1
|
Li Z, Kong J, Xi S, Jin Z, Yang F, Zhu Z, Liu L. Exploring the Potential Regulatory Mechanisms of Mitophagy in Ischemic Cardiomyopathy. Int J Gen Med 2025; 18:2881-2899. [PMID: 40492232 PMCID: PMC12147806 DOI: 10.2147/ijgm.s519388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
Purpose Ischemic cardiomyopathy (ICM) was a clinical syndrome. Long - term myocardial blood supply insufficiency, caused by coronary atherosclerotic plaque, led to myocardial nutritional disorders and atrophy. After large - scale myocardial infarction, fibrous tissue hyperplasia impaired cardiac systolic and/or diastolic functions, causing heart failure and arrhythmia. Study shows that dysregulated mitophagy can lead to cardiomyocyte death and cardiomyopathy. However, it is still uncertain how mitophagy related genes (MRGs) may affect the diagnosis of ICM. Patients and Methods Data were obtained from public databases. Subsequently, mitochondria autophagy score-related genes (MSRGs) were obtained through Weighted Gene Co-expression Network Analysis (WGCNA). Then, an intersection was taken between MSRGs and the differentially expressed genes (DEGs) obtained from the differential expression analysis to obtain DE-MSRGs. Then, biomarkers were identified through machine learning algorithms and Receiver Operating Characteristic curve (ROC) analysis. Next, analyses of immune infiltration, molecular regulatory network, and drug prediction were carried out. Finally, Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) was performed on the biomarkers. It provides a certain theoretical basis for the research on the mechanism of the occurrence and development of ICM. Results In total, 99 DE-MSRGs between ICM and control groups were gained. The four biomarkers (PPDPF, DPEP2, LTBP1, SOCS2) were acquired, and all biomarkers had good diagnostic efficacy for ICM. The content of 3 immune cells between ICM and control groups was significantly different, namely T cells, CD8+ T cells, and neutrophil, and all biomarkers were considerably positively correlated with T cells. The ceRNA network contained 4 mRNAs, 14 miRNAs, and 12 lncRNAs, and TF-mRNA network contained 32 nodes and 38 edges. Finally, 45 drugs targeting the biomarkers were predicted, such as Salmeterol, Histamine, Rotavirus vaccine, etc. Importantly, this all 4 biomarkers were higher in ICM samples in RT-qPCR analysis. Conclusion Our findings provided four mitophagy related biomarkers (PPDPF, DPEP2, LTBP1, and SOCS2) for diagnosis of ICM, providing a scientific reference for further studies of ICM.
Collapse
Affiliation(s)
- Zhaobin Li
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiajie Kong
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuqiang Xi
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zeyue Jin
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Fan Yang
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhe Zhu
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Lei Liu
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
2
|
Ninomiya Y, Matsuda S, Suzuki S, Hirata-Tsuchiya S, Ueda T, Nakashima F, Yasuda K, Shimada S, Memida T, Yoshimoto T, Yamada S, Ouhara K, Mizuno N. Role of transglutaminase 2 in promoting biglycan synthesis in idiopathic gingival fibromatosis. BMC Oral Health 2024; 24:1422. [PMID: 39574071 PMCID: PMC11583685 DOI: 10.1186/s12903-024-05211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND This study aimed to elucidate the pathogenesis of idiopathic gingival fibromatosis (IGF). METHODS Human gingival fibroblasts (hGFs) were isolated from patients with IGF and periodontitis. Differential gene expression in the hGFs was analyzed using RNA sequencing. Extracellular matrix-related gene expression in the hGFs was analyzed. The effect of specific protein (SP)1 inhibitor or recombinant human transglutaminase 2 (rh-TGM2) on biglycan (BGN) expression in hGFs was also determined. RESULTS RNA sequencing showed that TGM2 expression was downregulated and BGN mRNA expression was upregulated in patients with IGF relative to periodontitis. rh-TGM2 stimulation of hGFs in patients with IGF significantly reduced BGN expression. SP1 inhibitors downregulated BGN expression in the hGFs. CONCLUSION BGN upregulation via SP1 causes TGM2 downregulation in gingival fibroblasts in IGF.
Collapse
Affiliation(s)
- Yurika Ninomiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Operative Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Sendai, Japan
| | - Shizu Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoya Ueda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Fuminori Nakashima
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Keisuke Yasuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shogo Shimada
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takumi Memida
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Tetsuya Yoshimoto
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
3
|
Mizuno T, Nagano F, Ito Y, Tatsukawa H, Shinoda Y, Takeuchi T, Takahashi K, Tsuboi N, Nagamatsu T, Yamada S, Maruyama S, Hitomi K. Novel function of transglutaminase 2 in extracellular histone-induced acute lung injury. Biochem Biophys Res Commun 2023; 678:179-185. [PMID: 37643535 DOI: 10.1016/j.bbrc.2023.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Extracellular histones induce endothelial damage, resulting in lung haemorrhage; however, the underlying mechanism remains unclear. Factor XIII, as a Ca2+-dependent cross-linking enzyme in blood, mediates fibrin deposition. As another isozyme, transglutaminase 2 (TG2) has a catalytic activity distributing in most tissues. Herein, we investigated whether TG2 promotes fibrin deposition and mediates the adhesion of platelets to ECs in histone-induced acute lung injury (ALI). We evaluated the lung histology and the adhesion of platelets to endothelial cells (ECs) after injecting histones to wild-type (WT) C57BL/6J and TG2 knockout (TG2-/-) mice, and administered a TG2 inhibitor (NC9) to WT mice. Pulmonary haemorrhage was more severe in TG2-/- mice than that in WT mice. The area of fibrin deposition and the proportion of CD41+CD31+ cells were lower in TG2-/- mice than in WT mice. Pre-treatment of NC9 decreased the area of fibrin deposition and the proportion of CD41+CD31+ cells in WT mice. These results suggest that TG2 prevents from pulmonary haemorrhage in ALI by promoting the adhesion of platelets to ECs and the fibrin deposition.
Collapse
Affiliation(s)
- Tomohiro Mizuno
- Department of Pharmacotherapeutics and Informatics, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Fumihiko Nagano
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshimasa Ito
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiki Shinoda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Taishu Takeuchi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tadashi Nagamatsu
- Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Meijo University Faculty of Pharmacy, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Qin XY, Furutani Y, Yonezawa K, Shimizu N, Kato-Murayama M, Shirouzu M, Xu Y, Yamano Y, Wada A, Gailhouste L, Shrestha R, Takahashi M, Keillor JW, Su T, Yu W, Fujii S, Kagechika H, Dohmae N, Shirakami Y, Shimizu M, Masaki T, Matsuura T, Suzuki H, Kojima S. Targeting transglutaminase 2 mediated exostosin glycosyltransferase 1 signaling in liver cancer stem cells with acyclic retinoid. Cell Death Dis 2023; 14:358. [PMID: 37308486 DOI: 10.1038/s41419-023-05847-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 06/14/2023]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that promotes or suppresses tumorigenesis, depending on intracellular location and conformational structure. Acyclic retinoid (ACR) is an orally administered vitamin A derivative that prevents hepatocellular carcinoma (HCC) recurrence by targeting liver cancer stem cells (CSCs). In this study, we examined the subcellular location-dependent effects of ACR on TG2 activity at a structural level and characterized the functional role of TG2 and its downstream molecular mechanism in the selective depletion of liver CSCs. A binding assay with high-performance magnetic nanobeads and structural dynamic analysis with native gel electrophoresis and size-exclusion chromatography-coupled multi-angle light scattering or small-angle X-ray scattering showed that ACR binds directly to TG2, induces oligomer formation of TG2, and inhibits the transamidase activity of cytoplasmic TG2 in HCC cells. The loss-of-function of TG2 suppressed the expression of stemness-related genes, spheroid proliferation and selectively induced cell death in an EpCAM+ liver CSC subpopulation in HCC cells. Proteome analysis revealed that TG2 inhibition suppressed the gene and protein expression of exostosin glycosyltransferase 1 (EXT1) and heparan sulfate biosynthesis in HCC cells. In contrast, high levels of ACR increased intracellular Ca2+ concentrations along with an increase in apoptotic cells, which probably contributed to the enhanced transamidase activity of nuclear TG2. This study demonstrates that ACR could act as a novel TG2 inhibitor; TG2-mediated EXT1 signaling is a promising therapeutic target in the prevention of HCC by disrupting liver CSCs.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Yali Xu
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Luc Gailhouste
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Rajan Shrestha
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Pharmacy, Kathmandu University, Dhulikhel, Kavre, Nepal
| | - Masataka Takahashi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ting Su
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Wenkui Yu
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Matsuura
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
5
|
Tissue transglutaminase exacerbates renal fibrosis via alternative activation of monocyte-derived macrophages. Cell Death Dis 2023; 14:136. [PMID: 36864028 PMCID: PMC9981766 DOI: 10.1038/s41419-023-05622-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Macrophages are important components in modulating homeostatic and inflammatory responses and are generally categorized into two broad but distinct subsets: classical activated (M1) and alternatively activated (M2) depending on the microenvironment. Fibrosis is a chronic inflammatory disease exacerbated by M2 macrophages, although the detailed mechanism by which M2 macrophage polarization is regulated remains unclear. These polarization mechanisms have little in common between mice and humans, making it difficult to adapt research results obtained in mice to human diseases. Tissue transglutaminase (TG2) is a known marker common to mouse and human M2 macrophages and is a multifunctional enzyme responsible for crosslinking reactions. Here we sought to identify the role of TG2 in macrophage polarization and fibrosis. In IL-4-treated macrophages derived from mouse bone marrow and human monocyte cells, the expression of TG2 was increased with enhancement of M2 macrophage markers, whereas knockout or inhibitor treatment of TG2 markedly suppressed M2 macrophage polarization. In the renal fibrosis model, accumulation of M2 macrophages in fibrotic kidney was significantly reduced in TG2 knockout or inhibitor-administrated mice, along with the resolution of fibrosis. Bone marrow transplantation using TG2-knockout mice revealed that TG2 is involved in M2 polarization of infiltrating macrophages derived from circulating monocytes and exacerbates renal fibrosis. Furthermore, the suppression of renal fibrosis in TG2-knockout mice was abolished by transplantation of wild-type bone marrow or by renal subcapsular injection of IL4-treated macrophages derived from bone marrow of wild-type, but not TG2 knockout. Transcriptome analysis of downstream targets involved in M2 macrophages polarization revealed that ALOX15 expression was enhanced by TG2 activation and promoted M2 macrophage polarization. Furthermore, the increase in the abundance of ALOX15-expressing macrophages in fibrotic kidney was dramatically suppressed in TG2-knockout mice. These findings demonstrated that TG2 activity exacerbates renal fibrosis by polarization of M2 macrophages from monocytes via ALOX15.
