1
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
2
|
Liu J, Hao T, Hu P, Pan Y, Jiang X, Liu G. Functional analysis of the selective autophagy related gene Acatg11 in Acremonium chrysogenum. Fungal Genet Biol 2017; 107:67-76. [PMID: 28830792 DOI: 10.1016/j.fgb.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 02/06/2023]
Abstract
Autophagy is a highly conserved degradation system in eukaryotes. Selective autophagy is used for the degradation of selective cargoes. Selective autophagic processes of yeast include pexophagy, mitophagy, and cytoplasm-to-vacuole targeting (Cvt) pathway in which particular vacuolar proteins, such asaminopeptidase I (Ape1), are selectively transported to vacuoles. However, the physiological role of selective autophagy remains elusive in filamentous fungi. ATG11 family proteins asa basic scaffold are essential for most selective autophagy pathways in yeast. Here, Acatg11, encoding a putative ATG11 family protein, was identified and cloned from the cephalosporin producing strain Acremonium chrysogenum based on the sequence similarity of ATG11 superfamily proteins. Disruption of Acatg11 inhibited the maturation of preApe1 during fermentation indicating that Acatg11 is involved in Cvt pathway. In addition, pexophagy and mitophagy were blocked in the Acatg11 disruption mutant (ΔAcatg11). Intriguingly, the nonselective autophagy was deficient in ΔAcatg11 under starvation induction or during fermentation. Disruption of Acatg11 significantly enhanced fungal conidiation, but reduced cephalosporin production. These results indicated that Acatg11 is required for both selective and nonselective autophagy during fermentation and has a strong impact on morphological differentiation and cephalosporin production of A. chrysogenum.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianchao Hao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Reumann S, Chowdhary G, Lingner T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:790-803. [PMID: 26772785 DOI: 10.1016/j.bbamcr.2016.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Our knowledge of the proteome of plant peroxisomes and their functional plasticity is far from being complete, primarily due to major technical challenges in experimental proteome research of the fragile cell organelle. Several unexpected novel plant peroxisome functions, for instance in biotin and phylloquinone biosynthesis, have been uncovered recently. Nevertheless, very few regulatory and membrane proteins of plant peroxisomes have been identified and functionally described up to now. To define the matrix proteome of plant peroxisomes, computational methods have emerged as important powerful tools. Novel prediction approaches of high sensitivity and specificity have been developed for peroxisome targeting signals type 1 (PTS1) and have been validated by in vivo subcellular targeting analyses and thermodynamic binding studies with the cytosolic receptor, PEX5. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In this review, we provide an overview of methodologies, capabilities and accuracies of available prediction algorithms for PTS1 carrying proteins. We also summarize and discuss recent quantitative, structural and mechanistic information of the interaction of PEX5 with PTS1 carrying proteins in relation to in vivo import efficiency. With this knowledge, we develop a model of how proteins likely evolved peroxisomal targeting signals in the past and still nowadays, in which order the two import pathways might have evolved in the ancient eukaryotic cell, and how the secondary loss of the PTS2 pathway probably happened in specific organismal groups.
Collapse
Affiliation(s)
- S Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway.
| | - G Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India.
| | - T Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077 Goettingen, Germany.
| |
Collapse
|
4
|
Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol 2015; 427:1176-90. [PMID: 25681696 PMCID: PMC4726662 DOI: 10.1016/j.jmb.2015.02.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. Peroxisomal membrane and matrix proteins require distinct factors for their transport. Matrix proteins fold in the cytosol prior to their import. Loaded targeting receptors form part of the matrix protein translocation pore. Many membrane proteins are directly inserted into the peroxisomal membrane. Some peroxisomal membrane proteins are transported via the ER to peroxisomes.
Collapse
Affiliation(s)
- P K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - E H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire S10 2TN, United Kingdom.
| |
Collapse
|
5
|
Otera H, Fujiki Y. Pex5p imports folded tetrameric catalase by interaction with Pex13p. Traffic 2012; 13:1364-77. [PMID: 22747494 DOI: 10.1111/j.1600-0854.2012.01391.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Abstract
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Biology, Faculty of Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
6
|
Léon S, Goodman JM, Subramani S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1552-64. [PMID: 17011644 DOI: 10.1016/j.bbamcr.2006.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022]
Abstract
Based on earlier suggestions that peroxisomes may have arisen from endosymbionts that later lost their DNA, it was expected that protein transport into this organelle would have parallels to systems found in other organelles of endosymbiont origin, such as mitochondria and chloroplasts. This review highlights three features of peroxisomal matrix protein import that make it unique in comparison with these other subcellular compartments - the ability of this organelle to transport folded, co-factor-bound and oligomeric proteins, the dynamics of the import receptors during the matrix protein import cycle and the existence of a peroxisomal quality-control pathway, which insures that the peroxisome membrane is cleared of cargo-free receptors.
