1
|
Barrett P, Louie KW, Dupont JB, Mack DL, Maves L. Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. WIREs Mech Dis 2024:e1653. [PMID: 39444092 DOI: 10.1002/wsbm.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe degenerative muscle disease caused by mutations in the DMD gene, which encodes dystrophin. Despite its initial description in the late 19th century by French neurologist Guillaume Duchenne de Boulogne, and identification of causal DMD genetic mutations in the 1980s, therapeutics remain challenging. The current standard of care is corticosteroid treatment, which delays the progression of muscle dysfunction but is associated with significant adverse effects. Emerging therapeutic approaches, including AAV-mediated gene transfer, CRISPR gene editing, and small molecule interventions, are under development but face considerable obstacles. Although DMD is viewed as a progressive muscle disease, muscle damage and abnormal molecular signatures are already evident during fetal myogenesis. This early onset of pathology suggests that the limited success of current therapies may partly be due to their administration after aberrant embryonic myogenesis has occurred in the absence of dystrophin. Consequently, identifying optimal therapeutic strategies and intervention windows for DMD may depend on a better understanding of the earliest DMD disease mechanisms. As newer techniques are applied, the field is gaining increasingly detailed insights into the early muscle developmental abnormalities in DMD. A comprehensive understanding of the initial events in DMD pathogenesis and progression will facilitate the generation and testing of effective therapeutic interventions.
Collapse
Affiliation(s)
- Philip Barrett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Ke'ale W Louie
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - David L Mack
- Departments of Rehabilitation Medicine, Bioengineering and Neurobiology & Biophysics, Institute for Stem Cell and Regenerative Medicine, University of Washington Medicine, Seattle, Washington, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Jackson T, Seifi M, Górecki DC, Swinny JD. Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators. Cell Mol Neurobiol 2022; 42:2357-2377. [PMID: 34101068 PMCID: PMC9418305 DOI: 10.1007/s10571-021-01110-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.
Collapse
Affiliation(s)
- Torquil Jackson
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
| | - Mohsen Seifi
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Dariusz C Górecki
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK.
| |
Collapse
|
3
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
4
|
Schüssler SC, Gerhalter T, Abicht A, Müller-Felber W, Nagel AM, Trollmann R. Rare intronic mutation between Exon 62 and 63 (c.9225-285A>G) of the dystrophin gene associated with atypical BMD phenotype. Neuromuscul Disord 2020; 30:680-684. [PMID: 32669210 DOI: 10.1016/j.nmd.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Dystrophinopathies are predominantly caused by deletions, duplications and point mutations in the coding regions of the dystrophin gene with less than 1% of all pathogenic mutations identified within intronic sequences. We describe a 17-year-old male with a Becker muscular dystrophy diagnosis and mental disability due to an intron mutation that led to aberrant splicing and formation of an additional exon. Histopathological analysis of muscle tissue revealed signs of muscular dystrophy and reduced signal for dystrophin, alpha-sarcoglycan, and alpha-dystroglycan. Multiplex ligation-dependent probe amplification screening and total sequencing of the dystrophin gene did not identify a mutation in the coding regions. However, next generation sequencing revealed an intron mutation between exons 62 and 63 of the dystrophin gene known for pseudoexon formation and disruption of the reading frame. We report a functional consequence of this mutation as an increased intracellular-weighted sodium signal (assessed by 23Na-magnetic resonance imaging) in leg muscles.
Collapse
Affiliation(s)
- S C Schüssler
- Department of Pediatrics, Division of Neuropediatrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen (FAU), Loschgestr. 15, 91054 Erlangen, Germany
| | - T Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen (FAU), Erlangen, Germany
| | - A Abicht
- Medical Center of Human Genetics, Munich, Germany
| | - W Müller-Felber
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilian-Universität Munich, Munich, Germany
| | - A M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen (FAU), Erlangen, Germany
| | - R Trollmann
- Department of Pediatrics, Division of Neuropediatrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen (FAU), Loschgestr. 15, 91054 Erlangen, Germany.
| |
Collapse
|
5
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 07/30/2023] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
6
|
Gajendran N. The root cause of Duchenne muscular dystrophy is the lack of dystrophin in smooth muscle of blood vessels rather than in skeletal muscle per se. F1000Res 2018. [DOI: 10.12688/f1000research.15889.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:The dystrophin protein is part of the dystrophin associated protein complex (DAPC) linking the intracellular actin cytoskeleton to the extracellular matrix. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy (D/BMD). Neuronal nitric oxide synthase associates with dystrophin in the DAPC to generate the vasodilator nitric oxide (NO). Systemic dystrophin deficiency, such as in D/BMD, results in muscle ischemia, injury and fatigue during exercise as dystrophin is lacking, affecting NO production and hence vasodilation. The role of neuregulin 1 (NRG) signaling through the epidermal growth factor family of receptors ERBB2 and ERBB4 in skeletal muscle has been controversial, but it was shown to phosphorylate α-dystrobrevin 1 (α-DB1), a component of the DAPC. The aim of this investigation was to determine whether NRG signaling had a functional role in muscular dystrophy.Methods:Primary myoblasts (muscle cells) were isolated from conditional knock-out mice containing lox P flanked ERBB2 and ERBB4 receptors, immortalized and exposed to Cre recombinase to obtainErbb2/4double knock-out (dKO) myoblasts where NRG signaling would be eliminated. Myotubes, thein vitroequivalent of muscle fibers, formed by fusion of the lox P flankedErbb2/4myoblasts as well as theErbb2/4dKO myoblasts were then used to identify changes in dystrophin expression.Results:Elimination of NRG signaling resulted in the absence of dystrophin demonstrating that it is essential for dystrophin expression. However, unlike the DMD mouse model mdx, with systemic dystrophin deficiency, lack of dystrophin in skeletal muscles ofErbb2/4dKO mice did not result in muscular dystrophy. In these mice, ERBB2/4, and thus dystrophin, is still expressed in the smooth muscle of blood vessels allowing normal blood flow through vasodilation during exercise.Conclusions:Dystrophin deficiency in smooth muscle of blood vessels, rather than in skeletal muscle, is the main cause of disease progression in DMD.