Collapse
|
6
|
Inhibition of Transglutaminase 2 Reduces Peritoneal Injury in a Chlorhexidine-Induced Peritoneal Fibrosis Model. J Transl Med 2023; 103:100050. [PMID: 36870292 DOI: 10.1016/j.labinv.2022.100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Long-term peritoneal dialysis (PD) is often associated with peritoneal dysfunction leading to withdrawal from PD. The characteristic pathologic features of peritoneal dysfunction are widely attributed to peritoneal fibrosis and angiogenesis. The detailed mechanisms remain unclear, and treatment targets in clinical settings have yet to be identified. We investigated transglutaminase 2 (TG2) as a possible novel therapeutic target for peritoneal injury. TG2 and fibrosis, inflammation, and angiogenesis were investigated in a chlorhexidine gluconate (CG)-induced model of peritoneal inflammation and fibrosis, representing a noninfectious model of PD-related peritonitis. Transforming growth factor (TGF)-β type I receptor (TGFβR-I) inhibitor and TG2-knockout mice were used for TGF-β and TG2 inhibition studies, respectively. Double immunostaining was performed to identify cells expressing TG2 and endothelial-mesenchymal transition (EndMT). In the rat CG model of peritoneal fibrosis, in situ TG2 activity and protein expression increased during the development of peritoneal fibrosis, as well as increases in peritoneal thickness and numbers of blood vessels and macrophages. TGFβR-I inhibitor suppressed TG2 activity and protein expression, as well as peritoneal fibrosis and angiogenesis. TGF-β1 expression, peritoneal fibrosis, and angiogenesis were suppressed in TG2-knockout mice. TG2 activity was detected by α-smooth muscle actin-positive myofibroblasts, CD31-positive endothelial cells, and ED-1-positive macrophages. CD31-positive endothelial cells in the CG model were α-smooth muscle actin-positive, vimentin-positive, and vascular endothelial-cadherin-negative, suggesting EndMT. In the CG model, EndMT was suppressed in TG2-knockout mice. TG2 was involved in the interactive regulation of TGF-β. As inhibition of TG2 reduced peritoneal fibrosis, angiogenesis, and inflammation associated with TGF-β and vascular endothelial growth factor-A suppression, TG2 may provide a new therapeutic target for ameliorating peritoneal injuries in PD.
Collapse
|
7
|
Lockhart-Cairns MP, Cain SA, Dajani R, Steer R, Thomson J, Alanazi YF, Kielty CM, Baldock C. Latent TGFβ complexes are transglutaminase cross-linked to fibrillin to facilitate TGFβ activation. Matrix Biol 2022; 107:24-39. [PMID: 35122964 PMCID: PMC8932414 DOI: 10.1016/j.matbio.2022.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
TGFβ is regulated via the formation latent complexes in the extracellular matrix. Fibrillin-1 is a substrate for transglutaminase-2 which forms a covalent link between fibrillin-1 and latent TGFβ complexes. Formation of the cross-link increases TGFβ activation in cell-based assays. Fibrillin may direct the latent TGFβ complexes to the cell surface for activation. The structure of the cross-linked LTBP1-fibrillin complex has a perpendicular arrangement to enable bridging long-range interactions between the matrix and cell surface.
TGFβ superfamily members are potent growth factors in the extracellular matrix with essential roles in all aspects of cellular behaviour. Latent TGFβ binding proteins (LTBPs) are co-expressed with TGFβ, essential for correct folding and secretion of the growth factor, to form large latent complexes. These large latent complexes bind extracellular proteins such as fibrillin for sequestration of TGFβ in the matrix, essential for normal tissue function, and dysregulated TGFβ signalling is a hallmark of many fibrillinopathies. Transglutaminase-2 (TG2) cross-linking of LTBPs is known to play a role in TGFβ activation but the underlying molecular mechanisms are not resolved. Here we show that fibrillin is a matrix substrate for TG2 and that TG2 cross-linked complexes can be formed between fibrillin and LTBP-1 and -3, and their latent TGFβ complexes. The structure of the fibrillin-LTBP1 complex shows that the two elongated proteins interact in a perpendicular arrangement which would allow them to form distal interactions between the matrix and the cell surface. Formation of the cross-link with fibrillin does not change the interaction between latent TGFβ and integrin αVβ6 but does increase TGFβ activation in cell-based assays. The activating effect may be due to direction of the latent complexes to the cell surface by fibrillin, as competition with heparan sulphate can ameliorate the activating effect. Together, these data support that TGFβ activation can be enhanced by covalent tethering of LTBPs to the matrix via fibrillin.
Collapse
Affiliation(s)
- Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Stuart A Cain
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Rana Dajani
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Ruth Steer
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jennifer Thomson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Yasmene F Alanazi
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Cay M Kielty
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
8
|
Tatsukawa H, Hitomi K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021; 10:cells10071842. [PMID: 34360011 PMCID: PMC8307792 DOI: 10.3390/cells10071842] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles of TG2, focusing on cell death/survival and fibrosis.
Collapse
|
9
|
Takeuchi T, Tatsukawa H, Shinoda Y, Kuwata K, Nishiga M, Takahashi H, Hase N, Hitomi K. Spatially Resolved Identification of Transglutaminase Substrates by Proteomics in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:319-330. [PMID: 34264172 DOI: 10.1165/rcmb.2021-0012oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the invariably progressive deposition of fibrotic tissue in the lungs and overall poor prognosis. Transglutaminase 2 (TG2) is an enzyme that crosslinks glutamine and lysine residues and is involved in IPF pathogenesis. Despite the accumulating evidence implicating TG2 as a critical enzyme, the causative function and direct target of TG2 relating to this pathogenesis remain unelucidated. Here, we clarified the distributions of TG2 protein/activity and conducted quantitative proteomics analyses of possible substrates crosslinked by TG2 on unfixed lung sections in a mouse pulmonary fibrosis model. We identified 126 possible substrates as markedly increased TG2-dependently in fibrotic lung. Gene ontology analysis revealed that these identified proteins were mostly enriched in the lipid metabolic process, immune system process, and protein transport. In addition, these proteins enriched in the 21 pathways including phagosome, lipid metabolism, several immune responses, and protein processing in endoplasmic reticulum. Furthermore, the network analyses screened out the 6 clusters and top 20 hub proteins with higher scores, which are related to ER stress and peroxisome proliferator-activated receptor signals. Several enriched pathways and categories were identified, and some of which were the same terms based on transcription analysis in IPF. Our results provide novel pathological molecular networks driven by protein crosslinking via TG2, which can lead to the development of new therapeutic targets for IPF.
Collapse
Affiliation(s)
- Taishu Takeuchi
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Tatsukawa
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan;
| | - Yoshiki Shinoda
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Keiko Kuwata
- Tokai National Higher Education and Research System, Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| | | | | | | | - Kiyotaka Hitomi
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Grill M, Lazzeri I, Kirsch A, Steurer N, Grossmann T, Karbiener M, Heitzer E, Gugatschka M. Vocal Fold Fibroblasts in Reinke's Edema Show Alterations Involved in Extracellular Matrix Production, Cytokine Response and Cell Cycle Control. Biomedicines 2021; 9:biomedicines9070735. [PMID: 34206882 PMCID: PMC8301432 DOI: 10.3390/biomedicines9070735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
The voice disorder Reinke’s edema (RE) is a smoking- and voice-abuse associated benign lesion of the vocal folds, defined by an edema of the Reinke’s space, accompanied by pathological microvasculature changes and immune cell infiltration. Vocal fold fibroblasts (VFF) are the main cell type of the lamina propria and play a key role in the disease progression. Current therapy is restricted to symptomatic treatment. Hence, there is an urgent need for a better understanding of the molecular causes of the disease. In the present study, we investigated differential expression profiles of RE and control VFF by means of RNA sequencing. In addition, fast gene set enrichment analysis (FGSEA) was performed in order to obtain involved biological processes, mRNA and protein levels of targets of interest were further evaluated. We identified 74 differentially regulated genes in total, 19 of which were upregulated and 55 downregulated. Differential expression analysis and FGSEA revealed upregulated genes and pathways involved in extracellular matrix (ECM) remodeling, inflammation and fibrosis. Downregulated genes and pathways were involved in ECM degradation, cell cycle control and proliferation. The current study addressed for the first time a direct comparison of VFF from RE to control and evaluated immediate functional consequences.
