, zf-4CXXC_R1, of CDCA7 is widely conserved across eukaryotes but is absent from species that lack HELLS and DNA methyltransferases, implying its specialized relation with methylated DNA. Here we demonstrate that zf-4CXXC_R1 acts as a hemimethylated DNA sensor. The zf-4CXXC_R1 domain of CDCA7 selectively binds to DNA with a hemimethylated CpG, but not unmethylated or fully methylated CpG, and ICF disease mutations eliminated this binding. CDCA7 and HELLS interact via their N-terminal alpha helices, through which HELLS is recruited to hemimethylated DNA. While placement of a hemimethylated CpG within the nucleosome core particle can hinder its recognition by CDCA7, cryo-EM structure analysis of the CDCA7-nucleosome complex suggests that zf-4CXXC_R1 recognizes a hemimethylated CpG in the major groove at linker DNA. Our study provides insights into how the CDCA7-HELLS nucleosome remodeling complex uniquely assists maintenance DNA methylation.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
3
|
Arimura Y, Shih RM, Froom R, Funabiki H. Structural features of nucleosomes in interphase and metaphase chromosomes. Mol Cell 2021; 81:4377-4397.e12. [PMID: 34478647 PMCID: PMC8571072 DOI: 10.1016/j.molcel.2021.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Rochelle M Shih
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
4
|
Choppakatla P, Dekker B, Cutts EE, Vannini A, Dekker J, Funabiki H. Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization. eLife 2021; 10:e68918. [PMID: 34406118 PMCID: PMC8416026 DOI: 10.7554/elife.68918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) are thought to drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 antagonizes condensins and topo II to shape mitotic chromosome organization. In vitro chromatin reconstitution experiments demonstrate that H1.8 inhibits binding of condensins and topo II to nucleosome arrays. Accordingly, H1.8 depletion in Xenopus egg extracts increased condensins and topo II levels on mitotic chromatin. Chromosome morphology and Hi-C analyses suggest that H1.8 depletion makes chromosomes thinner and longer through shortening the average loop size and reducing the DNA amount in each layer of mitotic loops. Furthermore, excess loading of condensins and topo II to chromosomes by H1.8 depletion causes hyper-chromosome individualization and dispersion. We propose that condensins and topo II are essential for chromosome individualization, but their functions are tuned by the linker histone to keep chromosomes together until anaphase.
Collapse
Affiliation(s)
- Pavan Choppakatla
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Bastiaan Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Erin E Cutts
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
- Fondazione Human Technopole, Structural Biology Research Centre, 20157MilanItaly
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
5
|
Hassebroek VA, Park H, Pandey N, Lerbakken BT, Aksenova V, Arnaoutov A, Dasso M, Azuma Y. PICH regulates the abundance and localization of SUMOylated proteins on mitotic chromosomes. Mol Biol Cell 2020; 31:2537-2556. [PMID: 32877270 PMCID: PMC7851874 DOI: 10.1091/mbc.e20-03-0180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proper chromosome segregation is essential for faithful cell division and if not maintained results in defective cell function caused by the abnormal distribution of genetic information. Polo-like kinase 1-interacting checkpoint helicase (PICH) is a DNA translocase essential for chromosome bridge resolution during mitosis. Its function in resolving chromosome bridges requires both DNA translocase activity and ability to bind chromosomal proteins modified by the small ubiquitin-like modifier (SUMO). However, it is unclear how these activities cooperate to resolve chromosome bridges. Here, we show that PICH specifically disperses SUMO2/3 foci on mitotic chromosomes. This PICH function is apparent toward SUMOylated topoisomerase IIα (TopoIIα) after inhibition of TopoIIα by ICRF-193. Conditional depletion of PICH using the auxin-inducible degron (AID) system resulted in the retention of SUMO2/3-modified chromosomal proteins, including TopoIIα, indicating that PICH functions to reduce the association of these proteins with chromosomes. Replacement of PICH with its translocase-deficient mutants led to increased SUMO2/3 foci on chromosomes, suggesting that the reduction of SUMO2/3 foci requires the remodeling activity of PICH. In vitro assays showed that PICH specifically attenuates SUMOylated TopoIIα activity using its SUMO-binding ability. Taking the results together, we propose a novel function of PICH in remodeling SUMOylated proteins to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Nootan Pandey
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | | | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,*Address correspondence to: Yoshiaki Azuma ()
| |
Collapse
|
6
|
Miller KE, Brownlee C, Heald R. The power of amphibians to elucidate mechanisms of size control and scaling. Exp Cell Res 2020; 392:112036. [PMID: 32343955 PMCID: PMC7246146 DOI: 10.1016/j.yexcr.2020.112036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023]
Abstract
Size is a fundamental feature of biology that affects physiology at all levels, from the organism to organs and tissues to cells and subcellular structures. How size is determined at these different levels, and how biological structures scale to fit together and function properly are important open questions. Historically, amphibian systems have been extremely valuable to describe scaling phenomena, as they occupy some of the extremes in biological size and are amenable to manipulations that alter genome and cell size. More recently, the application of biochemical, biophysical, and embryological techniques to amphibians has provided insight into the molecular mechanisms underlying scaling of subcellular structures to cell size, as well as how perturbation of normal size scaling impacts other aspects of cell and organism physiology.
Collapse
Affiliation(s)
- Kelly E Miller
- Department of Molecular and Cell Biology, University of California, CA, 94720, Berkeley, USA
| | - Christopher Brownlee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8651, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, CA, 94720, Berkeley, USA.
| |
Collapse
|
7
|
French BT, Straight AF. The Power of Xenopus Egg Extract for Reconstitution of Centromere and Kinetochore Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:59-84. [PMID: 28840233 DOI: 10.1007/978-3-319-58592-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Faithful transmission of genetic information during cell division requires attachment of chromosomes to the mitotic spindle via the kinetochore. In vitro reconstitution studies are beginning to uncover how the kinetochore is assembled upon the underlying centromere, how the kinetochore couples chromosome movement to microtubule dynamics, and how cells ensure the site of kinetochore assembly is maintained from one generation to the next. Here we give special emphasis to advances made in Xenopus egg extract, which provides a unique, biochemically tractable in vitro system that affords the complexity of cytoplasm and nucleoplasm to permit reconstitution of the dynamic, cell cycle-regulated functions of the centromere and kinetochore.