Collapse
|
7
|
Perkins KJ, Davies KE. Alternative utrophin mRNAs contribute to phenotypic differences between dystrophin-deficient mice and Duchenne muscular dystrophy. FEBS Lett 2018; 592:1856-1869. [PMID: 29772070 PMCID: PMC6032923 DOI: 10.1002/1873-3468.13099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disorder caused by absence of functional dystrophin protein. Compensation in dystrophin‐deficient (mdx) mice may be achieved by overexpression of its fetal paralogue, utrophin. Strategies to increase utrophin levels by stimulating promoter activity using small compounds are therefore a promising pharmacological approach. Here, we characterise similarities and differences existing within the mouse and human utrophin locus to assist in high‐throughput screening for potential utrophin modulator drugs. We identified five novel 5′‐utrophin isoforms (A′,B′,C,D and F) in adult and embryonic tissue. As the more efficient utrophin‐based response in mdx skeletal muscle appears to involve independent transcriptional activation of conserved, myogenic isoforms (A′ and F), elevating their paralogues in DMD patients is an encouraging therapeutic strategy.
Collapse
Affiliation(s)
- Kelly J Perkins
- Department of Physiology Anatomy and Genetics, University of Oxford, UK.,Sir William Dunn School of Pathology, University of Oxford, UK
| | - Kay E Davies
- Department of Physiology Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
8
|
Krasowska E, Zabłocki K, Górecki DC, Swinny JD. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy. PLoS One 2014; 9:e108364. [PMID: 25260053 PMCID: PMC4178163 DOI: 10.1371/journal.pone.0108364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT) mice, immunoreactivity of neuroligin2 (NL2), an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT), a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.
Collapse
Affiliation(s)
- Elżbieta Krasowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Dariusz C. Górecki
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jerome D. Swinny
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
9
|
Jendzjowsky NG, DeLorey DS. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. J Appl Physiol (1985) 2013; 115:97-106. [DOI: 10.1152/japplphysiol.00250.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoform-specific nitric oxide (NO) synthase (NOS) contributions to NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle are incompletely understood. The purpose of the present study was to investigate the role of neuronal NOS (nNOS) in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. We hypothesized that acute pharmacological inhibition of nNOS would augment sympathetic vasoconstriction in resting and contracting skeletal muscle, demonstrating that nNOS is primarily responsible for NO-mediated inhibition of sympathetic vasoconstriction. Sprague-Dawley rats ( n = 13) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and lumbar sympathetic chain stimulating electrodes. Triceps surae muscles were stimulated to contract rhythmically at 60% of maximal contractile force. In series 1 ( n = 9), the percent change in femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction before and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg/kg iv) and subsequent nonselective NOS blockade with Nω-nitro-l-arginine methyl ester (l-NAME, 5 mg/kg iv). In series 2 ( n = 4), l-NAME was injected first, and then SMTC was injected to determine if the effect of l-NAME on constrictor responses was influenced by selective nNOS inhibition. Sympathetic stimulation decreased FVC at rest (−25 ± 7 and −44 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (−7 ± 3 and −19 ± 5%FVC at 2 and 5 Hz, respectively). The decrease in FVC in response to sympathetic stimulation was greater in the presence of SMTC at rest (−32 ± 6 and −49 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (−21 ± 4 and −28 ± 4%FVC at 2 and 5 Hz, respectively). l-NAME further increased ( P < 0.05) the sympathetic vasoconstrictor response at rest (−47 ± 4 and −60 ± 6%FVC at 2 and 5 Hz, respectively) and during muscle contraction (−33 ± 3 and −40 ± 6%FVC at 2 and 5 Hz, respectively). The effect of l-NAME was not altered by the order of nNOS inhibition. These data demonstrate that NO derived from nNOS and endothelial NOS contribute to the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle.
Collapse
Affiliation(s)
- Nicholas G. Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Darren S. DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Abstract
The heart is frequently afflicted in muscular dystrophy. In severe cases, cardiac lesion may directly result in death. Over the years, pharmacological and/or surgical interventions have been the mainstay to alleviate cardiac symptoms in muscular dystrophy patients. Although these traditional modalities remain useful, the emerging field of gene therapy has now provided an unprecedented opportunity to transform our thinking/approach in the treatment of dystrophic heart disease. In fact, the premise is already in place for genetic correction. Gene mutations have been identified and animal models are available for several types of muscular dystrophy. Most importantly, innovative strategies have been developed to effectively deliver therapeutic genes to the heart. Dystrophin-deficient Duchenne cardiomyopathy is associated with Duchenne muscular dystrophy (DMD), the most common lethal muscular dystrophy. Considering its high incidence, there has been a considerable interest and significant input in the development of Duchenne cardiomyopathy gene therapy. Using Duchenne cardiomyopathy as an example, here we illustrate the struggles and successes experienced in the burgeoning field of dystrophic heart disease gene therapy. In light of abundant and highly promising data with the adeno-associated virus (AAV) vector, we have specially emphasized on AAV-mediated gene therapy. Besides DMD, we have also discussed gene therapy for treating cardiac diseases in other muscular dystrophies such as limb-girdle muscular dystrophy.
