1
|
Kornblatt JA. Reduction of canine plasminogen leads to an expanded molecule which precipitates. PLoS One 2009; 4:e6196. [PMID: 19593387 PMCID: PMC2703797 DOI: 10.1371/journal.pone.0006196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/13/2009] [Indexed: 11/19/2022] Open
Abstract
Canine plasminogen is made up of seven domains. In each domain there are several cysteines that are linked by disulfide bonds. Reduction of a limited number of the cystines destabilizes the protein such that it precipitates. The bond or bonds that are broken provide about 14 kcal of stabilization energy. Circular dichroism and dynamic light scattering indicate that there is probably an intermediate that is formed prior to precipitation and that the intermediate is somewhat larger than the compact form of plasminogen.
Collapse
Affiliation(s)
- Jack A Kornblatt
- Enzyme Research Group, Department of Biology, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:69-118. [PMID: 19815177 PMCID: PMC2878191 DOI: 10.1016/s1937-6448(09)78002-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell-type-independent and cell-type-specific transcription factors, posttranslational modifications, and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this chapter in the physiological and pathophysiological context of vessel function.
Collapse
Affiliation(s)
- Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Brant Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
3
|
Boute N, Zilberfarb V, Camoin L, Bonnafous S, Le Marchand-Brustel Y, Issad T. The formation of an intrachain disulfide bond in the leptin protein is necessary for efficient leptin secretion. Biochimie 2004; 86:351-6. [PMID: 15358050 DOI: 10.1016/j.biochi.2004.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
Leptin is a cytokine secreted by the adipose tissue that is involved in the control of body weight. We previously showed that a point mutation (R105W) in leptin results in leptin deficiency, marked obesity and hypogonadism in humans adults. Expression in COS1 cells showed impaired secretion and intracellular accumulation of the mutated protein. However, impaired secretion of the mutant leptin had not been demonstrated in adipose cells. In this work, we demonstrate that secretion of R105W mutant is impaired in rat and human adipocytes. We also show that R105W mutant expressed in COS1 cells and in PAZ6 adipocytes forms large molecular aggregates that cannot cross a filtration membrane with a cut-off of 100 kDa. Moreover, we have engineered, by site directed mutagenesis, the cDNAs coding for leptin in which either Cys 117, Cys 167, or both, were replaced by a serine. When expressed in COS1 cells or PAZ6 adipocytes, cysteine mutants also show impaired secretion and formation of large molecular aggregates. Therefore, our work indicates that the formation of an intramolecular disulfide bridge is necessary for normal processing and secretion of leptin. Moreover, the similarity of the behavior of R105W mutant and cystein mutants suggests that the lack of secretion observed with the naturally occurring mutant could result from impaired disulfide bond formation.
Collapse
Affiliation(s)
- N Boute
- Department of Cell Biology, Institut Cochin, UMR CNRS 8104, Inserm U567, Université Paris 5, 22, rue Méchain, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
4
|
Orsi A, Sparvoli F, Ceriotti A. Role of individual disulfide bonds in the structural maturation of a low molecular weight glutenin subunit. J Biol Chem 2001; 276:32322-9. [PMID: 11418605 DOI: 10.1074/jbc.m103833200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gliadins and glutenins are the major storage proteins that accumulate in wheat endosperm cells during seed development. Although gliadins are mainly monomeric, glutenins consist of very large disulfide-linked polymers made up of high molecular weight and low molecular weight subunits. These polymers are among the largest protein molecules known in nature and are the most important determinants of the viscoelastic properties of gluten. As a first step toward the elucidation of the folding and assembly pathways that lead to glutenin polymer formation, we have exploited an in vitro system composed of wheat germ extract and bean microsomes to examine the role of disulfide bonds in the structural maturation of a low molecular weight glutenin subunit. When conditions allowing the formation of disulfide bonds were established, the in vitro synthesized low molecular weight glutenin subunit was recovered in monomeric form containing intrachain disulfide bonds. Conversely, synthesis under conditions that did not favor the formation of disulfide bonds led to the production of large aggregates from which the polypeptides could not be rescued by the post-translational generation of a more oxidizing environment. These results indicate that disulfide bond formation is essential for the conformational maturation of the low molecular weight glutenin subunit and suggest that early folding steps may play an important role in this process, allowing the timely pairing of critical cysteine residues. To determine which cysteines were important to maintain the protein in monomeric form, we prepared a set of mutants containing selected cysteine to serine substitutions. Our results show that two conserved cysteine residues form a critical disulfide bond that is essential in preventing the exposure of adhesive domains and the consequent formation of aberrant aggregates.