Collapse
Affiliation(s)
- Sébastien Léon
- Section of Molecular Biology, Division of Biological Sciences, University California, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
7
|
Brocard CB, Jedeszko C, Song HC, Terlecky SR, Walton PA. Protein structure and import into the peroxisomal matrix. Traffic 2003; 4:74-82. [PMID: 12559034 DOI: 10.1034/j.1600-0854.2003.40203.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins destined for the peroxisomal matrix are synthesized in the cytosol, and imported post-translationally. It has been previously demonstrated that stably folded proteins are substrates for peroxisomal import. Mammalian peroxisomes do not contain endogenous chaperone molecules. Therefore, it is possible that proteins are required to fold into their stable, tertiary conformation in order to be imported into the peroxisome. These investigations were undertaken to determine whether proteins rendered incapable of folding were also substrates for import into peroxisomes. Reduction of albumin resulted in a less compact tertiary structure as measured by analytical centrifugation. Microinjection of unfolded albumin molecules bearing the PTS1 targeting signal resulted in their import into peroxisomes. Kinetic analysis indicated that native and unfolded molecules were imported into peroxisomes at comparable rates. While import was unaffected by treatment with cycloheximide, hsc70 molecules were observed to be imported along with the unfolded albumin molecules. These results indicate that proteins, which are incapable of assuming their native conformation, are substrates for peroxisomal import. When combined with previous observations demonstrating the import of stably folded proteins, these results support the model that tertiary structure has no effect on protein import into the peroxisomal matrix.
Collapse
Affiliation(s)
- Cécile B Brocard
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
8
|
Abstract
Peroxisomes are highly adaptable organelles that carry out oxidative reactions. Distinct cellular machineries act together to coordinate peroxisome formation, growth, division, inheritance, turnover, movement and function. Soluble and membrane-associated components of these machineries form complex networks of physical and functional interactions that provide supramolecular control of the precise dynamics of peroxisome biogenesis.
Collapse
Affiliation(s)
- V I Titorenko
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | | |
Collapse
|
9
|
Olivier LM, Krisans SK. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1529:89-102. [PMID: 11111079 DOI: 10.1016/s1388-1981(00)00139-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. Recently, it has been demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biogenesis that previously were considered to be cytosolic or located in the endoplasmic reticulum. Peroxisomes have been shown to contain acetoacetyl-CoA thiolase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase and FPP synthase. Moreover, the activities of these enzymes are also significantly decreased in liver tissue and fibroblast cells obtained from patients with peroxisomal deficiency diseases. In addition, the cholesterol biosynthetic capacity is severely impaired in cultured skin fibroblasts obtained from patients with peroxisomal deficiency diseases. These findings support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis. This paper presents a review of peroxisomal protein targeting and of recent studies demonstrating the localization of cholesterol biosynthetic enzymes in peroxisomes and the identification of peroxisomal targeting signals in these proteins.
Collapse
Affiliation(s)
- L M Olivier
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
10
|
Bani-Yaghoub M, Felker JM, Sans C, Naus CC. The effects of bone morphogenetic protein 2 and 4 (BMP2 and BMP4) on gap junctions during neurodevelopment. Exp Neurol 2000; 162:13-26. [PMID: 10716885 DOI: 10.1006/exnr.2000.7294] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nervous system deficits account for the third largest group of fatal birth defects (after heart and respiratory problems) in North America. Although considerable advance has been made in neuroscience research, the early events involved in neurogenesis remain to be elucidated. More specifically, the effects of signaling molecules on intercellular communication during neurodevelopment have not yet been studied. The development of the central nervous system is regulated, at least in part, by signaling molecules such as bone morphogenetic proteins (BMPs). In this study, we have used the embryonal mouse P19 cell line to examine the effects of BMP2 and BMP4 on gap junctional communication as well as neuronal and astrocytic differentiation. The undifferentiated P19 cells show high levels of the gap junction protein, connexin43 (Cx43), and functional intercellular coupling. However, Cx43 expression and dye coupling decrease as these cells differentiate into neurons and astrocytes. In contrast, cells treated with BMP2 or BMP4 lose their capacity to differentiate into neurons but not astrocytes, while they maintain extensive gap junctional communication. The very few neurons that remain in the BMP-treated cultures are coupled (a characteristic not seen in the control neurons). Together, our data suggest that BMPs may play a critical role in morphogenesis of P19 cells while they affect gap junctions.