Collapse
|
11
|
Rauch U, Shami A, Zhang F, Carmignac V, Durbeej M, Hultgårdh-Nilsson A. Increased neointimal thickening in dystrophin-deficient mdx mice. PLoS One 2012; 7:e29904. [PMID: 22238670 PMCID: PMC3251593 DOI: 10.1371/journal.pone.0029904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), encodes a large cytoskeletal protein present in muscle fibers. While dystrophin in skeletal muscle has been extensively studied, the function of dystrophin in vascular smooth muscle is less clear. Here, we have analyzed the role of dystrophin in injury-induced arterial neointima formation. METHODOLOGY/PRINCIPAL FINDINGS We detected a down-regulation of dystrophin, dystroglycan and β-sarcoglycan mRNA expression when vascular smooth muscle cells de-differentiate in vitro. To further mimic development of intimal lesions, we performed a collar-induced injury of the carotid artery in the mdx mouse, a model for DMD. As compared with control mice, mdx mice develop larger lesions with increased numbers of proliferating cells. In vitro experiments demonstrate increased migration of vascular smooth muscle cells from mdx mice whereas the rate of proliferation was similar in cells isolated from wild-type and mdx mice. CONCLUSIONS/SIGNIFICANCE These results show that dystrophin deficiency stimulates neointima formation and suggest that expression of dystrophin in vascular smooth muscle cells may protect the artery wall against injury-induced intimal thickening.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/metabolism
- Dystrophin/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscular Dystrophy, Animal/complications
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/genetics
- Neointima/metabolism
- Neointima/pathology
- Organ Size
- Up-Regulation
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
Collapse
Affiliation(s)
- Uwe Rauch
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Annelie Shami
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Feng Zhang
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Virginie Carmignac
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
12
|
Vickerman L, Neufeld S, Cobb J. Shox2 function couples neural, muscular and skeletal development in the proximal forelimb. Dev Biol 2011; 350:323-36. [DOI: 10.1016/j.ydbio.2010.11.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/13/2010] [Accepted: 11/29/2010] [Indexed: 11/28/2022]
|
13
|
Witte DP, Aronow BJ, Harmony JAK. Understanding Cardiac Development Through the Perspective of Gene Regulation and Gene Manipulation. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513819609169282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Merrick D, Stadler LKJ, Larner D, Smith J. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation. Dis Model Mech 2009; 2:374-88. [PMID: 19535499 DOI: 10.1242/dmm.001008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3(-/-)) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3(-/-) mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3(-/-) and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3(-/-) and mdx mutants have cardiac defects. In cav-3(-/-) mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3(-/-) mutants. In double mutant (mdxcav-3(+/-)) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3(+/-)), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive cells are depleted entirely from the lower limbs and severely attenuated elsewhere; these data suggest a compensatory rather than a contributory role for the elevated caveolin-3 levels that are found in mdx embryos. These data establish a key role for dystrophin in early muscle formation and demonstrate that caveolin-3 and dystrophin are essential for correct fibre-type specification and emergent stem cell function. These data plug a significant gap in the natural history of muscular dystrophy and will be invaluable in establishing an earlier diagnosis for DMD/LGMD and in designing earlier treatment protocols, leading to better clinical outcome for these patients.
Collapse
Affiliation(s)
- Deborah Merrick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
15
|
Onopiuk M, Brutkowski W, Wierzbicka K, Wojciechowska S, Szczepanowska J, Fronk J, Lochmüller H, Górecki DC, Zabłocki K. Mutation in dystrophin-encoding gene affects energy metabolism in mouse myoblasts. Biochem Biophys Res Commun 2009; 386:463-6. [PMID: 19527684 DOI: 10.1016/j.bbrc.2009.06.053] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 11/28/2022]
Abstract
Duchenne Muscular Dystrophy is characterized by severe defects in differentiated muscle fibers, including abnormal calcium homeostasis and impaired cellular energy metabolism. Here we demonstrate that myoblasts derived from dystrophic (mdx) mouse exhibit reduced oxygen consumption, increased mitochondrial membrane potential, enhanced reactive oxygen species formation, stimulated glycolysis but unaffected total cellular ATP content. Moreover, reduced amounts of specific subunits of the mitochondrial respiratory complexes and ATP-synthase as well as disorganized mitochondrial network were observed. Both the dystrophic and control myoblasts used were derived from a common inbred mouse strain and the only difference between them is a point mutation in the dystrophin-encoding gene, thus these data indicate that this mutation results in multiple phenotypic alterations demonstrating as early as in undifferentiated myoblasts. This finding sheds new light on the molecular mechanisms of Duchenne Muscular Dystrophy pathogenesis.