Collapse
Affiliation(s)
- Bradley T French
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Soeda S, Yamada-Nomoto K, Michiue T, Ohsugi M. RSK-MASTL Pathway Delays Meiotic Exit in Mouse Zygotes to Ensure Paternal Chromosome Stability. Dev Cell 2018; 47:363-376.e5. [DOI: 10.1016/j.devcel.2018.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/25/2018] [Accepted: 09/09/2018] [Indexed: 11/30/2022]
|
9
|
Abstract
The spatiotemporal organization of chromatin plays central roles in cellular function. The ribosomal DNA (rDNA) chromatin undergoes dynamic structural changes during mitosis and stress. Here, we developed a CRISPR-based imaging system and tracked the condensation dynamics of rDNA chromatin in live yeast cells under glucose starvation. We found that acute glucose starvation triggers rapid condensation of rDNA. Time-lapse microscopy revealed two stages for rDNA condensation: a “primary stage,” when relaxed rDNA chromatin forms higher order loops or rings, and a “secondary stage,” when the rDNA rings further condense into compact clusters. Twisting of rDNA rings accompanies the secondary stage. The condensin complex, but not the cohesin complex, is required for efficient rDNA condensation in response to glucose starvation. Furthermore, we found that the DNA helicase Sgs1 is essential for the survival of cells expressing rDNA-bound dCas9, suggesting a role for helicases in facilitating DNA replication at dCas9-binding sites. A CRISPR-based imaging system allows tracking of rDNA condensation in single cells Glucose starvation triggers rDNA condensation in two prominent stages Condensin contributes to efficient rDNA condensation caused by glucose starvation Sgs1 helicase is required for normal rDNA replication at dCas9-binding sites
Collapse
Affiliation(s)
- Yuan Xue
- Department of Molecular Cellular and Developmental Biology, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
- Corresponding author
| |
Collapse
|
10
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | | | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
11
|
Abstract
Mitosis is the stage of the cell cycle during which replicated chromosomes must be precisely divided to allow the formation of two daughter cells possessing equal genetic material. Much of the careful spatial and temporal organization of mitosis is maintained through post-translational modifications, such as phosphorylation and ubiquitination, of key cellular proteins. Here, we will review evidence that sumoylation, conjugation to the SUMO family of small ubiquitin-like modifiers, also serves essential regulatory roles during mitosis. We will discuss the basic biology of sumoylation, how the SUMO pathway has been implicated in particular mitotic functions, including chromosome condensation, centromere/kinetochore organization and cytokinesis, and what cellular proteins may be the targets underlying these phenomena.
Collapse
Affiliation(s)
- Debaditya Mukhopadhyay
- Section on Cell Cycle Regulation, Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institutes of Health, 18 Library Drive, Room 106, Building 18T, Bethesda, MD, 20892, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institutes of Health, 18 Library Drive, Room 106, Building 18T, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Profile of Andrew W. Murray. Proc Natl Acad Sci U S A 2016; 113:9953-5. [DOI: 10.1073/pnas.1612272113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Goloborodko A, Imakaev MV, Marko JF, Mirny L. Compaction and segregation of sister chromatids via active loop extrusion. eLife 2016; 5:e14864. [PMID: 27192037 PMCID: PMC4914367 DOI: 10.7554/elife.14864] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
The mechanism by which chromatids and chromosomes are segregated during mitosis and meiosis is a major puzzle of biology and biophysics. Using polymer simulations of chromosome dynamics, we show that a single mechanism of loop extrusion by condensins can robustly compact, segregate and disentangle chromosomes, arriving at individualized chromatids with morphology observed in vivo. Our model resolves the paradox of topological simplification concomitant with chromosome 'condensation', and explains how enzymes a few nanometers in size are able to control chromosome geometry and topology at micron length scales. We suggest that loop extrusion is a universal mechanism of genome folding that mediates functional interactions during interphase and compacts chromosomes during mitosis.
Collapse
Affiliation(s)
- Anton Goloborodko
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Maxim V Imakaev
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, United States
| | - Leonid Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
14
|
Gillespie PJ, Neusiedler J, Creavin K, Chadha GS, Blow JJ. Cell Cycle Synchronization in Xenopus Egg Extracts. Methods Mol Biol 2016; 1342:101-47. [PMID: 26254920 DOI: 10.1007/978-1-4939-2957-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Peter J Gillespie
- Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
15
|
Ryu H, Yoshida MM, Sridharan V, Kumagai A, Dunphy WG, Dasso M, Azuma Y. SUMOylation of the C-terminal domain of DNA topoisomerase IIα regulates the centromeric localization of Claspin. Cell Cycle 2015; 14:2777-84. [PMID: 26131587 PMCID: PMC4614044 DOI: 10.1080/15384101.2015.1066537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022] Open
Abstract
DNA topoisomerase II (TopoII) regulates DNA topology by its strand passaging reaction, which is required for genome maintenance by resolving tangled genomic DNA. In addition, TopoII contributes to the structural integrity of mitotic chromosomes and to the activation of cell cycle checkpoints in mitosis. Post-translational modification of TopoII is one of the key mechanisms by which its broad functions are regulated during mitosis. SUMOylation of TopoII is conserved in eukaryotes and plays a critical role in chromosome segregation. Using Xenopus laevis egg extract, we demonstrated previously that TopoIIα is modified by SUMO on mitotic chromosomes and that its activity is modulated via SUMOylation of its lysine at 660. However, both biochemical and genetic analyses indicated that TopoII has multiple SUMOylation sites in addition to Lys660, and the functions of the other SUMOylation sites were not clearly determined. In this study, we identified the SUMOylation sites on the C-terminal domain (CTD) of TopoIIα. CTD SUMOylation did not affect TopoIIα activity, indicating that its function is distinct from that of Lys660 SUMOylation. We found that CTD SUMOylation promotes protein binding and that Claspin, a well-established cell cycle checkpoint mediator, is one of the SUMOylation-dependent binding proteins. Claspin harbors 2 SUMO-interacting motifs (SIMs), and its robust association to mitotic chromosomes requires both the SIMs and TopoIIα-CTD SUMOylation. Claspin localizes to the mitotic centromeres depending on mitotic SUMOylation, suggesting that TopoIIα-CTD SUMOylation regulates the centromeric localization of Claspin. Our findings provide a novel mechanistic insight regarding how TopoIIα-CTD SUMOylation contributes to mitotic centromere activity.