Collapse
Affiliation(s)
- Magdalena Grill
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
| | - Isaac Lazzeri
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria; (I.L.); (E.H.)
| | - Andrijana Kirsch
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
- Correspondence:
| | - Nina Steurer
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
| | - Tanja Grossmann
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
| | - Michael Karbiener
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
- Global Pathogen Safety, Baxter AG, (part of Takeda), 1220 Vienna, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria; (I.L.); (E.H.)
| | - Markus Gugatschka
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
| |
Collapse
|
11
|
Strategies to Use Nanofiber Scaffolds as Enzyme-Based Biocatalysts in Tissue Engineering Applications. Catalysts 2021. [DOI: 10.3390/catal11050536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanofibers are considered versatile materials with remarkable potential in tissue engineering and regeneration. In addition to their extracellular matrix-mimicking properties, nanofibers can be functionalized with specific moieties (e.g., antimicrobial nanoparticles, ceramics, bioactive proteins, etc.) to improve their overall performance. A novel approach in this regard is the use of enzymes immobilized onto nanofibers to impart biocatalytic activity. These nanofibers are capable of carrying out the catalysis of various biological processes that are essential in the healing process of tissue. In this review, we emphasize the use of biocatalytic nanofibers in various tissue regeneration applications. Biocatalytic nanofibers can be used for wound edge or scar matrix digestion, which reduces the hindrance for cell migration and proliferation, hence displaying applications in fast tissue repair, e.g., spinal cord injury. These nanofibers have potential applications in bone regeneration, mediating osteogenic differentiation, biomineralization, and matrix formation through direct enzyme activity. Moreover, enzymes can be used to undertake efficient crosslinking and fabrication of nanofibers with better physicochemical properties and tissue regeneration potential.
Collapse
|
12
|
Neuronal and Endothelial Transglutaminase-2 Expression during Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Neuroscience 2020; 461:140-154. [PMID: 33253822 DOI: 10.1016/j.neuroscience.2020.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Transglutiminase-2 (TG2) is a multifunctional enzyme that has been implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) using global knockout mice and TG2 selective inhibitors. Previous studies have identified the expression of TG2 in subsets of macrophages-microglia and astrocytes after EAE. The aims of the current investigation were to examine neuronal expression of TG2 in rodent models of chronic-relapsing and non-relapsing EAE and through co-staining with intracellular and cell death markers, provide insight into the putative role of TG2 in neuronal pathology during disease progression. Here we report that under normal physiological conditions there is a low basal expression of TG2 in the nucleus of neurons, however following EAE or MS, robust induction of cytoplasmic TG2 occurs in most neurons surrounding perivascular lesion sites. Importantly, TG2-positive neurons also labeled for phosphorylated Extracellular signal-regulated kinase 1/2 (ERK1/2) and the apoptotic marker cleaved caspase-3. In white and gray matter lesions, high levels of TG2 were also found within the vasculature and endothelial cells as well as in tissue migrating pericytes or fibroblasts, though rarely did TG2 colocalize with cells identified with glial cell markers (astrocytes, oligodendrocytes and microglia). TG2 induction occurred concurrently with the upregulation of the blood vessel permeability factor and angiogenic molecule Vascular Endothelial Growth Factor (VEGF). Extracellular TG2 was found to juxtapose with fibronectin, within and surrounding blood vessels. Though molecular and pharmacological studies have implicated TG2 in the induction and severity of EAE, the cell autonomous functions of this multifunctional enzyme during disease progression remains to be elucidated.
Collapse
|
13
|
A Preliminary Report of the Biochemical and Clinical Effects of 1,4-Diaminobutane on Prevention of Human Hypertrophic Scars. Plast Reconstr Surg 2020; 145:76e-84e. [PMID: 31881614 PMCID: PMC6940031 DOI: 10.1097/prs.0000000000006413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Supplemental Digital Content is available in the text. Summary: Objective evidence for the role of inhibition of collagen cross-linking in human scar using a nontoxic topical inhibitor, 1,4-diaminobutane (1,4 DAB), in patients with scars at risk for hypertrophic scar formation is presented. The authors used a concentration of 1,4 DAB of 0.8% (weight/volume) in a cream base similar to Glaxal Base. Application was once per day at night. The control was treated with cream base alone. In treatment phase studies at 2 months, tissue biopsies were performed and used to determine a therapeutic effect biochemically in paired scars harvested chosen with typical hypertrophic scars at two major treatment centers. Tissue transglutaminase activity revealed a significant reduction of the ε-(γ-glutamyl)lysine cross-links in the treated scars: 7.96 ± 1.51 pmol/µmol amino acid versus 14.78 ± 3.52 pmol/µmol amino acid. A subset of paired scars (n = 15) was also analyzed for soluble procollagen type III amino propeptide. The effect was a significant increase in procollagen type III amino propeptide in the scars treated with 1,4 DAB compared with sham-treated scars: 47.75 ± 4.6 µg/mg wet weight versus 39.08 ± 6.02 µg/mg wet weight, respectively. Levels of tissue 1,4 DAB was found to be twice as high in the presence of the active cream versus in the tissue of the control group. In subsequent prophylaxis studies, the authors treated 44 breast reduction patients prospectively with active cream to one or the other side in a double-blind randomized fashion. Hardness (in grams) measured using a Rex Durometer at 6 and 12 weeks postoperatively along with photographs were analyzed. The mean value ± SD of 24.98 ± 1.2 g on the active side versus 31.76 ± 1.1 g on the sham side was significantly different (p < 0.05). The patient scale scores of the Patient and Observer Scar Assessment Scale were also requested by survey in a responding 27-patient subgroup at a minimum 1 year postoperatively, and the differences between the two sides were found to be statistically significant, where the mean on the active side was 14.07 ± 1.34 and the mean on the sham side was 21.41 ± 1 (p < 0.05). The results are evidence to support the use of this agent in prevention of hypertrophic scars. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, II.
Collapse
|
14
|
Su T, Qin XY, Furutani Y, Yu W, Kojima S. Imaging of the ex vivo transglutaminase activity in liver macrophages of sepsis mice. Anal Biochem 2020; 597:113654. [PMID: 32142762 DOI: 10.1016/j.ab.2020.113654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Sepsis is the leading cause of death in hospitalized patients and is characterized by a dysregulated inflammatory response to infection and multiple organ failure, including the liver. Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, and integrin-binding activities and has opposing roles in the regulation of cell growth, differentiation, and apoptosis. TG2 plays both pathogenic and protective roles in liver diseases, revealing the need to examine the activities of TG2. Here, we introduced an ex vivo imaging approach to examine the in vivo transamidase activity of TG2 based on the combination of intraperitoneal injection of 5-biotinamidopentylamine (5BAPA), a biotinylated substrate for TG2, and fluorescent streptavidin staining in frozen liver sections. Increased 5BAPA signals was observed in the livers of lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-induced sepsis mice. Pharmacological inhibition of TG2 activity ameliorated LPS-induced liver injury. 5BAPA signals were observed in TG2-expressing and F4/80-positive midzonal macrophages, providing direct evidence that activated macrophages are the major cellular source of active TG2 in the livers of sepsis mice. Further studies focusing on the activation of 5BAPA-stained midzonal macrophages may improve understanding of the molecular pathophysiology and the development of therapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Ting Su
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Wenkui Yu
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
15
|
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, Rieder F. Pathogenesis of fibrostenosing Crohn's disease. Transl Res 2019; 209:39-54. [PMID: 30981697 DOI: 10.1016/j.trsl.2019.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease, which could affect any part of the gastrointestinal tract. A severe complication of CD is fibrosis-associated strictures, which can cause bowel obstruction. Unfortunately, there is no specific antifibrotic therapy available. More than 80% of the patients with CD will have to undergo at least 1 surgery in their life and recurrence of strictures after surgery is common. Investigations on the mechanism of fibrostenosing CD have revealed that fibrosis is mainly driven by expansion of mesenchymal cells including fibroblasts, myofibroblasts, and smooth muscle cells. Being exposed to a pro-fibrotic milieu, these cells increase the secretion of extracellular matrix, as well as crosslinking enzymes, which drive tissue stiffness and remodeling. Fibrogenesis can become independent of inflammation in later stages of disease, which offers unique therapeutic potential. Exciting new evidence suggests smooth muscle cell hyperplasia as a strong contributor to luminal narrowing in fibrostenotic CD. Approval of new drugs in other fibrotic diseases, such as idiopathic pulmonary fibrosis, as well as new targets associated with fibrosis found in CD, such as cadherins or specific integrins, shed light on the development of novel antifibrotic approaches in CD.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Satya Kurada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
16
|
Delaine-Smith R, Wright N, Hanley C, Hanwell R, Bhome R, Bullock M, Drifka C, Eliceiri K, Thomas G, Knight M, Mirnezami A, Peake N. Transglutaminase-2 Mediates the Biomechanical Properties of the Colorectal Cancer Tissue Microenvironment that Contribute to Disease Progression. Cancers (Basel) 2019; 11:E701. [PMID: 31117256 PMCID: PMC6562428 DOI: 10.3390/cancers11050701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/04/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide, and the fourth leading cause of malignancy-related mortality. This highlights the need to understand the processes driving this disease in order to develop new treatments and improve patient outcomes. A potential therapeutic target is the increased stiffness of the tumour microenvironment, which is linked to aggressive cancer cell behaviour by enhancing biomechanical signalling. In this study, we used an siRNA-based approach to investigate the contribution of the protein cross-linking enzyme transglutaminase-2 (TG2) to matrix remodelling and biomechanical properties of the tumour microenvironment. TG2 inhibited cancer cell growth in organotypic 3D fibroblast/SW480 co-culture models, and biomechanical analysis demonstrated that colorectal cancer cells induced fibroblast-mediated stiffness which was inhibited by silencing TG2. These biomechanical changes were associated with observed alterations to collagen fibre structure, notably fibre thickness. Our in vitro findings of collagen composition changes were also seen with imaging biopsied tissues from patients with colorectal cancer, with TG2 correlating positively with thicker collagen fibres, and associating with poor outcome as determined by disease recurrence post-surgery and overall survival. In conclusion, this study demonstrates a role for TG2 in the stromal response to invading tumour, leading to tissue stiffening and poor outcome in patients.