Collapse
Affiliation(s)
- Marta Onopiuk
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Loss of neuronal projections in the dystrophin-deficient mdx mouse is not progressive. Brain Res 2008; 1224:127-32. [PMID: 18603229 DOI: 10.1016/j.brainres.2008.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/14/2008] [Accepted: 05/17/2008] [Indexed: 11/22/2022]
Abstract
Lack of dystrophin is known to reduce several cerebral fiber systems. To investigate if the loss of fibers is progressive, we analyzed projections of the trigeminal sensory system to the red nucleus in 3, 6, and 12 month old dystrophin-deficient mdx mice. The retrograde tracer fluorogold was injected in the magnocellular part of the red nucleus, and the number of labeled neurons in the oral part of the spinal trigeminal nucleus (Sp5O) was counted. We found that the number of labeled Sp5O neurons was reduced by 50% in mdx mice compared to age-matched control mice. The number of labeled Sp5O neurons did not change significantly between 3 and 12 months neither in mdx nor in control mice. In addition, the number of labeled neurons in the interstitial system of the trigeminal nerve was reduced by 43% in mdx mice. We conclude that fiber loss did not continue beyond the age of 3 months. Our data suggest that lack of full-length dystrophin impairs neuronal migration or axonal outgrowth, or increases neuronal death during fetal or early life.
Collapse
|
17
|
de Lima AR, Nyengaard JR, Jorge AAL, Balieiro JCC, Peixoto C, Fioretto ET, Ambrósio CE, Miglino MA, Zatz M, Ribeiro AACM. Muscular dystrophy-related quantitative and chemical changes in adenohypophysis GH-cells in golden retrievers. Growth Horm IGF Res 2007; 17:480-491. [PMID: 17664078 DOI: 10.1016/j.ghir.2007.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/11/2007] [Accepted: 06/15/2007] [Indexed: 11/15/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a recessive X-linked lethal condition which affects a boy in every 3300 births. It is caused by the absence of dystrophin, a protein occurring especially within the musculoskeletal system and in neurons in specific regions of the central nervous system (CNS). Growth hormone (GH) inhibition is believed to decrease the severity of DMD and could perhaps be used in its treatment. However, the underlying pathological mechanism is not known. The golden retriever muscular dystrophy dog (GRMD) represents an animal model in the study of DMD. In this paper we investigated the morphological aspects of the adenohypophysis as well as the total number and size of GH-granulated cells using design-based stereological methods in a limited number of dystrophic and healthy golden retrievers. GH-cells were larger (32.4%) in dystrophic dogs than in healthy animals (p=0.01) and they occupied a larger portion (62.5%) of the adenohypophysis volume (p=0.01) without changes in either adenohypophysis volume (p=0.893) or total number of GH-granulated cells (p=0.869). With regard to ultrastructure, granulated cells possessed double-layer electron-dense granules which were evenly distributed in the cytosol. Furthermore, these granules in dystrophic animals occupied a larger proportion of GH-granulated cell volume (66.9%; p=0.008) as well as of all GH-cells in the whole pars distalis of adenohypophysis (77.3%; p=0.035), albeit IGF-1 serum concentration was lower in severe cases. This suggests difficulties in the GH secretion that might possibly be associated to dystrophin absence. In contrast to earlier reports, our data suggest that a lower IGF-1 concentration may be more related to a severe, as opposed to a benign, clinical form of muscular dystrophy.
Collapse
Affiliation(s)
- A R de Lima
- Laboratory of Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sogos V, Curto M, Reali C, Gremo F. Developmentally regulated expression and localization of dystrophin and utrophin in the human fetal brain. Mech Ageing Dev 2002; 123:455-62. [PMID: 11796130 DOI: 10.1016/s0047-6374(01)00360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of dystrophin and the dystrophin-related protein utrophin has been studied in the human fetal brain both in vivo and in vitro. Results showed that both these proteins were developmentally regulated, even if their expression followed a different pattern. Utrophin was found since very early stages of development, reached a peak between week 15-20 of gestation, declining then, so that at week 32 was barely detectable. The protein was mainly found in neuronal cell bodies, partially associated to the plasma membrane, and in astrocytes cytoplasm. On the contrary, the brain form of dystrophin was first detectable at week 12, increased up to week 15 and then remained stable. Dystrophin localization was similar but not identical to utrophin. In neurons, it was also partially associated with the plasma membrane of cell body and axon hillock. However, the most was concentrated in the cytoplasm and in the processes, where it appeared associated to neurofilaments. Astrocytes were negative for brain dystrophin, but positive for the muscle isoform. Results suggest that utrophin and dystrophin are likely to play a key, though different, role in the immature brain. They help in understanding the basic mechanism(s) underlying cognition defects frequently observed in Duchenne and Becker dystrophic patients.
Collapse
Affiliation(s)
- Valeria Sogos
- Department of Cytomorphology, University of Cagliari Medical School, Cagliari, Italy.
| | | | | | | |
Collapse
|
19
|
Abdulrazzak H, Noro N, Simons JP, Goldspink G, Barnard EA, Górecki DC. Structural diversity despite strong evolutionary conservation in the 5'-untranslated region of the P-type dystrophin transcript. Mol Cell Neurosci 2001; 17:500-13. [PMID: 11273645 DOI: 10.1006/mcne.2000.0950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Analysis of the 5'-flanking regions of the Purkinje (P-) dystrophin genes and mRNAs in different species revealed strong sequence conservation but functional diversity. Multiple transcription initiation sites were identified in cerebella and muscles, tissues expressing P-dystrophin. The predominant initiation site was conserved, with another muscle-specific site located upstream. Despite sequence homology, significant tissue- and species-specific structural diversity in the P-type 5'-ends exists, including alternative splicing within the 5'-untranslated region combined with alternative splicing of intron 1. One amino terminus is conserved in mammals and, to a lesser extent, in chicken. However, alternative usage of ATG codons may result in a choice of N-termini or translation of short upstream ORFs in different species. Promoter activity of a fragment upstream of the cap site was shown by transient expression in myoblasts and in vivo following intramuscular injection. It is tissue- and developmentally regulated. Analysis of promoter deletions suggests the existence of negative regulatory elements in the proximal region.