Collapse
Affiliation(s)
- Hyunju Ryu
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
- Laboratory of Gene Regulation and Development; NICHD, National Institutes of Health; Bethesda, MD USA
- Current affiliation: Department of Biochemistry & Molecular Biology; Johns Hopkins University; Baltimore, MD USA
| | - Makoto M Yoshida
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | - Vinidhra Sridharan
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | - Akiko Kumagai
- Division of Biology and Biological Engineering; California Institute of Technology; Pasadena, CA USA
| | - William G Dunphy
- Division of Biology and Biological Engineering; California Institute of Technology; Pasadena, CA USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development; NICHD, National Institutes of Health; Bethesda, MD USA
| | - Yoshiaki Azuma
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| |
Collapse
|
16
|
Baxter J. “Breaking Up Is Hard to Do”: The Formation and Resolution of Sister Chromatid Intertwines. J Mol Biol 2015; 427:590-607. [DOI: 10.1016/j.jmb.2014.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
17
|
Affiliation(s)
- Ronald D Vale
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
18
|
Colflesh DE, Conlon KA, Berrios M. Subnuclear Localization ofDrosophilaChromatin Remodeling Protein 1 (CRP1). J Histotechnol 2013. [DOI: 10.1179/his.1999.22.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Remeseiro S, Losada A. Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 2013; 25:63-71. [PMID: 23219370 DOI: 10.1016/j.ceb.2012.10.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/18/2012] [Indexed: 12/15/2022]
Abstract
Cohesin is a four subunit complex, conserved from yeast to man, with the ability to hold together two DNA segments within its ring-shaped structure. When the two segments belong to sister chromatids, cohesin is mediating cohesion, which is essential for chromosome segregation in mitosis and meiosis and for homologous DNA repair. When the two DNA segments are in the same chromatid, a loop is formed. These chromatin loops are emerging as a mechanism for controlling the communication between enhancers and promoters and thereby regulate gene expression. They also facilitate DNA replication and recombination. Given all its essential functions, it is not surprising that mutations in cohesin and its interacting factors have been associated to cancer and developmental syndromes known as cohesinopathies.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | |
Collapse
|
20
|
Telley IA, Gáspár I, Ephrussi A, Surrey T. A single Drosophila embryo extract for the study of mitosis ex vivo. Nat Protoc 2013; 8:310-24. [PMID: 23329004 DOI: 10.1038/nprot.2013.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spindle assembly and chromosome segregation rely on a complex interplay of biochemical and mechanical processes. Analysis of this interplay requires precise manipulation of endogenous cellular components and high-resolution visualization. Here we provide a protocol for generating an extract from individual Drosophila syncytial embryos that supports repeated mitotic nuclear divisions with native characteristics. In contrast to the large-scale, metaphase-arrested Xenopus egg extract system, this assay enables the serial generation of extracts from single embryos of a genetically tractable organism, and each extract contains dozens of autonomously dividing nuclei that can be prepared and imaged within 60-90 min after embryo collection. We describe the microscopy setup and micropipette production that facilitate single-embryo manipulation, the preparation of embryos and the steps for making functional extracts that allow time-lapse microscopy of mitotic divisions ex vivo. The assay enables a unique combination of genetic, biochemical, optical and mechanical manipulations of the mitotic machinery.
Collapse
Affiliation(s)
- Ivo A Telley
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | | | | | | |
Collapse
|
21
|
Salmon ED, Shaw SL, Waters JC, Waterman-Storer CM, Maddox PS, Yeh E, Bloom K. A high-resolution multimode digital microscope system. Methods Cell Biol 2013; 114:179-210. [PMID: 23931508 DOI: 10.1016/b978-0-12-407761-4.00009-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Edward D Salmon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Vuong MC, Hasegawa LS, Eastmond DA. A comparative study of the cytotoxic and genotoxic effects of ICRF-154 and bimolane, two catalytic inhibitors of topoisomerase II. Mutat Res 2012; 750:63-71. [PMID: 23000430 DOI: 10.1016/j.mrgentox.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/16/2022]
Abstract
ICRF-154 and bimolane have been used for the treatment of cancer, psoriasis, and uveitis in humans. Previous reports have revealed that the two drugs are topoisomerase II catalytic inhibitors, and patients treated with these agents have developed unique types of secondary leukemia. A study published in 1984 by Camerman and colleagues proposed that the therapeutic effects of bimolane could be due to ICRF-154, an impurity present within the bimolane samples that may also be responsible for the toxic effects attributed to bimolane. To date, this hypothesis has not been evaluated. In addition, little is known about the potential cytotoxic and genotoxic effects of ICRF-154. In this study, a combination of in vitro tests in human TK6 lymphoblastoid cells has been used to characterize the cytotoxic and genotoxic effects of ICRF-154 and bimolane as well as to compare the results for the two chemicals. ICRF-154 and bimolane were both cytotoxic, exhibiting very similar effects in three measures of cytotoxicity and cell proliferation. In the cytokinesis-block micronucleus assay with CREST-antibody staining, the two agents similarly induced chromosome breakage and, to a lesser extent, chromosome loss. Intriguingly, both drugs resulted in the formation of binucleated cells, perhaps as a consequence of an interference with cytokinesis. To further investigate their aneugenic effects, flow cytometry and fluorescence in situ hybridization analyses revealed that both compounds also produced similar levels of non-disjunction and polyploidy. In each of the cellular and cytogenetic assays employed, the responses of the ICRF-154-treated cells were very similar to those observed with the bimolane, and generally occurred at equimolar test concentrations. Our results, combined with those from previous studies, strongly suggest that bimolane degrades to ICRF-154, and that ICRF-154 is most likely the chemical species responsible for the cytotoxic, genotoxic, and leukemogenic effects exerted by bimolane.