Collapse
Affiliation(s)
- M Bani-Yaghoub
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | |
Collapse
|
11
|
Knoblauch M, Hibberd JM, Gray JC, van Bel AJ. A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat Biotechnol 1999; 17:906-9. [PMID: 10471935 DOI: 10.1038/12902] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A galinstan expansion femtosyringe enables femtoliter to attoliter samples to be introduced into prokaryotes and subcellular compartments of eukaryotes. The method uses heat-induced expansion of galinstan (a liquid metal alloy of gallium, indium, and tin) within a glass syringe to expel samples through a tip diameter of about 0.1 microm. The narrow tip inflicts less damage than conventional capillaries, and the heat-induced expansion of the galinstan allows fine control over the rate of injection. We demonstrate injection of Lucifer Yellow and Lucifer Yellow-dextran conjugates into cyanobacteria, and into nuclei and chloroplasts of higher organisms. Injection of a plasmid containing the bla gene into the cyanobacterium Phormidium laminosum resulted in transformed ampicillin-resistant cultures. Green fluorescent protein was expressed in attached leaves of tobacco and Vicia faba following injection of DNA containing its gene into individual chloroplasts.
Collapse
Affiliation(s)
- M Knoblauch
- Institute of General Botany and Plant Physiology, Justus Liebig University Giessen, Senckenbergstrasse 17, 35390 Giessen, Germany.
| | | | | | | |
Collapse
|
12
|
Abstract
Peroxisomes are organelles that confine an important set of enzymes within their single membrane boundaries. In man, a wide variety of genetic disorders is caused by loss of peroxisome function. In the most severe cases, the clinical phenotype indicates that abnormalities begin to appear during embryological development. In less severe cases, the quality of life of adults is affected. Research on yeast model systems has contributed to a better understanding of peroxisome formation and maintenance. This framework of knowledge has made it possible to understand the molecular basis of most of the peroxisome biogenesis disorders. Interestingly, most peroxisome biogenesis disorders are caused by a failure to target peroxisomal proteins to the organellar matrix or membrane, which classifies them as protein targeting diseases. Here we review recent fundamental research on peroxisomal protein targeting and discuss a few burning questions in the field concerning the origin of peroxisomes.
Collapse
Affiliation(s)
- E H Hettema
- Department of Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105 AZ, Amsterdam, Netherlands
| | | | | |
Collapse
|
13
|
Olsen LJ. The surprising complexity of peroxisome biogenesis. PLANT MOLECULAR BIOLOGY 1998; 38:163-189. [PMID: 9738966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peroxisomes are small organelles with a single boundary membrane. All of their matrix proteins are nuclear-encoded, synthesized on free ribosomes in the cytosol, and post-translationally transported into the organelle. This may sound familiar, but in fact, peroxisome biogenesis is proving to be surprisingly unique. First, there are several classes of plant peroxisomes, each specialized for a different metabolic function and sequestering specific matrix enzymes. Second, although the mechanisms of peroxisomal protein import are conserved between the classes, multiple pathways of protein targeting and translocation have been defined. At least two different types of targeting signals direct proteins to the peroxisome matrix. The most common peroxisomal targeting signal is a tripeptide limited to the carboxyl terminus of the protein. Some peroxisomal proteins possess an amino-terminal signal which may be cleaved after import. Each targeting signal interacts with a different cytosolic receptor; other cytosolic factors or chaperones may also form a complex with the peroxisomal protein before it docks on the membrane. Peroxisomes have the unusual capacity to import proteins that are fully folded or assembled into oligomers. Although at least 20 proteins (mostly peroxins) are required for peroxisome biogenesis, the role of only a few of these have been determined. Future efforts will be directed towards an understanding of how these proteins interact and contribute to the complex process of protein import into peroxisomes.