Collapse
Affiliation(s)
- H Abdulrazzak
- Department of Anatomy and Developmental Biology, Division of Basic Medical Sciences, Royal Free and University College Medical School, London, NW3 2PF, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Durbeej M, Cohn RD, Hrstka RF, Moore SA, Allamand V, Davidson BL, Williamson RA, Campbell KP. Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. Mol Cell 2000; 5:141-51. [PMID: 10678176 DOI: 10.1016/s1097-2765(00)80410-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Limb-girdle muscular dystrophy type 2E (LGMD 2E) is caused by mutations in the beta-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscle. beta-sarcoglycan-deficient (Sgcb-null) mice developed severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. The sarcoglycan-sarcospan and dystroglycan complexes were disrupted in skeletal, cardiac, and smooth muscle membranes. epsilon-sarcoglycan was also reduced in membrane preparations of striated and smooth muscle. Loss of the sarcoglycan-sarcospan complex in vascular smooth muscle resulted in vascular irregularities in heart, diaphragm, and kidneys. Further biochemical characterization suggested the presence of a distinct epsilon-sarcoglycan complex in skeletal muscle that was disrupted in Sgcb-null mice. Thus, perturbation of vascular function together with disruption of the epsilon-sarcoglycan-containing complex represents a novel mechanism in the pathogenesis of LGMD 2E.
Collapse
Affiliation(s)
- M Durbeej
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Durbeej M, Campbell KP. Biochemical characterization of the epithelial dystroglycan complex. J Biol Chem 1999; 274:26609-16. [PMID: 10473626 DOI: 10.1074/jbc.274.37.26609] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dystroglycan is a widely expressed extracellular matrix receptor that plays a critical role in basement membrane formation, epithelial development, and synaptogenesis. Dystroglycan was originally characterized in skeletal muscle as an integral component of the dystrophin glycoprotein complex, which is critical for muscle cell viability. Although the dystroglycan complex has been well characterized in skeletal muscle, there is little information on the structural composition of the dystroglycan complex outside skeletal muscle. Here we have biochemically characterized the dystroglycan complex in lung and kidney. We demonstrate that the presence of sarcoglycans and sarcospan in lung reflects association with dystroglycan in the smooth muscle. The smooth muscle dystroglycan complex in lung, composed of dystroglycan, dystrophin/utrophin, beta-, delta-, epsilon-sarcoglycan, and sarcospan, can be biochemically separated from epithelial dystroglycan, which is not associated with any of the known sarcoglycans or sarcospan. Similarly, dystroglycan in kidney epithelial cells is not associated with any of the sarcoglycans or sarcospan. Thus, our data demonstrate that there are distinct dystroglycan complexes in non-skeletal muscle organs as follows: one from smooth muscle, which is associated with sarcoglycans forming a similar complex as in skeletal muscle, and one from epithelial cells.
Collapse
Affiliation(s)
- M Durbeej
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
22
|
Abstract
During a gene trap screen, an insertion of the gene trap vector into the dystrophin gene, creating a new allele for the Dmd gene, has been discovered. Because the ROSA beta geo vector was used, the new allele is called Dmd(mdx-beta geo). The insertion occurred 3' of exon 63 of the dystrophin gene, resulting in a mutation that affects all presently known dystrophin isoforms. In contrast to spontaneous or ENU-induced alleles, Dmd(mdx-beta geo) can be used to follow dystrophin expression by staining for beta-galactosidase activity. The high sensitivity of this method revealed additional and earlier expression of dystrophin during embryogenesis than that seen previously with other methods. Dystrophin promoters are active predominantly in the dermamyotome, limb buds, telencephalon, floor plate, eye, liver, pancreas anlagen, and cardiovascular system. Adult Dmd(mdx-beta geo) mice show reporter gene expression in brain, eye, liver, pancreas, and lung. In skeletal and heart muscle, beta-galactosidase activity is not detectable, confirming Western blot data that indicate the absence of the mutant full-length protein in these tissues. Hemizygous Dmd(mdx-beta geo) mice show muscular dystrophy with degenerating muscle fibers, cellular infiltration, and regenerated muscle fibers that have centrally located nuclei. Some mutant animals develop a dilated esophagus, probably due to constriction by the hypertrophic crura of the diaphragm.