Collapse
Affiliation(s)
- Minh C Vuong
- Environmental Toxicology Graduate Program and Department of Cell Biology & Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
23
|
A model for chromosome condensation based on the interplay between condensin and topoisomerase II. Trends Genet 2012; 28:110-7. [DOI: 10.1016/j.tig.2011.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 01/15/2023]
|
24
|
Fanconi anaemia proteins are associated with sister chromatid bridging in mitosis. Int J Hematol 2011; 93:440-445. [PMID: 21472397 DOI: 10.1007/s12185-011-0818-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/17/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
The maintenance of genome stability is critical for the suppression of cancer and premature ageing. The maintenance of the human genome requires hundreds of proteins involved in DNA repair, DNA replication, chromosome segregation and cell cycle checkpoint responses. A number of genetic disorders exist in man where a breakdown in genome maintenance is associated with cancer predisposition. Amongst these are Bloom's syndrome (BS) and Fanconi anaemia (FA). The BS and FA gene products co-operate in the repair of damaged DNA. In this review, we focus on interactions between BS and FA proteins that specifically occur during chromosome segregation in mitosis. The BS protein, BLM, was shown recently to define a novel class of anaphase DNA bridge structures that, in some cases, also contain FA proteins. We will discuss the possible source of these bridges and the role that FA proteins and BLM might play in their removal.
Collapse
|
25
|
Yoo JM, Kim YJ, Lee SJ, Kim SH. Sequential administration of camptothecin sensitizes human colon cancer HCT116 cells to paclitaxel via p21Cip1/WAF1. Anim Cells Syst (Seoul) 2011. [DOI: 10.1080/19768354.2011.555187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
26
|
Iwamatsu T. Chromosome formation during fertilization in eggs of the teleost Oryzias latipes. Methods Mol Biol 2011; 761:97-124. [PMID: 21755444 DOI: 10.1007/978-1-61779-182-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Upon fertilization, eggs shift their cell cycle from the meiotic to the mitotic pattern for embryogenesis. The information on chromosome formation has been accumulated by various experiments using inhibitors to affect formation and behavior of chromosomes in the cycle of cell proliferation. Based on experimental results on meiosis and early stages of development of the teleost Oryzias latipes, we discuss the roles of the activities of histone H1 kinase, microtubule-associated protein kinase, DNA polymerase, DNA topoisomerase, and other cytoplasmic factors that play a crucial role in formation and separation of chromosomes.
Collapse
|
27
|
Orta ML, Domínguez I, Pastor N, Cortés F, Mateos S. The role of the DNA hypermethylating agent Budesonide in the decatenating activity of DNA topoisomerase II. Mutat Res 2010; 694:45-52. [PMID: 20883705 DOI: 10.1016/j.mrfmmm.2010.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/31/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022]
Abstract
Catenations between sister chromatids result from DNA replication and must be resolved to ensure proper chromatid segregation in mitosis. Functionally active Topoisomerase II (Topo II), through its mechanism of concerted breaking and rejoining of double stranded DNA, is required to carry out this fundamental process. In previous studies we have shown that modifications in DNA sequence by halogenated pyrimidines and by the demethylating agent 5-azacytidine leads to malfunction of Topo II that results in an increased yield of endorreduplicated cells as a result of segregation failure. In the present work we have evaluated the possible influence of the methylating agent Budesonide to modify the frequency of endoreduplicated cells in AA8 Chinese hamster cell population. Our results seem to indicate that when Budesonide was administered for two consecutive cell cycles did induce an increase in the yield of endoreduplicated cells, as previously observed for the hypomethylating agent 5-azaC. We have also examined the possible relationship between extensive hypermethylation induced by Budesonide in DNA and stabilization of cleavable complexes by m-AMSA. Taken as a whole, our results show that the degree of methylation in DNA correlates with the effectiveness of m-AMSA to stabilize the Topo II-DNA complexes and to induce DNA cleavage. These findings evidence for the first time the functional importance of DNA hyper- and hypomethylation changes as epigenetic factors able to modulate Topo II activity for proper chromosome segregation.
Collapse
Affiliation(s)
- Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
28
|
Wozniak R, Burke B, Doye V. Nuclear transport and the mitotic apparatus: an evolving relationship. Cell Mol Life Sci 2010; 67:2215-30. [PMID: 20372967 PMCID: PMC11115906 DOI: 10.1007/s00018-010-0325-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
The trafficking of macromolecules between the cytoplasm and the nucleus is controlled by the nuclear pore complexes (NPCs) and various transport factors that facilitate the movement of cargos through the NPCs and their accumulation in the target compartment. While their functions in transport are well established, an ever-growing number of observations have also linked components of the nuclear transport machinery to processes that control chromosome segregation during mitosis, including spindle assembly, kinetochore function, and the spindle assembly checkpoint. In this review, we will discuss this evolving area of study and emerging hypotheses that propose key roles for components of the nuclear transport apparatus in mitotic progression.