Collapse
Affiliation(s)
- L J Olsen
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA.
| |
Collapse
|
14
|
Titorenko VI, Rachubinski RA. The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem Sci 1998; 23:231-3. [PMID: 9697407 DOI: 10.1016/s0968-0004(98)01226-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- V I Titorenko
- Dept of Cell Biology and Anatomy, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
15
|
Titorenko VI, Rachubinski RA. Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 1998; 18:2789-803. [PMID: 9566898 PMCID: PMC110658 DOI: 10.1128/mcb.18.5.2789] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1997] [Accepted: 02/26/1998] [Indexed: 02/07/2023] Open
Abstract
Mutations in the SEC238 and SRP54 genes of the yeast Yarrowia lipolytica not only cause temperature-sensitive defects in the exit of the precursor form of alkaline extracellular protease and of other secretory proteins from the endoplasmic reticulum and in protein secretion but also lead to temperature-sensitive growth in oleic acid-containing medium, the metabolism of which requires the assembly of functionally intact peroxisomes. The sec238A and srp54KO mutations at the restrictive temperature significantly reduce the size and number of peroxisomes, affect the import of peroxisomal matrix and membrane proteins into the organelle, and significantly delay, but do not prevent, the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX1 and PEX6 genes, which encode members of the AAA family of N-ethylmaleimide-sensitive fusion protein-like ATPases, not only affect the exit of precursor forms of secretory proteins from the endoplasmic reticulum but also prevent the exit of the peroxisomal membrane proteins Pex2p and Pex16p from the endoplasmic reticulum and cause the accumulation of an extensive network of endoplasmic reticulum membranes. None of the peroxisomal matrix proteins tested associated with the endoplasmic reticulum in sec238A, srp54KO, pex1-1, and pex6KO mutant cells. Our data provide evidence that the endoplasmic reticulum is required for peroxisome biogenesis and suggest that in Y. lipolytica, the trafficking of some membrane proteins, but not matrix proteins, to the peroxisome occurs via the endoplasmic reticulum, results in their glycosylation within the lumen of the endoplasmic reticulum, does not involve transport through the Golgi, and requires the products encoded by the SEC238, SRP54, PEX1, and PEX6 genes.
Collapse
Affiliation(s)
- V I Titorenko
- Department of Cell Biology and Anatomy, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
16
|
Abstract
Recent years have seen remarkable progress in our understanding of the function of peroxisomes in higher and lower eukaryotes. Combined genetic and biochemical approaches have led to the identification of many genes required for the biogenesis of this organelle. This review summarizes recent, rather surprising, results and discusses how they can be incorporated into the current view of peroxisome biogenesis.
Collapse
|
17
|
Titorenko VI, Ogrydziak DM, Rachubinski RA. Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol Cell Biol 1997; 17:5210-26. [PMID: 9271399 PMCID: PMC232372 DOI: 10.1128/mcb.17.9.5210] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum.
Collapse
Affiliation(s)
- V I Titorenko
- Department of Cell Biology and Anatomy, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
18
|
Kim J, Scott SV, Oda MN, Klionsky DJ. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J Cell Biol 1997; 137:609-18. [PMID: 9151668 PMCID: PMC2139888 DOI: 10.1083/jcb.137.3.609] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/1996] [Revised: 02/24/1997] [Indexed: 02/04/2023] Open
Abstract
Aminopeptidase I (API) is transported into the yeast vacuole by the cytoplasm to vacuole targeting (Cvt) pathway. Genetic evidence suggests that autophagy, a major degradative pathway in eukaryotes, and the Cvt pathway share largely the same cellular machinery. To understand the mechanism of the Cvt import process, we examined the native state of API. Dodecameric assembly of precursor API in the cytoplasm and membrane binding were rapid events, whereas subsequent vacuolar import appeared to be rate limiting. A unique temperature-sensitive API-targeting mutant allowed us to kinetically monitor its oligomeric state during translocation. Our findings indicate that API is maintained as a dodecamer throughout its import and will be useful to study the posttranslational movement of folded proteins across biological membranes.