Collapse
Affiliation(s)
- K Wertz
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany.
| | | |
Collapse
|
23
|
|
24
|
Górecki DC, Abdulrazzak H, Lukasiuk K, Barnard EA. Differential expression of syntrophins and analysis of alternatively spliced dystrophin transcripts in the mouse brain. Eur J Neurosci 1997; 9:965-76. [PMID: 9182949 DOI: 10.1111/j.1460-9568.1997.tb01447.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of syntrophin genes, encoding members of the dystrophin-associated protein complex, was studied in the mouse brain. In the hippocampal formation there is distinctive co-localization of specific syntrophins with certain dystrophin isoforms in neurons, e.g. alpha1-syntrophin with the C-dystrophin in CA regions and beta2-syntrophin with the G-dystrophin in the dentate gyrus. Expression of the alpha1-syntrophin is predominant in CA regions and the olfactory bulb and it is also present in the cerebral cortex and the dentate gyrus. The beta2-syntrophin mRNA is most abundant in the dentate gyrus and is also evident in the pituitary, the cerebral cortex and in Ammon's horn and in traces in the caudate putamen. The choroid plexus was labelled by both alpha1- and beta2-syntrophin-specific probes. The expression of syntrophins in the brain correlates with expression of dystrophins and dystroglycan. There are brain areas such as the cerebral cortex where several different syntrophins and dystrophins are expressed together. Syntrophin expression co-localizes with utrophin in the choroid plexus and caudate putamen. Finally, no syntrophin was detected in the cerebellar Purkinje cells where the specific dystrophin isoform (P-type) is present. This specific distribution of syntrophins in the brain is particularly interesting, as muscle syntrophin interacts with neuronal nitric oxide synthase. This may suggest that the dystrophin-associated protein complex may be involved in synaptic organisation and signal transduction machinery in both muscle and neurons. The dystrophin isoform, with exons 71-74 spliced out and hence lacking syntrophin binding sites, had been believed to be predominant in the brain, but our analyses using in situ hybridization, S1 nuclease protection and the semi-quantitative polymerase chain reaction revealed that this alternatively spliced mRNA is a minor, low abundance form in the brain.
Collapse
Affiliation(s)
- D C Górecki
- Molecular Neurobiology Unit and Department of Clinical Genetics, Royal Free Hospital School of Medicine, London, UK
| | | | | | | |
Collapse
|
25
|
Ruiz-Lozano P, Doevendans P, Brown A, Gruber PJ, Chien KR. Developmental expression of the murine spliceosome-associated protein mSAP49. Dev Dyn 1997; 208:482-90. [PMID: 9097020 DOI: 10.1002/(sici)1097-0177(199704)208:4<482::aid-aja4>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have isolated the mouse homologue of human spliceosome-associated protein SAP49, mSAP49. mSAP49 contains two RNA recognition motifs (RRM) in the N terminus of the predicted amino acid sequence, and a highly basic C terminus rich in glycine/proline. mSAP49 displayed a plastic of expression in cardiac development. In the adult mouse, mSAP49 is widely distributed, although it was found at relatively lower levels in the heart. In situ hybridization analysis of mSAP49 mRNA distribution in staged mouse embryos showed that mSAP49 onset occurs later in the heart than in other embryonic tissues. While mSAP49 expression was found at day 10.0 postconception (pc) in the optic eminence, optic vesicle, hindbrain, and somites, it was not in cardiac structures. mSAP49 was detected in the ventricles at day 11.5, and at day 13.5 it was also detected in the atria. Northern analysis showed that mSAP49 mRNA displayed a peak of expression in the heart at days 14.0-15.0 pc, and its abundance decayed in the adult. This dynamic pattern of cardiac expression suggests that mSAP49 may be contributing to a change in the ratio of spliceosome components during cardiac growth and development, which may have consequences for tissue-specific splicing, RNA stabilization, or translation.
Collapse
Affiliation(s)
- P Ruiz-Lozano
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Laminin-1 is expressed by many embryonic epithelial cell types. It binds to receptors on the epithelial cell surface. The integrin alpha6beta1 is a well known laminin-1 receptor that is expressed on many embryonic epithelial cells. More recently, dystroglycan was discovered as a high-affinity receptor for laminin-1 and laminin-2. It is expressed not only by muscle cells but also by embryonic epithelial cells. In embryonic epithelia, dystroglycan may act by binding to the E3 fragment of laminin-1. Integrins and the dystroglycan complex seems to be important for epithelial morphogenesis, but the relative roles of these two receptor systems for epithelial cells are still unclear.
Collapse
Affiliation(s)
- P Ekblom
- Department of Animal Physiology, Uppsala University Biomedical Center, Box 596, Husargatan 3, S-75124 Uppsala, Sweden.
| |
Collapse
|
27
|
Abstract
Utrophin is an autosomally-encoded homologue of dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene. Although, utrophin is very similar in sequence to dystrophin and possesses many of the protein-binding properties ascribed to dystrophin, both proteins are expressed in an apparently reciprocal manner and may be coordinately regulated. In normal skeletal muscle, utrophin is found at the neuromuscular junction (NMJ) whereas dystrophin predominates at the sarcolemma. However, during development, and in some myopathies including DMD, utrophin is also found at the sarcolemma. This re-distribution is often associated with a significant increase in the levels of utrophin. At the NMJ utrophin co-localizes with the acetylcholine receptors (AChR) and may play a role in the stabilization of the synaptic cytoskeleton. Because utrophin and dystrophin are so similar, utrophin may be able to replace dystrophin in dystrophin deficient muscle. This review compares the structure and function of utrophin to dystrophin and discusses the rationale behind the use of utrophin as a potential therapeutic agent.