Collapse
Affiliation(s)
- Richard Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | | | | |
Collapse
|
29
|
León LG, Ríos-Luci C, Tejedor D, Pérez-Roth E, Montero JC, Pandiella A, García-Tellado F, Padrón JM. Mitotic Arrest Induced by a Novel Family of DNA Topoisomerase II Inhibitors. J Med Chem 2010; 53:3835-9. [DOI: 10.1021/jm100155y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leticia G. León
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
- Instituto Canario de Investigación del Cáncer (ICIC),
| | - Carla Ríos-Luci
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), C/Astrofísico Francisco Sánchez 3, 38206 La Laguna, Spain
- Instituto Canario de Investigación del Cáncer (ICIC),
| | - Eduardo Pérez-Roth
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Juan C. Montero
- Centro de Investigación del Cáncer, IBMCC/CSIC—Universidad de Salamanca, Salamanca, Spain
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, IBMCC/CSIC—Universidad de Salamanca, Salamanca, Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), C/Astrofísico Francisco Sánchez 3, 38206 La Laguna, Spain
- Instituto Canario de Investigación del Cáncer (ICIC),
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
- Instituto Canario de Investigación del Cáncer (ICIC),
| |
Collapse
|
30
|
Wang LHC, Mayer B, Stemmann O, Nigg EA. Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. J Cell Sci 2010; 123:806-13. [PMID: 20144989 DOI: 10.1242/jcs.058255] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sister chromatid cohesion is mediated by DNA catenation and proteinaceous cohesin complexes. The recent visualization of PICH (Plk1-interacting checkpoint helicase)-coated DNA threads in anaphase cells raises new questions as to the role of DNA catenation and its regulation in time and space. In the present study we show that persistent DNA catenation induced by inhibition of Topoisomerase-IIalpha can contribute to sister chromatid cohesion in the absence of cohesin complexes and that resolution of catenation is essential for abscission. Furthermore, we use an in vitro chromatid separation assay to investigate the temporal and functional relationship between cohesin removal and Topoisomerase-IIalpha-mediated decatenation. Our data suggest that centromere decatenation can occur only after separase activation and cohesin removal, providing a plausible explanation for the persistence of centromere threads after anaphase onset.
Collapse
Affiliation(s)
- Lily Hui-Ching Wang
- Department of Cell Biology, Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
31
|
Higgins JMG. Haspin: a newly discovered regulator of mitotic chromosome behavior. Chromosoma 2009; 119:137-47. [PMID: 19997740 DOI: 10.1007/s00412-009-0250-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 01/20/2023]
Abstract
The haspins are divergent members of the eukaryotic protein kinase family that are conserved in many eukaryotic lineages including animals, fungi, and plants. Recently-solved crystal structures confirm that the kinase domain of human haspin has unusual structural features that stabilize a catalytically active conformation and create a distinctive substrate binding site. Haspin localizes predominantly to chromosomes and phosphorylates histone H3 at threonine-3 during mitosis, particularly at inner centromeres. This suggests that haspin directly regulates chromosome behavior by modifying histones, although it is likely that additional substrates will be identified in the future. Depletion of haspin by RNA interference in human cell lines causes premature loss of centromeric cohesin from chromosomes in mitosis and failure of metaphase chromosome alignment, leading to activation of the spindle assembly checkpoint and mitotic arrest. Haspin overexpression stabilizes chromosome arm cohesion. Haspin, therefore, appears to be required for protection of cohesion at mitotic centromeres. Saccharomyces cerevisiae homologues of haspin, Alk1 and Alk2, are also implicated in regulation of mitosis. In mammals, haspin is expressed at high levels in the testis, particularly in round spermatids, so it seems likely that haspin has an additional role in post-meiotic spermatogenesis. Haspin is currently the subject of a number of drug discovery efforts, and the future use of haspin inhibitors should provide new insight into the cellular functions of these kinases and help determine the utility of, for example, targeting haspin for cancer therapy.
Collapse
Affiliation(s)
- Jonathan M G Higgins
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Germe T, Miller K, Cooper JP. A non-canonical function of topoisomerase II in disentangling dysfunctional telomeres. EMBO J 2009; 28:2803-11. [PMID: 19680223 PMCID: PMC2750024 DOI: 10.1038/emboj.2009.223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 07/13/2009] [Indexed: 11/09/2022] Open
Abstract
The decatenation activity of topoisomerase II (Top2), which is widely conserved within the eukaryotic domain, is essential for chromosomal segregation in mitosis. It is less clear, however, whether Top2 performs the same function uniformly across the whole genome, and whether all its functions rely on decatenation. In the fission yeast, Schizosaccharomyces pombe, telomeres are bound by Taz1, which promotes smooth replication fork progression through the repetitive telomeric sequences. Hence, replication forks stall at taz1 Delta telomeres. This leads to telomeric entanglements at low temperatures (
Collapse
Affiliation(s)
- Thomas Germe
- Telomere Biology Laboratory, Cancer Research, London, UK
| | - Kyle Miller
- Telomere Biology Laboratory, Cancer Research, London, UK
| | | |
Collapse
|
33
|
Serrano Á, Rodríguez-Corsino M, Losada A. Heterochromatin protein 1 (HP1) proteins do not drive pericentromeric cohesin enrichment in human cells. PLoS One 2009; 4:e5118. [PMID: 19352502 PMCID: PMC2662427 DOI: 10.1371/journal.pone.0005118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 03/09/2009] [Indexed: 01/02/2023] Open
Abstract
Sister chromatid cohesion mediated by cohesin is essential for accurate chromosome segregation. Classical studies suggest that heterochromatin promotes cohesion, but whether this happens through regulation of cohesin remains to be determined. Heterochromatin protein 1 (HP1) is a major component of heterochromatin. In fission yeast, the HP1 homologue Swi6 interacts with cohesin and is required for proper targeting and/or stabilization of cohesin at the centromeric region. To test whether this pathway is conserved in human cells, we have examined the behavior of cohesin in cells in which the levels of HP1 alpha, beta or gamma (the three HP1 proteins present in mammalian organisms) have been reduced by siRNA. We have also studied the consequences of treating human cells with drugs that change the histone modification profile of heterochromatin and thereby affect HP1 localization. Our results show no evidence for a requirement of HP1 proteins for either loading of bulk cohesin onto chromatin in interphase or retention of cohesin at pericentric heterochromatin in mitosis. However, depletion of HP1gamma leads to defects in mitotic progression.