Collapse
Affiliation(s)
- J Kim
- Section of Microbiology, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
19
|
Häusler T, Stierhof YD, Wirtz E, Clayton C. Import of a DHFR hybrid protein into glycosomes in vivo is not inhibited by the folate-analogue aminopterin. J Cell Biol 1996; 132:311-24. [PMID: 8636210 PMCID: PMC2120713 DOI: 10.1083/jcb.132.3.311] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dihydrofolate reductase fusion proteins have been widely used to study conformational properties of polypeptides translocated across membranes. We have studied the import of dihydrofolate reductase fusion proteins into glycosomes and mitochondria of Trypanosoma brucei. As signal sequences we used the last 22 carboxy-terminal amino acids of glycosomal phosphoglycerate kinase for glycosomes, and the cleavable presequences of yeast cytochrome b2 or cytochrome oxidase subunit IV for mitochondria. Upon addition of aminopterin, a folate analogue that stabilizes the dihydrofolate reductase moiety, import of the fusion protein targeted to glycosomes was not inhibited, although the results of protease protection assays showed that the fusion protein could bind the drug. Under the same conditions, import of a DHFR fusion protein targeted to mitochondria was inhibited by aminopterin. When DHFR fusion proteins targeted simultaneously to both glycosomes and mitochondria were expressed, import into mitochondria was inhibited by aminopterin, whereas uptake of the same proteins into glycosomes was either unaffected or slightly increased. These findings suggest that the glycosomes possess either a strong unfolding activity or an unusually large or flexible translocation channel.
Collapse
Affiliation(s)
- T Häusler
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
20
|
McNew JA, Goodman JM. The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends Biochem Sci 1996. [DOI: 10.1016/s0968-0004(96)80181-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Szilard RK, Titorenko VI, Veenhuis M, Rachubinski RA. Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J Cell Biol 1995; 131:1453-69. [PMID: 8522603 PMCID: PMC2120665 DOI: 10.1083/jcb.131.6.1453] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pay mutants of the yeast Yarrowia lipolytica fail to assemble functional peroxisomes. One mutant strain, pay32-1, has abnormally small peroxisomes that are often found in clusters surrounded by membraneous material. The functionally complementing gene PAY32 encodes a protein, Pay32p, of 598 amino acids (66,733 D) that is a member of the tetratricopeptide repeat family. Pay32p is intraperoxisomal. In wild-type peroxisomes, Pay32p is associated primarily with the inner surface of the peroxisomal membrane, but approximately 30% of Pay32p is localized to the peroxisomal matrix. The majority of Pay32p in the matrix is complexed with two polypeptides of 62 and 64 kD recognized by antibodies to SKL (peroxisomal targeting signal-1). In contrast, in peroxisomes of the pay32-1 mutant, Pay32p is localized exclusively to the matrix and forms no complex. Biochemical characterization of the mutants pay32-1 and pay32-KO (a PAY32 gene disruption strain) showed that Pay32p is a component of the peroxisomal translocation machinery. Mutations in the PAY32 gene prevent the translocation of most peroxisome-bound proteins into the peroxisomal matrix. These proteins, including the 62-kD anti-SKL-reactive polypeptide, are trapped in the peroxisomal membrane at an intermediate stage of translocation in pay32 mutants. Our results suggest that there are at least two distinct translocation machineries involved in the import of proteins into peroxisomes.
Collapse
Affiliation(s)
- R K Szilard
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
22
|
Abstract
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import.
Collapse
Affiliation(s)
- P A Walton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | | | |
Collapse
|
23
|
Hill PE, Walton PA. Import of microinjected proteins bearing the SKL peroxisomal targeting sequence into the peroxisomes of a human fibroblast cell line: evidence that virtually all peroxisomes are import-competent. J Cell Sci 1995; 108 ( Pt 4):1469-76. [PMID: 7615667 DOI: 10.1242/jcs.108.4.1469] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisomes import virtually all of their membrane and matrix proteins post-translationally. It is presently unknown whether, in mammalian cells, their exists a pool of mature peroxisomes which have received their complement of proteins and are import-incompetent. Previous work has shown that fibroblasts are capable of importing microinjected peroxisomal proteins into peroxisomes. This report describes the import of a hybrid peroxisomal protein into virtually all peroxisomes of the microinjected cell. The peroxisomal import was uniform in both short and long incubations. Pretreatment of the cells with cycloheximide did not affect the import of the peroxisomal protein, nor was there any difference in the distribution of the imported protein. Sequential microinjection experiments demonstrated that peroxisomes that had imported luciferase were capable of importing another peroxisomal protein injected 24 hours later. These results suggest that, in fibroblasts, all peroxisomes have associated protein-import machinery; this evidence does not support the hypothesis that there exists a pool of import-incompetent peroxisomes.