Collapse
Affiliation(s)
- Robin Delaine-Smith
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - Nicola Wright
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | - Chris Hanley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK.
| | - Rebecca Hanwell
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | - Rahul Bhome
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK.
- Department of Surgery, Southampton University Hospital NHS Trust, Southampton SO16 6YD, UK.
| | - Marc Bullock
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK.
- Department of Surgery, Southampton University Hospital NHS Trust, Southampton SO16 6YD, UK.
| | - Cole Drifka
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI 53706, USA.
| | - Kevin Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI 53706, USA.
| | - Gareth Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK.
| | - Martin Knight
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - Alex Mirnezami
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK.
- Department of Surgery, Southampton University Hospital NHS Trust, Southampton SO16 6YD, UK.
| | - Nicholas Peake
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| |
Collapse
|
17
|
Abd-Elhakim YM, Moustafa GG, Hashem MM, Ali HA, Abo-El-Sooud K, El-Metwally AE. Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenic signalling pathway in liver and kidney of rats: the expression patterns of collagen 1-α, TGFβ-1, fibronectin, and caspase-3 genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12368-12378. [PMID: 30847814 DOI: 10.1007/s11356-019-04734-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 05/22/2023]
Abstract
Colouring agents are highly present in diverse products in the human environment. We aimed to elucidate the fibrogenic cascade triggered by the food dyes tartrazine and chlorophyll. Rats were orally given distilled water, tenfold of the acceptable daily intake of tartrazine, or chlorophyll for 90 consecutive days. Tartrazine-treated rats displayed a significant rise (p < 0.05) in the mRNA levels and immunohistochemical localization of the renal and hepatic fibrotic markers collagen 1-α, TGFβ-1, and fibronectin and the apoptotic marker caspase-3. Moreover, a significant increment (p < 0.05) in the levels of AST, ALP, creatinine, and urea was evident in both experimental groups but more significant differences were noticed in the tartrazine group. Furthermore, we found a marked increment in the MDA level and significant declines (p < 0.05) in the levels of the SOD, CAT, and GSH enzymes in the kidney and liver from tartrazine-treated rats. The histological investigation reinforced the aforementioned data, revealing hepatocytes with fibrous connective tissue proliferation, apoptotic hepatocytes and periportal fibrosis with tubular necrosis, and shrunken glomeruli and interstitial fibrous tissue proliferation. We concluded that, even at the exposure to high concentrations for long durations, chlorophyll exhibited a lower propensity to induce fibrosis, apoptosis, and histopathological perturbations than tartrazine.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Biochemistry, Faculty of Science, Jeddah University, Jeddah, Saudi Arabia
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
18
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
19
|
Sun H, Kaartinen MT. Transglutaminases in Monocytes and Macrophages. ACTA ACUST UNITED AC 2018; 6:medsci6040115. [PMID: 30545030 PMCID: PMC6313455 DOI: 10.3390/medsci6040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Macrophages are key players in various inflammatory disorders and pathological conditions via phagocytosis and orchestrating immune responses. They are highly heterogeneous in terms of their phenotypes and functions by adaptation to different organs and tissue environments. Upon damage or infection, monocytes are rapidly recruited to tissues and differentiate into macrophages. Transglutaminases (TGs) are a family of structurally and functionally related enzymes with Ca2+-dependent transamidation and deamidation activity. Numerous studies have shown that TGs, particularly TG2 and Factor XIII-A, are extensively involved in monocyte- and macrophage-mediated physiological and pathological processes. In the present review, we outline the current knowledge of the role of TGs in the adhesion and extravasation of monocytes, the expression of TGs during macrophage differentiation, and the regulation of TG2 expression by various pro- and anti-inflammatory mediators in macrophages. Furthermore, we summarize the role of TGs in macrophage phagocytosis and the understanding of the mechanisms involved. Finally, we review the roles of TGs in tissue-specific macrophages, including monocytes/macrophages in vasculature, alveolar and interstitial macrophages in lung, microglia and infiltrated monocytes/macrophages in central nervous system, and osteoclasts in bone. Based on the studies in this review, we conclude that monocyte- and macrophage-derived TGs are involved in inflammatory processes in these organs. However, more in vivo studies and clinical studies during different stages of these processes are required to determine the accurate roles of TGs, their substrates, and the mechanisms-of-action.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
20
|
Notch ligand Delta-like 4 induces epigenetic regulation of Treg cell differentiation and function in viral infection. Mucosal Immunol 2018; 11:1524-1536. [PMID: 30038214 PMCID: PMC6160345 DOI: 10.1038/s41385-018-0052-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 02/04/2023]
Abstract
Notch ligand Delta-like ligand 4 (DLL4) has been shown to regulate CD4 T-cell differentiation, including regulatory T cells (Treg). Epigenetic alterations, which include histone modifications, are critical in cell differentiation decisions. Recent genome-wide studies demonstrated that Treg have increased trimethylation on histone H3 at lysine 4 (H3K4me3) around the Treg master transcription factor, Foxp3 loci. Here we report that DLL4 dynamically increased H3K4 methylation around the Foxp3 locus that was dependent upon upregulated SET and MYDN domain containing protein 3 (SMYD3). DLL4 promoted Smyd3 through the canonical Notch pathway in iTreg differentiation. DLL4 inhibition during pulmonary respiratory syncytial virus (RSV) infection decreased Smyd3 expression and Foxp3 expression in Treg leading to increased Il17a. On the other hand, DLL4 supported Il10 expression in vitro and in vivo, which was also partially dependent upon SMYD3. Using genome-wide unbiased mRNA sequencing, novel sets of DLL4- and Smyd3-dependent differentially expressed genes were discovered, including lymphocyte-activation gene 3 (Lag3), a checkpoint inhibitor that has been identified for modulating Th cell activation. Together, our data demonstrate a novel mechanism of DLL4/Notch-induced Smyd3 epigenetic pathways that maintain regulatory CD4 T cells in viral infections.
Collapse
|
21
|
Isozyme-specific comprehensive characterization of transglutaminase-crosslinked substrates in kidney fibrosis. Sci Rep 2018; 8:7306. [PMID: 29743665 PMCID: PMC5943318 DOI: 10.1038/s41598-018-25674-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease is characterized by prolonged decline in renal function, excessive accumulation of ECM, and progressive tissue fibrosis. Transglutaminase (TG) is a crosslinking enzyme that catalyzes the formation of covalent bonds between glutamine and lysine residues, and is involved in the induction of renal fibrosis via the stabilization of ECM and the activation of TGF-β1. Despite the accumulating evidences indicating that TG2 is a key enzyme in fibrosis, genetic knockout of TG2 reduced by only 50% the elevated protein crosslinking and fibrous protein in renal fibrosis model, whereas treatment with TG inhibitor almost completely reduced these levels. Here, we also clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific crosslinked substrates for both TG1 and TG2 in fibrotic kidney. We found that TG1 activity was markedly enhanced in renal tubular epithelium and interstitial areas, whereas TG2 activity increased only in the extracellular space. In total, 47 and 67 possible candidates were identified as TG1 and TG2 substrates, respectively, only in fibrotic kidney. Among them, several possible substrates related to renal disease and fibrosis were identified. These findings provide novel insights into the mechanisms of renal fibrosis through the targeting of isozyme-specific TG substrates.
Collapse
|
22
|
|
23
|
Moustafa GG, Hussein MM. New insight on using aged garlic extract against toxic impacts of titanium dioxide bulk salt triggers inflammatory and fibrotic cascades in male rats. Biomed Pharmacother 2016; 84:687-697. [DOI: 10.1016/j.biopha.2016.09.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023] Open
|
24
|
Sutariya B, Jhonsa D, Saraf MN. TGF-β: the connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol 2016; 38:39-49. [PMID: 26849902 DOI: 10.3109/08923973.2015.1127382] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Renal fibrosis is the usual outcome of an excessive accumulation of extracellular matrix (ECM) that frequently occurs in membranous and diabetic nephropathy. The result of renal fibrosis would be end-stage renal failure, which requires costly dialysis or kidney transplantation. Renal fibrosis typically results from chronic inflammation via production of several molecules, such as growth factors, angiogenic factors, fibrogenic cytokines, and proteinase. All of these factors can stimulate excessive accumulation of ECM components through epithelial to mesenchymal transition (EMT), which results in renal fibrosis. Among these, transforming growth factor-beta (TGF-β) is proposed to be the major regulator in inducing EMT. Besides ECM protein synthesis, TGF-β is involved in hypertrophy, proliferation, and apoptosis in renal cells. In particular, TGF-β is likely to be most potent and ubiquitous profibrotic factor acting through several intracellular signaling pathways including protein kinases and transcription factors. Factors that regulate TGF-β expression in renal cell include hyperglycemia, angiotensin II, advance glycation end products, complement activation (C5b-9), and oxidative stress. Over the past several years, the common understanding of the pathogenic factors that lead to renal fibrosis in nephropathy has improved considerably. This review will discuss the recent findings on the mechanisms and role of TGF-β in membranous and diabetic nephropathy.