Collapse
Affiliation(s)
- A Orsi
- Istituto Biosintesi Vegetali, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy
| | | | | |
Collapse
|
5
|
Vesicle-binding properties of wild-type and cysteine mutant forms of α1 domain of apolipoprotein B. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31664-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Falk MM. Connexins/connexons. Cell-free expression. Methods Mol Biol 2001; 154:91-116. [PMID: 11218667 PMCID: PMC7121760 DOI: 10.1385/1-59259-043-8:91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
With a few exceptions, all secretory and plasma membrane proteins studied to date are synthesized in the endoplasmic reticulum (ER) membrane. Then, they are transported by successive vesicle budding and fusion from the ER through the Golgi stacks to the plasma membrane following the general intracellular transport route referred to as secretory pathway (originally reviewed in 1). Gap junction connexins have been shown to follow this pathway.
Collapse
Affiliation(s)
- M M Falk
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Falk MM. Cell-free synthesis for analyzing the membrane integration, oligomerization, and assembly characteristics of gap junction connexins. Methods 2000; 20:165-79. [PMID: 10671310 DOI: 10.1006/meth.1999.0934] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For gap junction channels to function, their subunit proteins, referred to as connexins, have to be synthesized and inserted into the cell membrane in their native configuration. Like other transmembrane proteins, connexins are synthesized and inserted cotranslationally into the endoplasmic reticulum membrane. Membrane insertion is followed by their assembly and transport to the plasma membrane. Finally, the end-to-end pairing of two half-channels, referred to as connexons, each provided by one of two neighboring cells, and clustering of the channels into larger plaques complete the gap junction channel formation. Gap junction channel formation is further complicated by the potential assembly of homo- as well as heterooligomeric connexons, and the pairing of identical or different connexons into homo- and heterotypic gap junction channels. In this article, I describe the cell-free synthesis approach that we have used to study the biosynthesis of connexins and gap junction channels. Special emphasis is placed on the synthesis of full-length, membrane-integrated connexins, assembly into gap junction connexons, homo- as well as heterooligomerization, and characterization of connexin-specific assembly signals.
Collapse
Affiliation(s)
- M M Falk
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
8
|
Foote CI, Zhou L, Zhu X, Nicholson BJ. The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 1998; 140:1187-97. [PMID: 9490731 PMCID: PMC2132700 DOI: 10.1083/jcb.140.5.1187] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1997] [Revised: 01/08/1998] [Indexed: 02/06/2023] Open
Abstract
Connexins, like true cell adhesion molecules, have extracellular domains that provide strong and specific homophilic, and in some cases, heterophilic interactions between cells. Though the structure of the binding domains of adhesion proteins have been determined, the extracellular domains of connexins, consisting of two loops of approximately 34-37 amino acids each, are not easily studied in isolation from the rest of the molecule. As an alternative, we used a novel application of site-directed mutagenesis in which four of the six conserved cysteines in the extracellular loops of connexin 32 were moved individually and in all possible pairwise and some quadruple combinations. This mapping allowed us to deduce that all disulfides form between the two loops of a single connexin, with the first cysteine in one loop connected to the third of the other. Furthermore, the periodicity of movements that produced functional channels indicated that these loops are likely to form antiparallel beta sheets. A possible model that could explain how these domains from apposed connexins interact to form a complete channel is discussed.