Collapse
Affiliation(s)
- Ángel Serrano
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
34
|
Lee MT, Bachant J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst) 2009; 8:557-68. [PMID: 19230795 DOI: 10.1016/j.dnarep.2009.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA topoisomerase II (topo II) is an essential determinant of chromosome structure and function, acting to resolve topological problems inherent in recombining, transcribing, replicating and segregating DNA. In particular, the unique decatenating activity of topo II is required for sister chromatids to disjoin and separate in mitosis. Topo II exhibits a dynamic localization pattern on mitotic chromosomes, accumulating at centromeres and axial chromosome cores prior to anaphase. In organisms ranging from yeast to humans, a fraction of topo II is targeted for SUMO conjugation in mitotic cells, and here we review our current understanding of the significance of this modification. As we shall see, an emerging consensus is that in metazoans SUMO modification is required for topo II to accumulate at centromeres, and that in the absence of this regulation there is an elevated frequency of chromosome non-disjunction, segregation errors, and aneuploidy. The underlying molecular mechanisms for how SUMO controls topo II are as yet unclear. In closing, however, we will evaluate two possible interpretations: one in which SUMO promotes enzyme turnover, and a second in which SUMO acts as a localization tag for topo II chromosome trafficking.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
35
|
Abstract
Posttranslational protein modification by the Small Ubiquitin-like MOdifiers (SUMO) is involved in many cellular functions including organization of nuclear structures and chromatin, transcriptional regulation, and nucleo-cytoplasmic transport. Both genetic and biochemical studies indicate that the SUMO modification pathway plays an important role in proper cell cycle control, especially in the normal progression of mitosis. DNA topoisomerase II has been shown to be modified by SUMO in budding yeast as well as in vertebrates. We have shown by biochemical analysis using the Xenopus egg extract (XEE) cell-free assay system that DNA topoisomerase IIalpha (Topo IIalpha) is modified by SUMO-2/3 on mitotic chromosomes in the early stages of mitosis. Inhibition of mitotic SUMOylation in the XEE assay system causes aberrant sister chromatid separation in anaphase and alters Topo IIalpha association with chromosomes.
Collapse
Affiliation(s)
- Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
36
|
Cai S, Weaver LN, Ems-McClung SC, Walczak CE. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 2008; 20:1348-59. [PMID: 19116309 DOI: 10.1091/mbc.e08-09-0971] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kinesin-14 family proteins are minus-end directed motors that cross-link microtubules and play key roles during spindle assembly. We showed previously that the Xenopus Kinesin-14 XCTK2 is regulated by Ran via the association of a bipartite NLS in the tail of XCTK2 with importin alpha/beta, which regulates its ability to cross-link microtubules during spindle formation. Here we show that mutation of the nuclear localization signal (NLS) of human Kinesin-14 HSET caused an accumulation of HSET in the cytoplasm, which resulted in strong microtubule bundling. HSET overexpression in HeLa cells resulted in longer spindles, similar to what was seen with NLS mutants of XCTK2 in extracts, suggesting that Kinesin-14 proteins play similar roles in extracts and in somatic cells. Conversely, HSET knockdown by RNAi resulted in shorter spindles but did not affect pole formation. The change in spindle length was not dependent on K-fibers, as elimination of the K-fiber by Nuf2 RNAi resulted in an increase in spindle length that was partially rescued by co-RNAi of HSET. However, these changes in spindle length did require microtubule sliding, as overexpression of an HSET mutant that had its sliding activity uncoupled from its ATPase activity resulted in cells with spindle lengths shorter than cells overexpressing wild-type HSET. Our results are consistent with a model in which Ran regulates the association of Kinesin-14s with importin alpha/beta to prevent aberrant cross-linking and bundling of microtubules by sequestering Kinesin-14s in the nucleus during interphase. Kinesin-14s act during mitosis to cross-link and slide between parallel microtubules to regulate spindle length.
Collapse
Affiliation(s)
- Shang Cai
- Biochemistry Program, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
38
|
Coelho PA, Queiroz-Machado J, Carmo AM, Moutinho-Pereira S, Maiato H, Sunkel CE. Dual role of topoisomerase II in centromere resolution and aurora B activity. PLoS Biol 2008; 6:e207. [PMID: 18752348 PMCID: PMC2525683 DOI: 10.1371/journal.pbio.0060207] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 07/16/2008] [Indexed: 11/19/2022] Open
Abstract
Chromosome segregation requires sister chromatid resolution. Condensins are essential for this process since they organize an axial structure where topoisomerase II can work. How sister chromatid separation is coordinated with chromosome condensation and decatenation activity remains unknown. We combined four-dimensional (4D) microscopy, RNA interference (RNAi), and biochemical analyses to show that topoisomerase II plays an essential role in this process. Either depletion of topoisomerase II or exposure to specific anti-topoisomerase II inhibitors causes centromere nondisjunction, associated with syntelic chromosome attachments. However, cells degrade cohesins and timely exit mitosis after satisfying the spindle assembly checkpoint. Moreover, in topoisomerase II-depleted cells, Aurora B and INCENP fail to transfer to the central spindle in late mitosis and remain tightly associated with centromeres of nondisjoined sister chromatids. Also, in topoisomerase II-depleted cells, Aurora B shows significantly reduced kinase activity both in S2 and HeLa cells. Codepletion of BubR1 in S2 cells restores Aurora B kinase activity, and consequently, most syntelic attachments are released. Taken together, our results support that topoisomerase II ensures proper sister chromatid separation through a direct role in centromere resolution and prevents incorrect microtubule-kinetochore attachments by allowing proper activation of Aurora B kinase.