Collapse
Affiliation(s)
- P E Hill
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
24
|
Abstract
The mechanism of translocation of peroxisomal proteins from the cytoplasm into the matrix is largely unknown. We have been studying this problem in yeast. We show that the peroxisomal targeting sequences SKL or AKL, with or without a spacer of nine glycines (G9), are sufficient to target chloramphenicol acetyltransferase (CAT) to peroxisomes of Saccharomyces cerevisiae in vivo. The mature form of CAT is a homotrimer, and complete trimerization of CAT was found to occur within a few minutes of synthesis. In contrast, import, measured by immunoelectron microscopy and organellar fractionation, occurred over several hours. To confirm that import of preassembled CAT trimers was occurring, we co-expressed CAT-G9-AKL with CAT lacking a peroxisomal targeting sequence but containing a hemagglutinin-derived epitope tag (HA-CAT). We found that HA-CAT was not imported unless it was co-expressed with CAT-G9-AKL. Both proteins were released from the organelles under mild conditions (pH 8.5) that released other matrix proteins, indicating that import had occurred. These results strongly suggested that HA-CAT was imported as a heterotrimer with CAT-G9-AKL. The process of oligomeric import also occurs in animal cells. When HA-CAT was co-expressed with CAT-G9-AKL in CV-1 cells, HA-CAT co-localized with peroxisomes but was cytoplasmic when expressed alone. It is not clear whether the import of globular proteins into peroxisomes occurs through peroxisomal membrane pores or involves membrane internalization. Both possibilities are discussed.
Collapse
Affiliation(s)
- J A McNew
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041
| | | |
Collapse
|
25
|
Glover JR, Andrews DW, Rachubinski RA. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci U S A 1994; 91:10541-5. [PMID: 7937990 PMCID: PMC45057 DOI: 10.1073/pnas.91.22.10541] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The active conformation of native peroxisomal 3-ketoacyl-CoA thiolases (EC 2.3.1.16) is homodimeric. We have previously shown that a truncated Saccharomyces cerevisiae thiolase lacking its first 16 N-terminal amino acids fails to be translocated into peroxisomes but assembles into an enzymatically active form in the cytoplasm of a strain with a disrupted nuclear thiolase gene. We now report that when truncated thiolase is cosynthesized with full-length thiolase, approximately 50% of truncated thiolase cofractionates with the full-length thiolase to fractions enriched for peroxisomes and is translocated into peroxisomes as shown by its protection from the action of external proteases. We constructed an immunologically distinct cytosolic variant of thiolase by adding an influenza hemagglutinin epitope tag to the N terminus of the truncated thiolase. In a strain simultaneously expressing the full-length, truncated, and epitope-tagged truncated thiolases, we demonstrated that normally untargeted thiolase subunits are efficiently translocated into peroxisomes by dimerization with full-length thiolase subunits. Even though truncated and epitope-tagged truncated thiolase subunits are translocated into peroxisomes in this strain, only the full-length thiolase subunit can be coimmunoprecipitated with the epitope-tagged truncated thiolase subunit from the peroxisomal matrix. This observation suggests that interactions between thiolase subunits are not disrupted during translocation.
Collapse
Affiliation(s)
- J R Glover
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
26
|
Walton PA, Wendland M, Subramani S, Rachubinski RA, Welch WJ. Involvement of 70-kD heat-shock proteins in peroxisomal import. J Cell Biol 1994; 125:1037-46. [PMID: 8195287 PMCID: PMC2120043 DOI: 10.1083/jcb.125.5.1037] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This report describes the involvement of 70-kD heat-shock proteins (hsp70) in the import of proteins into mammalian peroxisomes. Employing a microinjection-based assay (Walton, P. A., S. J. Gould, J. R. Feramisco, and S. Subramani. 1992. Mol. Cell Biol. 12:531-541), we demonstrate that proteins of the hsp70 family were associated with proteins being imported into the peroxisomal matrix. Import of peroxisomal proteins could be inhibited by coinjection of antibodies directed against the constitutive hsp70 proteins (hsp73). In a permeabilized-cell assay (Wendland and Subramani. 1993. J. Cell Biol. 120:675-685), antibodies directed against hsp70 proteins were shown to inhibit peroxisomal protein import. Inhibition could be overcome by the addition of exogenous hsp70 proteins. Purified rat liver peroxisomes were shown to have associated hsp70 proteins. The amount of associated hsp70 was increased under conditions of peroxisomal proliferation. Furthermore, proteinase protection assays indicated that the hsp70 molecules were located on the outside of the peroxisomal membrane. Finally, the process of heat-shocking cells resulted in a considerable delay in the import of peroxisomal proteins. Taken together, these results indicate that heat-shock proteins of the cytoplasmic hsp70 family are involved in the import of peroxisomal proteins.
Collapse
Affiliation(s)
- P A Walton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|