Collapse
Affiliation(s)
- C I Foote
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260-1300, USA
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- H F Gilbert
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
10
|
Huppa JB, Ploegh HL. In vitro translation and assembly of a complete T cell receptor-CD3 complex. J Exp Med 1997; 186:393-403. [PMID: 9236191 PMCID: PMC2198996 DOI: 10.1084/jem.186.3.393] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1997] [Revised: 06/02/1997] [Indexed: 02/04/2023] Open
Abstract
The T cell receptor for antigen (TCR) is a multisubunit complex that consists of at least seven polypeptides: the clonotypic, disulfide-linked alpha/beta heterodimer that is noncovalently associated with the invariant polypeptides of the CD3 complex (CD3-gamma, -delta, -epsilon) and zeta, a disulfide-linked homodimer. We achieved the complete assembly of the human TCR in an in vitro transcription/translation system supplemented with dog pancreas microsomes by simultaneous translation of the messenger RNAs encoding the TCR-alpha, -beta and CD3-gamma, -delta, -epsilon, and -zeta subunits. CD3-epsilon, one of the subunits that initiates the assembly of the TCR in living cells, forms misfolded, disulfide-linked homooligomers when translated alone. However, co-translation of one of its first binding partners in the course of assembly, CD3-gamma or -delta, led to the expression of mainly monomeric and correctly folded epsilon subunits, the only form we could detect as part of a properly assembled TCR complex. In the absence of these subunits, the ER-resident chaperone calnexin interacted with oligomeric, i.e. misfolded, structures of CD3-epsilon in a glycan-independent manner. A glycan-dependent interaction between CD3-epsilon and calnexin was mediated by CD3-gamma and concerned only monomeric CD3-epsilon complexed with CD3-gamma, but was dispensable for proper folding of CD3-epsilon. We suggest that in addition to its signaling function, CD3-epsilon serves as a monitor for proper subunit assembly of the TCR.
Collapse
Affiliation(s)
- J B Huppa
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
11
|
Falk MM, Buehler LK, Kumar NM, Gilula NB. Cell-free synthesis and assembly of connexins into functional gap junction membrane channels. EMBO J 1997; 16:2703-16. [PMID: 9184217 PMCID: PMC1169881 DOI: 10.1093/emboj/16.10.2703] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several different gap junction channel subunit isotypes, known as connexins, were synthesized in a cell-free translation system supplemented with microsomal membranes to study the mechanisms involved in gap junction channel assembly. Previous results indicated that the connexins were synthesized as membrane proteins with their relevant transmembrane topology. An integrated biochemical and biophysical analysis indicated that the connexins assembled specifically with other connexin subunits. No interactions were detected between connexin subunits and other co-translated transmembrane proteins. The connexins that were integrated into microsomal vesicles assembled into homo- and hetero-oligomeric structures with hydrodynamic properties of a 9S particle, consistent with the properties reported for hexameric gap junction connexons derived from gap junctions in vivo. Further, cell-free assembled homo-oligomeric connexons composed of beta1 or beta2 connexin were reconstituted into synthetic lipid bilayers. Single channel conductances were recorded from these bilayers that were similar to those measured for these connexons produced in vivo. Thus, this is the first direct evidence that the synthesis and assembly of a gap junction connexon can take place in microsomal membranes. Finally, the cell-free system has been used to investigate the properties of alpha1, beta1 and beta2 connexin to assemble into hetero-oligomers. Evidence has been obtained for a selective interaction between individual connexin isotypes and that a signal determining the potential hetero-oligomeric combinations of connexin isotypes may be located in the N-terminal sequence of the connexins.
Collapse
Affiliation(s)
- M M Falk
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
12
|
Bass J, Kurose T, Pashmforoush M, Steiner DF. Fusion of insulin receptor ectodomains to immunoglobulin constant domains reproduces high-affinity insulin binding in vitro. J Biol Chem 1996; 271:19367-75. [PMID: 8702623 DOI: 10.1074/jbc.271.32.19367] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A unique feature of the insulin receptor is that it is dimeric in the absence of ligand. Dimerization of two adjacent transmembrane domain (TMD) alpha helices has been shown to be critical in receptor kinase activation. Moreover, previous work has suggested that the TMD is involved in stabilizing the high-affinity binding site; soluble receptors expressed after simple truncation at the ectodomain-TMD junction have reduced affinity for insulin. To further examine this issue, we have replaced the TMD and intracellular domain of the soluble human insulin receptor (HIRs) with constant domains from immunoglobulin Fc and lambda subunits (HIRs-Fc and HIRs-lambda). Studies of receptor biosynthesis and binding characteristics were performed following transient transfection of receptor cDNAs into human embryonal kidney 293 cells. Each hybrid receptor was initially synthesized as a single chain proreceptor, followed by cleavage into alpha- and beta-Fc or beta-lambda subunits. The majority of secreted protein appeared in the cell medium as fully processed heterotetramer. Fc fragments released from HIRs-Fc by papain digestion and analyzed by nonreducing SDS-polyacrylamide gel electrophoresis were dimeric. Furthermore, dissociation constants for both chimeras were similar to those for the full-length holoreceptor (wild-type receptor, Kd1 = 200 pM and Kd2 = 2 nM; HIRs-Fc, Kd1 = 200 pM and Kd2 = 40 nM; and HIRs-lambda, Kd1 = 200 pM and Kd2 = 5 nM). These results extend previous observations that dimerization of the membrane-proximal ectodomain is necessary to maintain an intact high-affinity insulin-binding site.