Collapse
Affiliation(s)
- Paula A Coelho
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Joana Queiroz-Machado
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | | | | | - Helder Maiato
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Laboratory of Cell and Molecular Biology, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Claudio E Sunkel
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Park SW, Parrott AM, Fritz DT, Park Y, Mathews MB, Lee CG. Regulation of the catalytic function of topoisomerase II alpha through association with RNA. Nucleic Acids Res 2008; 36:6080-90. [PMID: 18820297 PMCID: PMC2577339 DOI: 10.1093/nar/gkn614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topoisomerase IIα interacts with numerous nuclear factors, through which it is engaged in diverse nuclear events such as DNA replication, transcription and the formation or maintenance of heterochromatin. We previously reported that topoisomerase IIα interacts with RNA helicase A (RHA), consistent with a recent view that topoisomerases and helicases function together. Intrigued by our observation that the RHA–topoisomerase IIα interaction is sensitive to ribonuclease A, we explored whether the RHA–topoisomerase IIα interaction can be recapitulated in vitro using purified proteins and a synthetic RNA. This work led us to an unexpected finding that an RNA-binding activity is intrinsically associated with topoisomerase IIα. Topoisomerase IIα stably interacted with RNA harboring a 3′-hydroxyl group but not with RNA possessing a 3′-phosphate group. When measured in decatenation and relaxation assays, RNA binding influenced the catalytic function of topoisomerase IIα to regulate DNA topology. We discuss a possible interaction of topoisomerase IIα with the poly(A) tail and G/U-rich 3′-untranslated region (3′-UTR) of mRNA as a key step in transcription termination.
Collapse
Affiliation(s)
- Seung-Won Park
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
40
|
Losada A. The regulation of sister chromatid cohesion. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1786:41-8. [PMID: 18474253 DOI: 10.1016/j.bbcan.2008.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/06/2008] [Accepted: 04/08/2008] [Indexed: 01/20/2023]
Abstract
Sister chromatid cohesion is a major feature of the eukaryotic chromosome. It entails the formation of a physical linkage between the two copies of a chromosome that result from the duplication process. This linkage must be maintained until chromosome segregation takes place in order to ensure the accurate distribution of the genomic information. Cohesin, a multiprotein complex conserved from yeast to humans, is largely responsible for sister chromatid cohesion. Other cohesion factors regulate the interaction of cohesin with chromatin as well as the establishment and dissolution of cohesion. In addition, the presence of cohesin throughout the genome appears to influence processes other than chromosome segregation, such as transcription and DNA repair. In this review I summarize recent advances in our understanding of cohesin function and regulation in mitosis, and discuss the consequences of impairing the cohesion process at the level of the whole organism.
Collapse
Affiliation(s)
- Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| |
Collapse
|
41
|
RCS1, a substrate of APC/C, controls the metaphase to anaphase transition. Proc Natl Acad Sci U S A 2008; 105:13415-20. [PMID: 18757745 DOI: 10.1073/pnas.0709227105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) controls the onset of anaphase by targeting securin for destruction. We report here the identification and characterization of a substrate of APC/C, RCS1, as a mitotic regulator that controls the metaphase-to-anaphase transition. We showed that the levels of RCS1 fluctuate in the cell cycle, peaking in mitosis and dropping drastically as cells exit into G(1). Indeed, RCS1 is efficiently ubiquitinated by APC/C in vitro and degraded during mitotic exit in a Cdh1-dependent manner in vivo. APC/C recognizes a unique D-box at the N terminus of RCS1, as mutations of this D-box abolished ubiquitination in vitro and stabilized the mutant protein in vivo. RCS1 controls the timing of the anaphase onset, because the loss of RCS1 resulted in a faster progression from the metaphase to anaphase and accelerated degradation of securin and cyclin B. Biochemically, mitotic RCS1 associates with the NuRD chromatin-remodeling complex, and this RCS1 complex is likely involved in regulating gene expression or chromatin structure, which in turn may control anaphase onset. Our study uncovers a complex regulatory network for the metaphase-to-anaphase transition.
Collapse
|
42
|
Warsi TH, Navarro MS, Bachant J. DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. Mol Biol Cell 2008; 19:4421-33. [PMID: 18701701 DOI: 10.1091/mbc.e08-05-0547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Centromeric (CEN) chromatin is placed under mechanical tension and stretches as kinetochores biorient on the mitotic spindle. This deformation could conceivably provide a readout of biorientation to error correction mechanisms that monitor kinetochore-spindle interactions, but whether CEN chromatin acts in a tensiometer capacity is unresolved. Here, we report observations linking yeast Topoisomerase II (Top2) to both CEN mechanics and assessment of interkinetochore tension. First, in top2-4 and sumoylation-resistant top2-SNM mutants CEN chromatin stretches extensively during biorientation, resulting in increased sister kinetochore separation and preanaphase spindle extension. Our data indicate increased CEN stretching corresponds with alterations to CEN topology induced in response to tension. Second, Top2 potentiates aspects of the tension checkpoint. Mutations affecting the Mtw1 kinetochore protein activate Ipl1 kinase to detach kinetochores and induce spindle checkpoint arrest. In mtw1top2-4 and mtw1top2-SNM mutants, however, kinetochores are resistant to detachment and checkpoint arrest is attenuated. For top2-SNM cells, CEN stretching and checkpoint attenuation occur even in the absence of catenation linking sister chromatids. In sum, Top2 seems to play a novel role in CEN compaction that is distinct from decatenation. Perturbations to this function may allow weakened kinetochores to stretch CENs in a manner that mimics tension or evades Ipl1 surveillance.
Collapse
Affiliation(s)
- Tariq H Warsi
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
43
|
Chromosome damage in mitosis induces BubR1 activation and prometaphase arrest. FEBS Lett 2008; 582:1700-6. [DOI: 10.1016/j.febslet.2008.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/08/2008] [Accepted: 04/14/2008] [Indexed: 12/20/2022]
|
44
|
Abstract
The protocols in this unit describe the preparation of materials for an in vitro assay of mitotic spindle assembly in Xenopus egg extracts. Fluorochrome-labeled tubulin is used to visualize microtubule asters and spindles.