Collapse
Affiliation(s)
- Brijesh Sutariya
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Dimple Jhonsa
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Madhusudan N Saraf
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| |
Collapse
|
25
|
Burhan I, Furini G, Lortat-Jacob H, Atobatele AG, Scarpellini A, Schroeder N, Atkinson J, Maamra M, Nutter FH, Watson P, Vinciguerra M, Johnson TS, Verderio EAM. Interplay between transglutaminases and heparan sulphate in progressive renal scarring. Sci Rep 2016; 6:31343. [PMID: 27694984 PMCID: PMC5046136 DOI: 10.1038/srep31343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/18/2016] [Indexed: 01/19/2023] Open
Abstract
Transglutaminase-2 (TG2) is a new anti-fibrotic target for chronic kidney disease, for its role in altering the extracellular homeostatic balance leading to excessive build-up of matrix in kidney. However, there is no confirmation that TG2 is the only transglutaminase involved, neither there are strategies to control its action specifically over that of the conserved family-members. In this study, we have profiled transglutaminase isozymes in the rat subtotal nephrectomy (SNx) model of progressive renal scarring. All transglutaminases increased post-SNx peaking at loss of renal function but TG2 was the predominant enzyme. Upon SNx, extracellular TG2 deposited in the tubulointerstitium and peri-glomerulus via binding to heparan sulphate (HS) chains of proteoglycans and co-associated with syndecan-4. Extracellular TG2 was sufficient to activate transforming growth factor-β1 in tubular epithelial cells, and this process occurred in a HS-dependent way, in keeping with TG2-affinity for HS. Analysis of heparin binding of the main transglutaminases revealed that although the interaction between TG1 and HS is strong, the conformational heparin binding site of TG2 is not conserved, suggesting that TG2 has a unique interaction with HS within the family. Our data provides a rationale for a novel anti-fibrotic strategy specifically targeting the conformation-dependent TG2-epitope interacting with HS.
Collapse
Affiliation(s)
- Izhar Burhan
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Giulia Furini
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, F-38027, France
| | - Adeola G. Atobatele
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Alessandra Scarpellini
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Nina Schroeder
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - John Atkinson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Mabrouka Maamra
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Faith H. Nutter
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Philip Watson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Manlio Vinciguerra
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Timothy S. Johnson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | | |
Collapse
|
26
|
Song KH, Cho SJ, Song JY. αvβ1 integrin as a novel therapeutic target for tissue fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:411. [PMID: 27867963 DOI: 10.21037/atm.2016.10.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic tissue injury with fibrosis results in disruption of tissue architecture, organ dysfunction and eventually organ failure. Currently, therapeutic options for tissue fibrosis are severely limited and organ transplantation including high cost and co-morbidities is the only effective treatment for end-stage fibrotic disease. Therefore, it is imperative to develop effective anti-fibrotic agents. Integrins are transmembrane proteins and are major receptors for cell-extracellular matrix (ECM) and cell-cell adhesion. Modulation of these molecules, particularly αv integrin family, has exhibited profound effects on fibrosis in multiple organ and disease state. Based on the several studies, the integrins αvβ3, αvβ5, αvβ6, and αvβ8 have been known to modulate the fibrotic process via activation of latent transforming growth factor (TGF)-β in pre-clinical models of fibrosis. In this perspective, we reviewed the functions of αvβ1 integrin as a potentially useful target molecule for antifibrotic agent and introduced novel specific small-molecule inhibitors targeting this integrin.
Collapse
Affiliation(s)
- Kyung-Hee Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Seong-Jun Cho
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Jie-Young Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| |
Collapse
|
27
|
P2X7 receptor-mediated TG2 externalization: a link to inflammatory arthritis? Amino Acids 2016; 49:453-460. [PMID: 27562793 PMCID: PMC5332493 DOI: 10.1007/s00726-016-2319-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022]
Abstract
Transglutaminases have important roles in stabilizing extracellular protein assemblies in tissue repair processes but some reaction products can stimulate immune activation, leading to chronic inflammatory conditions or autoimmunity. Exacerbated disease in models of inflammatory arthritis has been ascribed to sustained extracellular enzyme activity alongside formation of select protein modifications. Here, we review the evidence, with a focus on the link between P2X7R signaling and TG2 export, a pathway that we have recently discovered which ties extracellular protein modifications into the danger signal-mediated innate immune response. These recent insights offer new opportunities for therapeutic intervention.
Collapse
|
28
|
Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7:e2244. [PMID: 27253408 PMCID: PMC5143380 DOI: 10.1038/cddis.2016.150] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies.
Collapse
Affiliation(s)
- H Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Furutani
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - K Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - S Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| |
Collapse
|
29
|
Nyabam S, Wang Z, Thibault T, Oluseyi A, Basar R, Marshall L, Griffin M. A novel regulatory role for tissue transglutaminase in epithelial-mesenchymal transition in cystic fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2234-44. [PMID: 27234323 DOI: 10.1016/j.bbamcr.2016.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 01/23/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) for which there is no overall effective treatment. Recent work indicates tissue transglutaminase (TG2) plays a pivotal intracellular role in proteostasis in CF epithelia and that the pan TG inhibitor cysteamine improves CFTR stability. Here we show TG2 has another role in CF pathology linked with TGFβ1 activation and signalling, induction of epithelial-mesenchymal transition (EMT), CFTR stability and induction of matrix deposition. We show that increased TG2 expression in normal and CF bronchial epithelial cells increases TGFβ1 levels, promoting EMT progression, and impairs tight junctions as measured by Transepithelial Electric Resistance (TEER) which can be reversed by selective inhibition of TG2 with an observed increase in CFTR stability. Our data indicate that selective inhibition of TG2 provides a potential therapeutic avenue for reducing fibrosis and increasing CFTR stability in CF.
Collapse
Affiliation(s)
- Samuel Nyabam
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.
| | - Thomas Thibault
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Ayinde Oluseyi
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Rameeza Basar
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Lindsay Marshall
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
30
|
Mižíková I, Morty RE. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2015; 2:91. [PMID: 26779482 PMCID: PMC4688343 DOI: 10.3389/fmed.2015.00091] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth that contributes significantly to morbidity and mortality in neonatal intensive care units. BPD results from life-saving interventions, such as mechanical ventilation and oxygen supplementation used to manage preterm infants with acute respiratory failure, which may be complicated by pulmonary infection. The pathogenic pathways driving BPD are not well-delineated but include disturbances to the coordinated action of gene expression, cell-cell communication, physical forces, and cell interactions with the extracellular matrix (ECM), which together guide normal lung development. Efforts to further delineate these pathways have been assisted by the use of animal models of BPD, which rely on infection, injurious mechanical ventilation, or oxygen supplementation, where histopathological features of BPD can be mimicked. Notable among these are perturbations to ECM structures, namely, the organization of the elastin and collagen networks in the developing lung. Dysregulated collagen deposition and disturbed elastin fiber organization are pathological hallmarks of clinical and experimental BPD. Strides have been made in understanding the disturbances to ECM production in the developing lung, but much still remains to be discovered about how ECM maturation and turnover are dysregulated in aberrantly developing lungs. This review aims to inform the reader about the state-of-the-art concerning the ECM in BPD, to highlight the gaps in our knowledge and current controversies, and to suggest directions for future work in this exciting and complex area of lung development (patho)biology.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
31
|
Tissue transglutaminase-interleukin-6 axis facilitates peritoneal tumor spreading and metastasis of human ovarian cancer cells. Lab Anim Res 2015; 31:188-97. [PMID: 26755922 PMCID: PMC4707147 DOI: 10.5625/lar.2015.31.4.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022] Open
Abstract
Inflammation has recently been implicated in cancer formation and progression. As tissue transglutaminase (TG2) has been associated with both inflammatory signaling and tumor cell behavior, we propose that TG2 may be an important link inducing interleukin-6 (IL-6)-mediated cancer cell aggressiveness, including cancer stem cell-like characteristics and distant hematogenous metastasis. We evaluated the effect of differential TG2 and IL-6 expression on in vivo distant metastasis of human ovarian cancer cells. IL-6 production in human ovarian cancer cells was dependent on their TG2 expression levels. The size and efficiency of tumor sphere formation were correlated with TG2 expression levels and were dependent on TG2-mediated IL-6 secretion in human ovarian cancer cells. Primary tumor growth and propagation in the peritoneum and distant hematogenous metastasis into the liver and lung were also dependent on TG2 and downstream IL-6 expression levels in human ovarian cancer cells. In this report, we provide evidence that TG2 is an important link in IL-6-mediated tumor cell aggressiveness, and that TG2 and downstream IL-6 could be important mediators of distant hematogenous metastasis of human ovarian cancer cells. Intervention specific to TG2 and/or downstream IL-6 in ovarian cancer cells could provide a promising means to control tumor metastasis.