Collapse
Affiliation(s)
- D J Blake
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
28
|
Affiliation(s)
- H G Lidov
- Department of Pathology, Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Affiliation(s)
- R K Baker
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
30
|
Tajbakhsh S, Buckingham ME. Lineage restriction of the myogenic conversion factor myf-5 in the brain. Development 1995; 121:4077-83. [PMID: 8575308 DOI: 10.1242/dev.121.12.4077] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
myf-5 is one of four transcription factors belonging to the MyoD family that play key roles in skeletal muscle determination and differentiation. We have shown earlier by gene targeting nlacZ into the murine myf-5 locus that myf-5 expression in the developing mouse embryo is closely associated with the restriction of precursor muscle cells to the myogenic lineage. We now identify unexpected expression of this myogenic factor in subdomains of the brain. myf-5 expression begins to be detected at embryonic day 8 (E8) in the mesencephalon and coincides with the appearance of the first differentiated neurons; expression in the secondary prosencephalon initiates at E10 and is confined to the ventral domain of prosomere p4, later becoming restricted to the posterior hypothalamus. This expression is observed throughout embryogenesis. No other member of the MyoD family is detected in these regions, consistent with the lack of myogenic conversion. Furthermore, embryonic stem cells expressing the myf-5/nlacZ allele yield both skeletal muscle and neuronal cells when differentiated in vitro. These observations raise questions about the role of myf-5 in neurogenesis as well as myogenesis, and introduce a new lineage marker for the developing brain.
Collapse
Affiliation(s)
- S Tajbakhsh
- Department of Molecular Biology, CNRS URA1947, Pasteur Institute, Paris, France
| | | |
Collapse
|
31
|
Schofield JN, Górecki DC, Blake DJ, Davies K, Edwards YH. Dystroglycan mRNA expression during normal and mdx mouse embryogenesis: a comparison with utrophin and the apo-dystrophins. Dev Dyn 1995; 204:178-85. [PMID: 8589441 DOI: 10.1002/aja.1002040208] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alpha dystroglycan (156 kDa DAG) and beta dystroglycan (43 kDa DAG) are encoded by the same gene and are components of the dystrophin-associated membrane glycoprotein complex. The dystroglycans together with dystrophin form a link between the extracellular matrix and the intracellular cytoskeleton of the muscle fibre. Using in situ hybridisation to mRNA in embryo sections we have examined the expression of the mouse dystroglycan gene. Dystroglycan transcripts are ubiquitously expressed throughout development but are most abundant in cardiac, skeletal and smooth muscle and in ependymal cells lining the developing neural tube and brain. The expression patterns of dystroglycan and dystrophin overlap in major muscle systems during development, suggesting that the dystrophin-dystroglycan complex plays an important role during myogenesis. In contrast, the major sites of utrophin expression do not co-localize with those of dystroglycan suggesting that utrophin may interact with a distinct membrane-associated complex in these non-muscle sites. In mdx embryos the pattern of distribution of dystroglycan mRNA remains unchanged, as do those of utrophin and apo-dystrophin mRNAs. This observation implies that the observed changes in the relative abundance of DAGs and utrophin in dystrophin-deficient muscle occur post-transcriptionally.
Collapse
Affiliation(s)
- J N Schofield
- MRC Human Biochemical Genetics Department, London, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Kobayashi T, Ohno S, Park-Matsumoto YC, Kameda N, Baba T. Developmental studies of dystrophin and other cytoskeletal proteins in cultured muscle cells. Microsc Res Tech 1995; 30:437-57. [PMID: 7599356 DOI: 10.1002/jemt.1070300602] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We studied the developmental changes of localization of dystrophin and other cytoskeletal proteins, especially actin, spectrin and dystrophin related protein (DRP) using immunocytochemistry and quick-freezing and deep-etching (QF-DE) method. In developmental studies of mouse and human muscle cultures, some myoblasts had positive-reactions to spectrin, DRP, and F-actin, but not dystrophin. In aneurally cultured myotubes, dystrophin, DRP, and spectrin were localized diffusely in the cytoplasm and later in discontinuous patterns on the plasma membrane, when myotubes became mature. Spectrin and DRP had more positive reactions in immature myotubes, compared with those of dystrophin. In some areas of myotubes, dystrophin/spectrin and spectrin/actin were localized reciprocally. In innervated cultured human muscle cells, dystrophin and DRP were localized in neuro-muscular junctions, which were co-localized with clusters of acetylcholine receptors. By using the QF-DE method, dystrophin was localized just underneath the plasma membrane, and closely linked to actin-like filaments (8-10 nm in diameter), most of which were decorated with myosin subfragment 1. In actin-poor regions, spectrin was detected as well-organized filamentous structures in highly interconnected networks with various diameters. DRP was distributed irregularly with granular appearance inside the cytoplasm and also under the plasma membrane in immature mouse myotubes. Our present studies show that dystrophin, spectrin, and DRP are localized differently at the developmental stages of myotubes. These results suggest that dystrophin, spectrin, and DRP are organized independently in developing myotubes and these cytoskeletal proteins might play different functions in the preservation of plasma membrane stability in developing myotubes.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Neurology, Tokyo Medical and Dental University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
33
|
Bushby KM, Appleton R, Anderson LV, Welch JL, Kelly P, Gardner-Medwin D. Deletion status and intellectual impairment in Duchenne muscular dystrophy. Dev Med Child Neurol 1995; 37:260-9. [PMID: 7890131 DOI: 10.1111/j.1469-8749.1995.tb12000.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The authors collected Verbal, Performance and Full-scale IQs for 74 patients in whom complete analysis of the dystrophin gene for deletions and duplications had been performed. There was a significant difference in the mean Full-scale IQ between patients with deletions at the 5' and 3' ends of the gene, with no patients with 5' deletions having mental retardation. No relationship was established between mental retardation and the presence or absence of deletions or length of deletions, and similar deletions were observed in the presence and absence of mental retardation. Although distal deletions were more commonly associated with mental retardation, there was no clear evidence for a particular region of the dystrophin gene being specifically responsible for IQ. The intellectual deficit seen in DMD may be a consequence of cerebral hypoxia, ue to malfunction of smooth muscle dystrophin.