Collapse
Affiliation(s)
- J Merlie
- University of California, Berkeley, Berkeley, Carolina, USA
| | | |
Collapse
|
45
|
Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation. Chromosoma 2007; 117:123-35. [PMID: 17989990 PMCID: PMC2755729 DOI: 10.1007/s00412-007-0131-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/17/2022]
Abstract
PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and chromatin-immunoprecipitation to demonstrate that PICH associates with centromeric chromatin during anaphase. Furthermore, by careful analysis of PICH-positive anaphase threads through FISH as well as bromo-deoxyurdine and CREST labeling, we strengthen the evidence that these threads comprise mainly alphoid centromere deoxyribonucleic acid. Finally, by timing the addition of ICRF-193 (a specific inhibitor of topoisomerase-II alpha) to cells synchronized in anaphase, we demonstrate that topoisomerase activity is required specifically to resolve PICH-positive threads during anaphase (as opposed to being required to prevent the formation of such threads during earlier cell cycle stages). These data indicate that PICH associates with centromeres during anaphase and that most PICH-positive threads evolve from inner centromeres as these stretch in response to tension. Moreover, they show that topoisomerase activity is required during anaphase for the resolution of PICH-positive threads, implying that the complete separation of sister chromatids occurs later than previously assumed.
Collapse
|
46
|
Hannak E, Heald R. Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nat Protoc 2007; 1:2305-14. [PMID: 17406472 DOI: 10.1038/nprot.2006.396] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Extracts from Xenopus laevis eggs provide a powerful system for the study of cell division processes in vitro through biochemical reconstitution and manipulation, and microscopic analysis. We provide protocols for the preparation of metaphase-arrested extracts and in vitro assays to examine the following pathways of spindle assembly: 1) Sperm nuclei added to meiotic extracts, supporting the formation of half-spindles and bipolar spindle structures around unreplicated chromosomes; 2) sperm nuclei added to extracts that cycle through interphase and form spindles that are capable of undergoing anaphase and chromosome segregation; and 3) spindle formation around chromatin-coated beads. Finally, we describe methods to inhibit a specific protein by immunodepletion or addition of an inhibitor such as a dominant-negative construct. These techniques can be used to analyze the mitotic function of a given protein. It takes approximately 1.5 h to prepare the extract, 1-3 h for spindle-assembly experiments and an additional 1-3 h if immunodepletion is performed.
Collapse
Affiliation(s)
- Eva Hannak
- University of California, Berkeley, 315 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
47
|
Emanuele MJ, Stukenberg PT. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment. Cell 2007; 130:893-905. [PMID: 17803911 DOI: 10.1016/j.cell.2007.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 05/01/2007] [Accepted: 07/05/2007] [Indexed: 11/17/2022]
Abstract
For chromosomes to congress and segregate during cell division, kinetochores must form stable attachments with spindle microtubules. We find that the centrosome protein, xCep57, localizes to kinetochores and interacts with the kinetochore proteins Zwint, Mis12, and CLIP-170. Immunodepletion of xCep57 from egg extracts yields weakened and elongated bipolar spindles which fail to align chromosomes. In the absence of xCep57, tension is lost between sister kinetochores, and spindle microtubules are no longer resistant to low doses of nocodazole. xCep57 inhibition on isolated mitotic chromosomes inhibits kinetochore-microtubule binding in vitro. xCep57 also interacts with gamma-tubulin. In xCep57 immunodepleted extracts, sperm centrosomes nucleate with normal kinetics, but are unable maintain microtubule anchorage. This characterization places xCep57 in a novel class of proteins required for stable microtubule attachments at the kinetochore and at the centrosome and suggests that the mechanism of microtubule binding at these two places is mechanistically similar.
Collapse
Affiliation(s)
- Michael J Emanuele
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
48
|
Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ. Cohesin is dispensable for centromere cohesion in human cells. PLoS One 2007; 2:e318. [PMID: 17389909 PMCID: PMC1820851 DOI: 10.1371/journal.pone.0000318] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 02/26/2007] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. PRINCIPAL FINDINGS We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation. CONCLUSIONS These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation.
Collapse
Affiliation(s)
- Laura A. Díaz-Martínez
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Juan F. Giménez-Abián
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Proliferación Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
49
|
Abstract
In this issue, Baumann et al. (2007) identify a helicase PICH that localizes to "threads" that remain connected between sister kinetochores after they have separated in anaphase. These threads are thought to be catenated centromeric DNA. PICH contributes to the mitotic checkpoint by recruiting Mad2 to kinetochores and is proposed to regulate checkpoint signaling by monitoring tension at centromeres.
Collapse
Affiliation(s)
- Tim J Yen
- Fox Chase Cancer Center, Philadelphia, PA 19083, USA.
| |
Collapse
|
50
|
Baumann C, Körner R, Hofmann K, Nigg EA. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 2007; 128:101-14. [PMID: 17218258 DOI: 10.1016/j.cell.2006.11.041] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/06/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
We identify PICH (Plk1-interacting checkpoint "helicase"), a member of the SNF2 ATPase family, as an interaction partner and substrate of Plk1. Following phosphorylation of PICH on the Cdk1 site T1063, Plk1 is recruited to PICH and controls its localization. Starting in prometaphase, PICH accumulates at kinetochores and inner centromeres. Moreover, it decorates threads that form during metaphase before increasing in length and progressively diminishing during anaphase. PICH-positive threads connect sister kinetochores and are dependent on tension, sensitive to DNase, and exacerbated in response to premature loss of cohesins or inhibition of topoisomerase II, suggesting that they represent stretched centromeric chromatin. Depletion of PICH causes the selective loss of Mad2 from kinetochores and completely abrogates the spindle checkpoint, resulting in massive chromosome missegregation. These data identify PICH as a novel essential component of checkpoint signaling. We propose that PICH binds to catenated centromere-related DNA to monitor tension developing between sister kinetochores.
Collapse
Affiliation(s)
- Christoph Baumann
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|