Collapse
|
32
|
Carrillo-Galvez AB, Cobo M, Cuevas-Ocaña S, Gutiérrez-Guerrero A, Sánchez-Gilabert A, Bongarzone P, García-Pérez A, Muñoz P, Benabdellah K, Toscano MG, Martín F, Anderson P. Mesenchymal stromal cells express GARP/LRRC32 on their surface: effects on their biology and immunomodulatory capacity. Stem Cells 2015; 33:183-95. [PMID: 25182959 PMCID: PMC4309416 DOI: 10.1002/stem.1821] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 08/10/2013] [Indexed: 12/20/2022]
Abstract
Mesenchymal stromal cells (MSCs) represent a promising tool for therapy in regenerative medicine, transplantation, and autoimmune disease due to their trophic and immunomodulatory activities. However, we are still far from understanding the mechanisms of action of MSCs in these processes. Transforming growth factor (TGF)-β1 is a pleiotropic cytokine involved in MSC migration, differentiation, and immunomodulation. Recently, glycoprotein A repetitions predominant (GARP) was shown to bind latency-associated peptide (LAP)/TGF-β1 to the cell surface of activated Foxp3+ regulatory T cells (Tregs) and megakaryocytes/platelets. In this manuscript, we show that human and mouse MSCs express GARP which presents LAP/TGF-β1 on their cell surface. Silencing GARP expression in MSCs increased their secretion and activation of TGF-β1 and reduced their proliferative capacity in a TGF-β1-independent manner. Importantly, we showed that GARP expression on MSCs contributed to their ability to inhibit T-cell responses in vitro. In summary, we have found that GARP is an essential molecule for MSC biology, regulating their immunomodulatory and proliferative activities. We envision GARP as a new target for improving the therapeutic efficacy of MSCs and also as a novel MSC marker. Stem Cells2015;33:183–195
Collapse
Affiliation(s)
- Ana Belén Carrillo-Galvez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tissue Transglutaminase-Regulated Transformed Growth Factor-β1 in the Parasite Links Schistosoma japonicum Infection with Liver Fibrosis. Mediators Inflamm 2015. [PMID: 26199461 PMCID: PMC4493306 DOI: 10.1155/2015/659378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor (TGF-β1) is among the strongest factors of liver fibrogenesis, but its association with Schistosoma-caused liver fibrosis is controversial. Tissue transglutaminase (tTG) is the principal enzyme controlling TGF-β1 maturation and contributes to Sj-infected liver fibrosis. Here we aim to explore the consistency between tTG and TGF-β1 and TGF-β1 source and its correlation with liver fibrosis after Sj-infection. TGF-β1 was upregulated at weeks 6 and 8 upon liver fibrosis induction. During tTG inhibition, TGF-β1 level decreased in sera and liver of infected mice. TGF-β1 showed positive staining in liver containing Sj adult worms and eggs. TGF-β1 was also detected in Sj adult worm sections, soluble egg antigen and Sj adult worm antigen, and adult worms' culture medium. The TGF-β1 mature peptide cDNA sequence and its extended sequence were amplified through RT-PCR and RACE-PCR using adult worms as template, and sequence is analyzed and loaded to NCBI GenBank (number GQ338152.1). TGF-β1 transcript in Sj eggs was higher than in adult worms. In Sj-infected liver, transcriptional level of TGF-β1 from Sj, but not mouse liver, correlated with liver fibrosis extent. This study provides evidence that tTG regulates TGF-β1 and illustrates the importance of targeting tTG in treating Sj infection-induced fibrosis.
Collapse
|
34
|
Singh P, Kurray L, Agnihotri A, Das P, Verma AK, Sreenivas V, Dattagupta S, Makharia GK. Titers of anti-tissue transglutaminase antibody correlate well with severity of villous abnormalities in celiac disease. J Clin Gastroenterol 2015; 49:212-217. [PMID: 24583754 DOI: 10.1097/mcg.0000000000000105] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GOALS We reviewed our celiac disease (CeD) database to study if anti-tissue transglutaminase (tTG) antibody (ab) titers correlate with severity of villous abnormalities in Indian patients and to find out a cutoff value of anti-tTG ab fold-rise, which could best predict CeD. BACKGROUND Guidelines for diagnosing CeD suggest that biopsy could be avoided in some patients with high anti-tTG ab titer. STUDY We reviewed a cohort of 366 anti-tTG ab-positive individuals in whom duodenal biopsies were performed. Anti-tTG ab was obtained before initiation of gluten-free diet. Anti-tTG ab results were expressed in terms of fold-rise by calculating ratio of observed values with cutoff value. CeD was diagnosed if in addition to positive serology, patients had villous atrophy (>Marsh grade 2) and unequivocal response to gluten-free diet. RESULTS The mean anti-tTG fold-rise in groups with Marsh grade ≤2 was 2.6 (±2.5), grade 3a was 4.0 (±3.9), 3b was 5.7 (±5.1), and 3c was 11.8 (±8.0). The positive likelihood ratio for diagnosing CeD was 15.4 and 27.4 at 12- and 14-fold-rise of anti-tTG ab titer, respectively. The positive predictive value of diagnosis of CeD was 100% when anti-tTG ab titer was 14-fold higher over the cutoff value. Fifty-seven (43.9%) individuals with anti-tTG titer rise <2-fold high also had CeD. CONCLUSIONS As severity of villous abnormality increases, titer of anti-tTG also rises. Presence of villous atrophy can be predicted at very high anti-tTG ab titer. In contrast to emerging belief, mucosal biopsies should be performed even if anti-tTG ab titer is <2 times, because many patients with CeD have low titers.
Collapse
Affiliation(s)
- Prashant Singh
- Departments of *Gastroenterology and Human Nutrition †Pathology ‡Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm 2015; 2015:137823. [PMID: 25709154 PMCID: PMC4325469 DOI: 10.1155/2015/137823] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/09/2014] [Indexed: 01/15/2023] Open
Abstract
The transforming growth factor beta (TGF-β) family forms a group of three isoforms, TGF-β1, TGF-β2, and TGF-β3, with their structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-β family concern control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of the human body. Amongst many cytokines and growth factors, the TGF-β family is considered a group playing one of numerous key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing cytokines and growth factors' involvement have shown that TGF-β has a leading role in the fracture healing process. This paper sums up current knowledge on the basis of available literature concerning the role of the TGF-β family in the fracture healing process.
Collapse
|
36
|
Tirado-Rodriguez B, Ortega E, Segura-Medina P, Huerta-Yepez S. TGF- β: an important mediator of allergic disease and a molecule with dual activity in cancer development. J Immunol Res 2014; 2014:318481. [PMID: 25110717 PMCID: PMC4071855 DOI: 10.1155/2014/318481] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/23/2014] [Accepted: 05/04/2014] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor- β (TGF- β ) superfamily is a family of structurally related proteins that includes TGF- β , activins/inhibins, and bone morphogenic proteins (BMPs). Members of the TGF- β superfamily regulate cellular functions such as proliferation, apoptosis, differentiation, and migration and thus play key roles in organismal development. TGF- β is involved in several human diseases, including autoimmune disorders and vascular diseases. Activation of the TGF- β receptor induces phosphorylation of serine/threonine residues and triggers phosphorylation of intracellular effectors (Smads). Once activated, Smad proteins translocate to the nucleus and induce transcription of their target genes, regulating various processes and cellular functions. Recently, there has been an attempt to correlate the effect of TGF- β with various pathological entities such as allergic diseases and cancer, yielding a new area of research known as "allergooncology," which investigates the mechanisms by which allergic diseases may influence the progression of certain cancers. This knowledge could generate new therapeutic strategies aimed at correcting the pathologies in which TGF- β is involved. Here, we review recent studies that suggest an important role for TGF- β in both allergic disease and cancer progression.
Collapse
Affiliation(s)
- Belen Tirado-Rodriguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, SS, Dr. Márquez No. 162, Colonia Doctores, Delegación Cuauhtémoc, 06720 México, DF, Mexico
| | - Enrique Ortega
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Avenida Universidad No. 3000, Delegación Coyoacán, 04510 México, DF, Mexico
| | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, 14080 México, DF, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, SS, Dr. Márquez No. 162, Colonia Doctores, Delegación Cuauhtémoc, 06720 México, DF, Mexico
| |
Collapse
|
37
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
38
|
Willis WL, Hariharan S, David JJ, Strauch AR. Transglutaminase-2 mediates calcium-regulated crosslinking of the Y-box 1 (YB-1) translation-regulatory protein in TGFβ1-activated myofibroblasts. J Cell Biochem 2014; 114:2753-69. [PMID: 23804301 DOI: 10.1002/jcb.24624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/25/2013] [Indexed: 01/23/2023]
Abstract
Myofibroblast differentiation is required for wound healing and accompanied by activation of smooth muscle α-actin (SMαA) gene expression. The stress-response protein, Y-box binding protein-1 (YB-1) binds SMαA mRNA and regulates its translational activity. Activation of SMαA gene expression in human pulmonary myofibroblasts by TGFβ1 was associated with formation of denaturation-resistant YB-1 oligomers with selective affinity for a known translation-silencer sequence in SMαA mRNA. We have determined that YB-1 is a substrate for the protein-crosslinking enzyme transglutaminase 2 (TG2) that catalyzes calcium-dependent formation of covalent γ-glutamyl-isopeptide linkages in response to reactive oxygen signaling. TG2 transamidation reactions using intact cells, cell lysates, and recombinant YB-1 revealed covalent crosslinking of the 50 kDa YB-1 polypeptide into protein oligomers that were distributed during SDS-PAGE over a 75-250 kDa size range. In vitro YB-1 transamidation required nanomolar levels of calcium and was enhanced by the presence of SMαA mRNA. In human pulmonary fibroblasts, YB-1 crosslinking was inhibited by (a) anti-oxidant cystamine, (b) the reactive-oxygen antagonist, diphenyleneiodonium, (c) competitive inhibition of TG2 transamidation using the aminyl-surrogate substrate, monodansylcadaverine, and (d) transfection with small-interfering RNA specific for human TG2 mRNA. YB-1 crosslinking was partially reversible as a function of oligomer-substrate availability and TG2 enzyme concentration. Intracellular calcium accumulation and peroxidative stress in injury-activated myofibroblasts may govern SMαA mRNA translational activity during wound healing via TG2-mediated crosslinking of the YB-1 mRNA-binding protein.