Collapse
Affiliation(s)
- J Bass
- Department of Medicine, Section of Endocrinology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
13
|
Billstrom MA, Britt WJ. Postoligomerization folding of human cytomegalovirus glycoprotein B: identification of folding intermediates and importance of disulfide bonding. J Virol 1995; 69:7015-22. [PMID: 7474121 PMCID: PMC189621 DOI: 10.1128/jvi.69.11.7015-7022.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human cytomegalovirus glycoprotein B (gB or UL55) has been demonstrated to be a disulfide-linked homodimer within the envelope of mature virions. Previously, it has been shown that gB undergoes a rapid dimerization nearly coincident with its synthesis. Following dimerization, the molecule slowly folds into a form which can be transported from the endoplasmic reticulum. In this study we have examined the prolonged folding of gB by using a set of defined gB-reactive murine monoclonal antibodies and gB expressed as a recombinant protein in the absence of other human cytomegalovirus proteins. Our results have documented a folding pathway consistent with the relatively rapid dimerization of the translation product followed by delayed conversion into a fully folded molecule. Assembly of the dominant antigenic domain of gB, AD-1, preceded dimerization and folding of the molecule. The fully folded dimer was heat stable, but its conformation was altered by treatment with 2% sodium dodecyl sulfate (SDS), whereas an oligomeric folding intermediate was both heat and SDS stable. Postoligomerization disulfide bond formation could be demonstrated during folding of gB, suggesting that the formation of these covalent bonds could contribute to the prolonged folding of this glycoprotein.
Collapse
Affiliation(s)
- M A Billstrom
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine 35233, USA
| | | |
Collapse
|
14
|
Qu D, Green M. Folding and assembly of a human MHC class II molecule in a cell-free system. DNA Cell Biol 1995; 14:741-51. [PMID: 7669251 DOI: 10.1089/dna.1995.14.741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The assembly of a human major histocompatibility complex (MHC) class II molecule was investigated in a cell-free system capable of the synthesis, sequestration, and processing of the protein chains. As assessed by the conformation-sensitive monoclonal antibody L243, the formation of HLA-DR alpha/beta heterodimer required cotranslation of alpha and beta mRNA in the presence of both oxidized glutathione and canine pancreas endoplasmic reticulum (ER) vesicles. The assembly of alpha/beta dimer could also be initiated by the post-translational addition of oxidized glutathione. Using the post-translational assay system, we investigated the effect of the depletion of ER lumenal content proteins on the folding and assembly of the MHC class II chains. Both the rate and extent of folding of alpha chain and beta chain and the post-translational assembly of alpha/beta dimer is greatly reduced in the depleted ER vesicles. Conversely, the extent of aggregate formation is increased. Upon reconstitution of the depleted ER vesicles with lumenal proteins, the folding of alpha chain is accelerated and the assembly of alpha/beta dimer is increased.
Collapse
Affiliation(s)
- D Qu
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, MO 63104, USA
| | | |
Collapse
|
15
|
Marks MS, Germain RN, Bonifacino JS. Transient aggregation of major histocompatibility complex class II chains during assembly in normal spleen cells. J Biol Chem 1995; 270:10475-81. [PMID: 7737982 DOI: 10.1074/jbc.270.18.10475] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many cell surface proteins exist as complexes of multiple subunits. It is well established that most such complexes are assembled within the endoplasmic reticulum (ER). However, the mechanistic details of the assembly process are largely unknown. We show here that alpha and beta subunits of major histocompatibility complex class II antigens in spleen cells of normal mice pass through a transiently aggregated phase in the ER prior to assembly with the invariant chain (Ii). Aggregates form immediately after synthesis and disappear concomitantly with assembly of mature alpha beta Ii complexes. In spleen cells lacking Ii, aggregates fail to be efficiently dissociated over time, implicating subunit assembly as a requirement for disaggregation. Two ER chaperones, BiP and calnexin, bind to newly synthesized class II MHC chains but do not contribute appreciably to the large size of the aggregates. Our observations suggest that some subunits of multisubunit complexes pass through a transient, dynamic high molecular weight aggregate phase during the physiological process of assembly. The results further suggest a novel role for Ii in promoting stable dissociation of preformed aggregates containing alpha and beta subunits rather than in preventing their formation.