Collapse
Affiliation(s)
- K M Bushby
- Department of Human Genetics, University of Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Wilson LA, Cooper BJ, Dux L, Dubowitz V, Sewry CA. Expression of utrophin (dystrophin-related protein) during regeneration and maturation of skeletal muscle in canine X-linked muscular dystrophy. Neuropathol Appl Neurobiol 1994; 20:359-67. [PMID: 7808586 DOI: 10.1111/j.1365-2990.1994.tb00981.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The regulation of utrophin, the autosomal homologue of dystrophin, has been studied in the canine X-linked model of Duchenne muscular dystrophy. Dystrophic muscle has been shown to exhibit abnormal sarcolemmal expression of utrophin, in addition to the normal expression at the neuromuscular junction, in peripheral nerves, vascular tissues and regenerating fibres. To establish whether this abnormal presence of utrophin in dystrophic muscle is a consequence of continued expression following regeneration, or is attributable to a disease related up-regulation, the expression of utrophin was compared immunocytochemically with that of dystrophin, beta-spectrin and neonatal myosin in regenerating normal and dystrophic canine muscle, following necrosis induced by the injection of venom from the snake Notechis iscutatis. In normal regenerating muscle, sarcolemmal utrophin and dystrophin were detected concomitantly from 2-3 d post-injection, prior to the expression of beta-spectrin. Down-regulation of utrophin was apparent in some fibres from 7 d, and it was no longer present on the extra-junctional sarcolemma by 14 d. Neonatal myosin was still present in all fibres at this stage, but dystrophin and beta-spectrin had been fully restored. In dystrophic regenerating muscle, down-regulation of utrophin occurred from 7 d, although it persisted on some fibres until 28 d, longer than in normal muscle. At 42 d, however, utrophin in dystrophic muscle was only detected in a population of small fibres thought to represent a second cycle of regeneration, with no immunolabelling of mature fibres.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L A Wilson
- Department of Paediatrics and Neonatal Medicine, Royal Postgraduate Medical School, London, UK
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
Recent advances have been made in our understanding of the direct binding of actin to integral membrane proteins. New information has been obtained about indirect actin-membrane associations through spectrin superfamily members and through proteins at the cytoplasmic surfaces of focal contacts and adherens junctions.
Collapse
Affiliation(s)
- A L Hitt
- Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | |
Collapse
|
38
|
Abstract
Duchenne and Becker muscular dystrophies are caused by mutations in the gene encoding dystrophin, a component of the subsarcolemmal cytoskeleton. Dystrophin-related proteins are identical or homologous to the cysteine-rich and C-terminal domains of dystrophin. This part of dystrophin binds to a membrane-spanning glycoprotein complex in muscle. At least five dystrophin-related proteins are encoded by the Duchenne muscular dystrophy locus. These proteins are found in many non-muscle tissues where dystrophin is not expressed and they are thought to be membrane-associated. Two other dystrophin-related proteins--utrophin and an 87 kDa postsynaptic protein--are encoded by separate loci and, like dystrophin, they are components of the neuromuscular junction.
Collapse
Affiliation(s)
- D J Blake
- Molecular Genetics Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK OX3 9DU
| | | | | |
Collapse
|
39
|
Schofield J, Houzelstein D, Davies K, Buckingham M, Edwards YH. Expression of the dystrophin-related protein (utrophin) gene during mouse embryogenesis. Dev Dyn 1993; 198:254-64. [PMID: 8130373 DOI: 10.1002/aja.1001980403] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The utrophin (UTRN) locus is the autosomal homologue of the DMD (Duchenne muscular dystrophy) gene and encodes a protein, utrophin which is thought to be upregulated in the absence of dystrophin. In this study the spatial and temporal expression of the UTRN gene has been examined during mouse embryogenesis and compared with that of the DMD gene. The patterns of expression of these two genes are very different. Whilst DMD is expressed largely in mesodermal derivatives such as cardiac and striated muscle, UTRN shows a more widespread distribution and is expressed in neural tube, tissues which originate from neural crest and a variety of other sites of non-neural origin. In early embryos UTRN transcripts initially accumulate in the mid-neural plate and thereafter in the caudal neural tube. UTRN mRNA then becomes abundant in a subset of neural crest cell derived tissues, in particular the spinal and facial ganglia and ossifying facial cartilages. UTRN is also expressed in a variety of other sites and organs such as the tendon primordia in the digits, the pituitary, thyroid and adrenal glands, cardiac muscle, kidney and lung, follicles of the vibrissae and the outflow tract of the heart. Several patterns of UTRN expression are apparent and we discuss the possibility that these can be ascribed to a family of mRNAs transcribed from the UTRN gene using alternative promoters.
Collapse
Affiliation(s)
- J Schofield
- MRC Human Biochemical Genetics Unit, University College London, England
| | | | | | | | | |
Collapse
|