Collapse
Affiliation(s)
- William L Willis
- Department of Physiology and Cell Biology, The Integrated Biomedical Sciences Graduate Program, and the Ohio State Biochemistry Program, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, 43210
| | | | | | | |
Collapse
|
39
|
Scarpellini A, Huang L, Burhan I, Schroeder N, Funck M, Johnson TS, Verderio EAM. Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J Am Soc Nephrol 2014; 25:1013-27. [PMID: 24357671 PMCID: PMC4005302 DOI: 10.1681/asn.2013050563] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022] Open
Abstract
Transglutaminase type 2 (TG2) is an extracellular matrix crosslinking enzyme with a pivotal role in kidney fibrosis. The interaction of TG2 with the heparan sulfate proteoglycan syndecan-4 (Sdc4) regulates the cell surface trafficking, localization, and activity of TG2 in vitro but remains unstudied in vivo. We tested the hypothesis that Sdc4 is required for cell surface targeting of TG2 and the development of kidney fibrosis in CKD. Wild-type and Sdc4-null mice were subjected to unilateral ureteric obstruction and aristolochic acid nephropathy (AAN) as experimental models of kidney fibrosis. Analysis of renal scarring by Masson trichrome staining, kidney hydroxyproline levels, and collagen immunofluorescence demonstrated progressive fibrosis associated with increases in extracellular TG2 and TG activity in the tubulointerstitium in both models. Knockout of Sdc-4 reduced these effects and prevented AAN-induced increases in total and active TGF-β1. In wild-type mice subjected to AAN, extracellular TG2 colocalized with Sdc4 in the tubular interstitium and basement membrane, where TG2 also colocalized with heparan sulfate chains. Heparitinase I, which selectively cleaves heparan sulfate, completely abolished extracellular TG2 in normal and diseased kidney sections. In conclusion, the lack of Sdc4 heparan sulfate chains in the kidneys of Sdc4-null mice abrogates injury-induced externalization of TG2, thereby preventing profibrotic crosslinking of extracellular matrix and recruitment of large latent TGF-β1. This finding suggests that targeting the TG2-Sdc4 interaction may provide a specific interventional strategy for the treatment of CKD.
Collapse
Affiliation(s)
- Alessandra Scarpellini
- School of Science and Technology, Biomedical, Life and Health Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and
| | - Linghong Huang
- Academic Nephrology Unit, Sheffield Kidney Institute, University of Sheffield, Sheffield, United Kingdom
| | - Izhar Burhan
- School of Science and Technology, Biomedical, Life and Health Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and
| | - Nina Schroeder
- School of Science and Technology, Biomedical, Life and Health Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and
| | - Muriel Funck
- School of Science and Technology, Biomedical, Life and Health Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and
| | - Timothy S Johnson
- Academic Nephrology Unit, Sheffield Kidney Institute, University of Sheffield, Sheffield, United Kingdom
| | - Elisabetta A M Verderio
- School of Science and Technology, Biomedical, Life and Health Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and
| |
Collapse
|
40
|
Witsch TJ, Niess G, Sakkas E, Likhoshvay T, Becker S, Herold S, Mayer K, Vadász I, Roberts JD, Seeger W, Morty RE. Transglutaminase 2: a new player in bronchopulmonary dysplasia? Eur Respir J 2014; 44:109-21. [PMID: 24603819 DOI: 10.1183/09031936.00075713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aberrant remodelling of the extracellular matrix in the developing lung may underlie arrested alveolarisation associated with bronchopulmonary dysplasia (BPD). Transglutaminases are regulators of extracellular matrix remodelling. Therefore, the expression and activity of transglutaminases were assessed in lungs from human neonates with BPD and in a rodent model of BPD. Transglutaminase expression and localisation were assessed by RT-PCR, immunoblotting, activity assay and immunohistochemical analyses of human and mouse lung tissues. Transglutaminase regulation by transforming growth factor (TGF)-β was investigated in lung cells by luciferase-based reporter assay and RT-PCR. TGF-β signalling was neutralised in vivo in an animal model of BPD, to determine whether TGF-β mediated the hyperoxia-induced changes in transglutaminase expression. Transglutaminase 2 expression was upregulated in the lungs of preterm infants with BPD and in the lungs of hyperoxia-exposed mouse pups, where lung development was arrested. Transglutaminase 2 localised to the developing alveolar septa. TGF-β was identified as a regulator of transglutaminase 2 expression in human and mouse lung epithelial cells. In vivo neutralisation of TGF-β signalling partially restored normal lung structure and normalised lung transglutaminase 2 mRNA expression. Our data point to a role for perturbed transglutaminase 2 activity in the arrested alveolarisation associated with BPD.
Collapse
Affiliation(s)
- Thilo J Witsch
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Gero Niess
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elpidoforos Sakkas
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tatyana Likhoshvay
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Simone Becker
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Konstantin Mayer
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - István Vadász
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Jesse D Roberts
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Werner Seeger
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
41
|
Identification of a specific one amino acid change in recombinant human transglutaminase 2 that regulates its activity and calcium sensitivity. Biochem J 2014; 455:261-72. [PMID: 23941696 DOI: 10.1042/bj20130696] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
TG2 (transglutaminase 2) is a calcium-dependent protein cross-linking enzyme which is involved in a variety of cellular processes. The threshold level of calcium needed for endogenous and recombinant TG2 activity has been controversial, the former being more sensitive to calcium than the latter. In the present study we address this question by identifying a single amino acid change from conserved valine to glycine at position 224 in recombinant TG2 compared with the endogenous sequence present in the available genomic databases. Substituting a valine residue for Gly224 in the recombinant TG2 increased its calcium-binding affinity and transamidation activity 10-fold and isopeptidase activity severalfold, explaining the inactivity of widely used recombinant TG2 at physiological calcium concentrations. ITC (isothermal titration calorimetry) measurements showed 7-fold higher calcium-binding affinities for TG2 valine residues which could be activated inside cells. The two forms had comparable substrate- and GTP-binding affinities and also bound fibronectin similarly, but coeliac antibodies had a higher affinity for TG2 valine residues. Structural analysis indicated a higher stability for TG2 valine residues and a decrease in flexibility of the calcium-binding loop resulting in improved metal-binding affinity. The results of the present study suggest that Val224 increases TG2 activity by modulating its calcium-binding affinity enabling transamidation reactions inside cells.
Collapse
|
42
|
Viglio S, Stolk J, Iadarola P, Giuliano S, Luisetti M, Salvini R, Fumagalli M, Bardoni A. Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004-2013. Proteomes 2014; 2:18-52. [PMID: 28250368 PMCID: PMC5302730 DOI: 10.3390/proteomes2010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 01/14/2023] Open
Abstract
To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical pathways involved in disease; (ii) for generating hypotheses; or (iii) as a tool for the identification of proteins differentially expressed in response to the disease state. Proteomics has not been used yet in the field of respiratory research as extensively as in other fields, only a few reproducible and clinically applicable molecular markers, which can assist in diagnosis, having been currently identified. The continuous advances in both instrumentation and methodology, which enable sensitive and quantitative proteomic analyses in much smaller amounts of biological material than before, will hopefully promote the identification of new candidate biomarkers in this area. The aim of this report is to critically review the application over the decade 2004-2013 of very sophisticated technologies to the study of respiratory disorders. The observed changes in protein expression profiles from tissues/fluids of patients affected by pulmonary disorders opens the route for the identification of novel pathological mediators of these disorders.
Collapse
Affiliation(s)
- Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden 2333, The Netherlands.
| | - Paolo Iadarola
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| | - Serena Giuliano
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
- Faculty of Science "Parc Valrose", University of Nice "Sophia Antipolis", FRE 3472 CNRS, LP2M Nice, France.
| | - Maurizio Luisetti
- Department of Molecular Medicine, Division of Pneumology, University of Pavia & IRCCS Policlinico San Matteo, Via Taramelli 5, Pavia 27100, Italy.
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| | - Marco Fumagalli
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| |
Collapse
|
43
|
Robertson IB, Rifkin DB. Unchaining the beast; insights from structural and evolutionary studies on TGFβ secretion, sequestration, and activation. Cytokine Growth Factor Rev 2013; 24:355-72. [PMID: 23849989 DOI: 10.1016/j.cytogfr.2013.06.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
TGFβ is secreted in a latent state and must be "activated" by molecules that facilitate its release from a latent complex and allow binding to high affinity cell surface receptors. Numerous molecules have been implicated as potential mediators of this activation process, but only a limited number of these activators have been demonstrated to play a role in TGFβ mobilisation in vivo. Here we review the process of TGFβ secretion and activation using evolutionary data, sequence conservation and structural information to examine the molecular mechanisms by which TGFβ is secreted, sequestered and released. This allows the separation of more ancient TGFβ activators from those factors that emerged more recently, and helps to define a potential hierarchy of activation mechanisms.
Collapse
Affiliation(s)
- Ian B Robertson
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, Cell Biology Floor 6 Room 650, Medical Science Building, New York, NY 10016, United States.
| | | |
Collapse
|
44
|
Inhibition of collagen I accumulation reduces glomerulosclerosis by a Hic-5-dependent mechanism in experimental diabetic nephropathy. J Transl Med 2013; 93:553-65. [PMID: 23508044 DOI: 10.1038/labinvest.2013.42] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glomerulosclerosis of any cause is characterized by loss of functional glomerular cells and deposition of excessive amounts of interstitial collagens including collagen I. We have previously reported that mesangial cell attachment to collagen I leads to upregulation of Hic-5 in vitro, which mediates mesangial cell apoptosis. Furthermore, glomerular Hic-5 expression was increased during the progression of experimental glomerulosclerosis. We hypothesized that reducing collagen I accumulation in glomerulosclerosis would in turn lower Hic-5 expression, reducing mesangial cell apoptosis, and thus maintaining glomerular integrity. We examined archive renal tissue from rats undergoing experimental diabetic glomerulosclerosis, treated with the transglutaminase-2 inhibitor NTU281. Untreated animals exhibited increased glomerular collagen I accumulation, associated with increased glomerular Hic-5 expression, apoptosis, and mesangial myofibroblast transdifferentiation characterized by α-smooth muscle actin (α-SMA) expression. NTU281 treatment reduced glomerular collagen I accumulation, Hic-5 and α-SMA expression, and apoptosis. Proteinurea and serum creatinine levels were significantly reduced in animals with reduced Hic-5 expression. In vitro studies of Hic-5 knockdown or overexpression show that mesangial cell apoptosis and expression of both α-SMA and collagen I are Hic-5 dependent. Together, these data suggest that there exists, in vitro and in vivo, a positive feedback loop whereby increased levels of collagen I lead to increased mesangial Hic-5 expression favoring not only increased apoptosis, but also mesangial myofibroblast transdifferentiation and increased collagen I expression. Prevention of collagen I accumulation interrupts this Hic-5-dependent positive feedback loop, preserving glomerular architecture, cellular phenotype, and function.