Collapse
Affiliation(s)
- M S Marks
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
16
|
Cool DR, Fenger M, Snell CR, Loh YP. Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway. J Biol Chem 1995; 270:8723-9. [PMID: 7721777 DOI: 10.1074/jbc.270.15.8723] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The NH2-terminal region of pro-opiomelanocortin (POMC) is highly conserved across species, having two disulfide bridges that cause the formation of an amphipathic hairpin loop structure between the 2nd and 3rd cysteine residues (Cys8 to Cys20). The role that the NH2-terminal region of pro-opiomelanocortin plays in acting as a molecular sorting signal for the regulated secretory pathway was investigated by using site-directed mutagenesis either to disrupt one or more of the disulfide bridges or to delete the amphipathic loop entirely. When POMC was expressed in Neuro-2a cells, ACTH immunoreactive material was localized in punctate secretory granules in the cell body and along the neurites, with heavy labeling at the tips. ACTH was secreted from these POMC-transfected cells in a regulated manner. Disruption of both disulfide bridges or the second disulfide bridge or removal of the amphipathic hairpin loop resulted in constitutive secretion of the mutant POMC from the cells and a lack of punctate secretory granule immunostaining within the cells. We have modeled the NH2-terminal POMC Cys8 to Cys20 domain and have identified it as an amphipathic loop containing four highly conserved hydrophobic and acidic amino acid residues (Asp10-Leu11-Glu14-Leu1). Thus the sorting signal for POMC to the regulated secretory pathway appears to be encoded by a specific conformational motif comprised of a 13-amino acid amphipathic loop structure stabilized by a disulfide bridge, located at the NH2 terminus of the molecule.
Collapse
Affiliation(s)
- D R Cool
- Section on Cellular Neurobiology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
17
|
Sawyer J, Lukaczyk T, Yilla M. Dithiothreitol treatment induces heterotypic aggregation of newly synthesized secretory proteins in HepG2 cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31809-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
18
|
Bijlmakers MJ, Neefjes JJ, Wojcik-Jacobs EH, Ploegh HL. The assembly of H2-Kb class I molecules translated in vitro requires oxidized glutathione and peptide. Eur J Immunol 1993; 23:1305-13. [PMID: 8500526 DOI: 10.1002/eji.1830230618] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Association of the mouse major histocompatibility complex (MHC) class I heavy chain H2-Kb with mouse beta 2-microglobulin (beta 2m) was studied in an in vitro translation system. Formation of stable class I complexes was found to be dependent on the presence of presentable peptides and oxidized glutathione, which promotes the formation of disulfide bridges. Translocation of peptides into microsomes was demonstrated by showing that a radioiodinated peptide containing an N-glycosylation acceptor site became glycosylated. Class I complex formation was observed only when heavy chains and beta 2m were translated simultaneously, and thus occurs in the microsomes and not after their solubilization. However, peptide binding takes place only after solubilization of the microsomes. The class I complexes translated in vitro show the same specificity and length preference for peptides as their counterparts in RMA-S cells. Assembly of in vitro translated class I complexes was found to occur also in the absence of peptides, resulting in the formation of unstable molecules that are stabilized by incubation with peptides.
Collapse
Affiliation(s)
- M J Bijlmakers
- Department of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
19
|
Hormonal regulation of thyroglobulin export from the endoplasmic reticulum of cultured thyrocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53477-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
20
|
Abstract
Formation of MHC class I complexes involves proper folding of the subunits, their assembly and interaction with peptides. Several proteins contributing to this process have been described, but a number of questions remain, in particular those concerning early folding steps and interactions with peptide in the course of biosynthesis.
Collapse
Affiliation(s)
- M J Bijlmakers
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge
| | | |
Collapse
|