Collapse
|
45
|
Velez V F, Romano JA, McKown RL, Green K, Zhang L, Raab RW, Ryan DS, Hutnik CML, Frierson HF, Laurie GW. Tissue transglutaminase is a negative regulator of monomeric lacritin bioactivity. Invest Ophthalmol Vis Sci 2013; 54:2123-32. [PMID: 23425695 DOI: 10.1167/iovs.12-11488] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Molar accounting of bioactive fluids can expose new regulatory mechanisms in the growing proteomic focus on epithelial biology. Essential for the viability of the surface epithelium of the eye and for normal vision is the thin, but protein-rich, tear film in which the small tear glycoprotein lacritin appears to play a prominent prosecretory, cytoprotective, and mitogenic role. Although optimal bioactive levels in cell culture are 1 to 10 nM over a biphasic dose optimum, ELISA suggests a sustained tear lacritin concentration in the midmicromolar range in healthy adults. Here we identify a reconciling mechanism. METHODS Monoclonal anti-lacritin 1F5 antibody was generated, and applied together with a new anti-C-terminal polyclonal antibody to tear and tissue Western blotting. In vitro tissue transglutaminase (Tgm2) cross-linking was monitored and characterized by mass spectrometry. RESULTS Blotting for lacritin in human tears or saliva surprisingly detected immunoreactive material with a higher molecular weight and prominence equal or exceeding the ∼23 to 25 kDa band of monomeric glycosylated lacritin. Exogenous Tgm2 initiated lacritin cross-linking within 1 minute and was complete by 90 minutes-even with as little as 0.1 nM lacritin, and involved the donors lysine 82 and 85 and the acceptor glutamine 106 in the syndecan-1 binding domain. Lacritin spiked into lacritin-depleted tears formed multimers, in keeping with ∼0.6 μM TGM2 in tears. Cross-linking was absent when Tgm2 was inactive, and cross-linked lacritin, unlike recombinant monomer, bound syndecan-1 poorly. CONCLUSIONS Since syndecan-1 binding is necessary for lacritin mitogenic and cytoprotective activities, TGM2 cross-linking negatively regulates lacritin bioactivity.
Collapse
Affiliation(s)
- Francisco Velez V
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fang JS, Dai C, Kurjiaka DT, Burt JM, Hirschi KK. Connexin45 regulates endothelial-induced mesenchymal cell differentiation toward a mural cell phenotype. Arterioscler Thromb Vasc Biol 2012; 33:362-8. [PMID: 23220276 DOI: 10.1161/atvbaha.112.255950] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The focus of this study was to investigate the role of connexin (Cx) 45 in endothelial-induced mural cell differentiation. METHODS AND RESULTS We created mural cell precursors that stably express only Cx45 in Cx43-deficient mesenchymal cells (ReCx45), and used our in vitro model of blood vessel assembly to assess the capacity of this Cx to support endothelial-induced mural cell differentiation. Lucifer Yellow dye injection and dual whole-cell patch clamping revealed that functional gap junctions exhibiting properties of Cx45-containing channels formed among ReCx45 transfectants, and between ReCx45 and endothelial cells. Heterocellular Cx45-containing gap junction channels enabled transforming growth factor-β activation and promoted the upregulation of mural cell-specific proteins in the mesenchymal precursors. CONCLUSIONS These studies reveal a critical role for Cx45 in the regulation of endothelial-induced mural cell differentiation, which is consistent with the phenotype of Cx45-deficient embryos that exhibit dysregulated transforming growth factor-β and lack mural cell development.
Collapse
Affiliation(s)
- Jennifer S Fang
- Yale Cardiovascular Research Center, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
47
|
Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-β - an excellent servant but a bad master. J Transl Med 2012; 10:183. [PMID: 22943793 PMCID: PMC3494542 DOI: 10.1186/1479-5876-10-183] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor (TGF-β) family of growth factors controls an immense number of cellular responses and figures prominently in development and homeostasis of most human tissues. Work over the past decades has revealed significant insight into the TGF-β signal transduction network, such as activation of serine/threonine receptors through ligand binding, activation of SMAD proteins through phosphorylation, regulation of target genes expression in association with DNA-binding partners and regulation of SMAD activity and degradation. Disruption of the TGF-β pathway has been implicated in many human diseases, including solid and hematopoietic tumors. As a potent inhibitor of cell proliferation, TGF-β acts as a tumor suppressor; however in tumor cells, TGF-β looses anti-proliferative response and become an oncogenic factor. This article reviews current understanding of TGF-β signaling and different mechanisms that lead to its impairment in various solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Lenka Kubiczkova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, 625 00, Czech Republic
| | | | | | | |
Collapse
|
48
|
Oh K, Park HB, Seo MW, Byoun OJ, Lee DS. Transglutaminase 2 exacerbates experimental autoimmune encephalomyelitis through positive regulation of encephalitogenic T cell differentiation and inflammation. Clin Immunol 2012; 145:122-32. [PMID: 23001131 DOI: 10.1016/j.clim.2012.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 07/27/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
The increased activity of transglutaminase 2 (TG2) in various inflammatory and fibrotic conditions results in the development of numerous disease processes. Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, is an inflammatory and demyelinating disease of the central nervous system and is mediated by many inflammatory cytokines and mediators. We examined the role of TG2 in encephalitogenic CD4(+) T cell responses and EAE development using mice lacking TG2 (TG2(-/-)). TG2(-/-) mice showed decreased disease severity as compared with wild-type (WT) mice. Treatment with cysteamine, a TG2 inhibitor, ameliorated disease severity in WT mice. Exacerbated disability in WT mice resulted from the increased infiltration of cytokine-producing CD4(+) T cells and sustained expression of inflammatory cytokines and mediators in the lesion. The increased number of IL-17- and IFN-γ-producing cells in the spinal cord resulted from peripheral expansion of these cells after immunization with myelin-derived antigen. In vitro differentiation of WT and TG2(-/-) splenocytes revealed that proliferation and activation-induced cell death did not differ, but differentiation into IL-17- or IFN-γ-producing cells was increased in WT mice. Adoptive transfer experiments revealed that pathogenic CD4(+) T cell differentiation and disease progression were caused by both the T cell-intrinsic and -extrinsic effects of TG2. This study is the first to report a pathogenic role for TG2 in the EAE progress and suggests that therapeutic targeting of TG2 may be effective against multiple sclerosis.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, #103 Daehak-ro Jongno-gu, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Kim JH, Jeong EM, Jeong YJ, Lee WJ, Kang JS, Kim IG, Hwang YI. Transglutaminase 2 modulates antigen-specific antibody response by suppressing Blimp-1 and AID expression of B cells in mice. Immunol Lett 2012; 147:18-28. [PMID: 22658978 DOI: 10.1016/j.imlet.2012.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/22/2022]
Abstract
Tansglutaminase 2 (TG2) mediates post-translational modifications of proteins that are involved in a variety of biological processes. Previous reports suggest an involvement of TG2 in adaptive immune responses. However, little has been elucidated in this regard. We explored, in this study, the role of TG2 in humoral immune response to keyhole limpet hemocyanin (KLH) using TG2(-/-) C57BL/6 mice. After primary and secondary immunization with KLH, the serum titer of the antigen-specific antibody was higher in the TG2(-/-) mice than in the wild-type mice. Not only the amount of the specific antibody was increased, but also the affinity of the antibody was estimated as higher in these mice. The TG2(-/-) spleen showed an enhanced germinal center response with higher percentages of GL7(+) germinal center B cells and B220(low) CD138(high) plasma cells. In addition, germinal center B cells from TG2(-/-) mice showed an increased expression of B lymphocyte induced maturation protein-1 (Blimp-1) as well as activation-induced cytidine deaminase (AID). Our results, in sum, indicate a regulatory role of TG2 in humoral immune response to a protein antigen, probably by way of modulating the expression level of proteins related to humoral immune reposes.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Hayashi H, Sakai T. Biological Significance of Local TGF-β Activation in Liver Diseases. Front Physiol 2012; 3:12. [PMID: 22363291 PMCID: PMC3277268 DOI: 10.3389/fphys.2012.00012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 12/20/2022] Open
Abstract
The cytokine transforming growth factor-β (TGF-β) plays a pivotal role in a diverse range of cellular responses, including cell proliferation, apoptosis, differentiation, migration, adhesion, angiogenesis, stimulation of extracellular matrix (ECM) synthesis, and downregulation of ECM degradation. TGF-β and its receptors are ubiquitously expressed by most cell types and tissues in vivo. In intact adult tissues and organs, TGF-β is secreted in a biologically inactive (latent) form associated in a non-covalent complex with the ECM. In response to injury, local latent TGF-β complexes are converted into active TGF-β according to a tissue- and injury type-specific activation mechanism. Such a well and tightly orchestrated regulation in TGF-β activity enables an immediate, highly localized response to type-specific tissue injury. In the pathological process of liver fibrosis, TGF-β plays as a master profibrogenic cytokine in promoting activation and myofibroblastic differentiation of hepatic stellate cells, a central event in liver fibrogenesis. Continuous and/or persistent TGF-β signaling induces sustained production of ECM components and of tissue inhibitor of metalloproteinase synthesis. Therefore, the regulation of locally activated TGF-β levels is increasingly recognized as a therapeutic target for liver fibrogenesis. This review summarizes our present knowledge of the activation mechanisms and bioavailability of latent TGF-β in biological and pathological processes in the liver.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA
| | - Takao Sakai
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA
- Orthopaedic and Rheumatologic Research Center, Cleveland ClinicCleveland, OH, USA
- Department of Anatomical Pathology, Pathology and Laboratory Medicine Institute, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|