1
|
Avula K, Singh B, Samantaray S, Syed GH. The Early Secretory Pathway Is Crucial for Multiple Aspects of the Hepatitis C Virus Life Cycle. J Virol 2023:e0018023. [PMID: 37338368 PMCID: PMC10373535 DOI: 10.1128/jvi.00180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.
Collapse
Affiliation(s)
- Kiran Avula
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Delhi, India
| | - Bharati Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
2
|
Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res 2021; 109:63-104. [PMID: 33934830 DOI: 10.1016/bs.aivir.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular compartmentalization of proteins and protein complex formation allow cells to tightly control biological processes. Therefore, understanding the subcellular localization and interactions of a specific protein is crucial to uncover its biological function. The advent of proximity labeling (PL) has reshaped cellular proteomics in infection biology. PL utilizes a genetically modified enzyme that generates a "labeling cloud" by covalently labeling proteins in close proximity to the enzyme. Fusion of a PL enzyme to a specific antibody or a "bait" protein of interest in combination with affinity enrichment mass spectrometry (AE-MS) enables the isolation and identification of the cellular proximity proteome, or proxisome. This powerful methodology has been paramount for the mapping of membrane or membraneless organelles as well as for the understanding of hard-to-purify protein complexes, such as those of transmembrane proteins. Unsurprisingly, more and more infection biology research groups have recognized the potential of PL for the identification of host-pathogen interactions. In this chapter, we introduce the enzymes commonly used for PL labeling as well as recent promising advancements and summarize the major achievements in organelle mapping and nucleic acid PL. Moreover, we comprehensively describe the research on host-pathogen interactions using PL, giving special attention to studies in the field of virology.
Collapse
Affiliation(s)
- Francisco José Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| | - Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Kumar D, Lak B, Suntio T, Vihinen H, Belevich I, Viita T, Xiaonan L, Vartiainen A, Vartiainen M, Varjosalo M, Jokitalo E. RTN4B interacting protein FAM134C promotes ER membrane curvature and has a functional role in autophagy. Mol Biol Cell 2021; 32:1158-1170. [PMID: 33826365 PMCID: PMC8351555 DOI: 10.1091/mbc.e20-06-0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, nonneuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced the formation of unbranched, long tubules or dense globular structures composed of heavily branched narrow tubules. In both cases, tubules were nonmotile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region also led to a reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes.
Collapse
Affiliation(s)
| | - Behnam Lak
- Cell and Tissue Dynamics Research Program
| | | | - Helena Vihinen
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| | - Ilya Belevich
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| | | | - Liu Xiaonan
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Jokitalo
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| |
Collapse
|
4
|
Jiang Z, Jin X, Li Y, Liu S, Liu XM, Wang YY, Zhao P, Cai X, Liu Y, Tang Y, Sun X, Liu Y, Hu Y, Li M, Cai G, Qi X, Chen S, Du LL, He W. Genetically encoded tags for direct synthesis of EM-visible gold nanoparticles in cells. Nat Methods 2020; 17:937-946. [PMID: 32778831 DOI: 10.1038/s41592-020-0911-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/29/2020] [Indexed: 11/09/2022]
Abstract
Genetically encoded tags for single-molecule imaging in electron microscopy (EM) are long-awaited. Here, we report an approach for directly synthesizing EM-visible gold nanoparticles (AuNPs) on cysteine-rich tags for single-molecule visualization in cells. We first uncovered an auto-nucleation suppression mechanism that allows specific synthesis of AuNPs on isolated tags. Next, we exploited this mechanism to develop approaches for single-molecule detection of proteins in prokaryotic cells and achieved an unprecedented labeling efficiency. We then expanded it to more complicated eukaryotic cells and successfully detected the proteins targeted to various organelles, including the membranes of endoplasmic reticulum (ER) and nuclear envelope, ER lumen, nuclear pores, spindle pole bodies and mitochondrial matrices. We further implemented cysteine-rich tag-antibody fusion proteins as new immuno-EM probes. Thus, our approaches should allow biologists to address a wide range of biological questions at the single-molecule level in cellular ultrastructural contexts.
Collapse
Affiliation(s)
- Zhaodi Jiang
- PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Xiumei Jin
- National Institute of Biological Sciences, Beijing, China
| | - Yuhua Li
- National Institute of Biological Sciences, Beijing, China
| | - Sitong Liu
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | - Ying-Ying Wang
- National Institute of Biological Sciences, Beijing, China
| | - Pei Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Xinbin Cai
- National Institute of Biological Sciences, Beijing, China
| | - Ying Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yaqi Tang
- National Institute of Biological Sciences, Beijing, China
| | - Xiaobin Sun
- National Institute of Biological Sciences, Beijing, China
| | - Yan Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yanyong Hu
- National Institute of Biological Sciences, Beijing, China
| | - Ming Li
- National Institute of Biological Sciences, Beijing, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| | - Wanzhong He
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
5
|
Samavarchi-Tehrani P, Samson R, Gingras AC. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol Cell Proteomics 2020; 19:757-773. [PMID: 32127388 PMCID: PMC7196579 DOI: 10.1074/mcp.r120.001941] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation.
Collapse
Affiliation(s)
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Wang T, Yang N, Liang C, Xu H, An Y, Xiao S, Zheng M, Liu L, Wang G, Nie L. Detecting Protein-Protein Interaction Based on Protein Fragment Complementation Assay. Curr Protein Pept Sci 2020; 21:598-610. [PMID: 32053071 DOI: 10.2174/1389203721666200213102829] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/22/2022]
Abstract
Proteins are the most critical executive molecules by responding to the instructions stored in the genetic materials in any form of life. More frequently, proteins do their jobs by acting as a roleplayer that interacts with other protein(s), which is more evident when the function of a protein is examined in the real context of a cell. Identifying the interactions between (or amongst) proteins is very crucial for the biochemistry investigation of an individual protein and for the attempts aiming to draw a holo-picture for the interacting members at the scale of proteomics (or protein-protein interactions mapping). Here, we introduced the currently available reporting systems that can be used to probe the interaction between candidate protein pairs based on the fragment complementation of some particular proteins. Emphasis was put on the principles and details of experimental design. These systems are dihydrofolate reductase (DHFR), β-lactamase, tobacco etch virus (TEV) protease, luciferase, β- galactosidase, GAL4, horseradish peroxidase (HRP), focal adhesion kinase (FAK), green fluorescent protein (GFP), and ubiquitin.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Ningning Yang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Chen Liang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Hongjv Xu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Yafei An
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Sha Xiao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Mengyuan Zheng
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Lu Liu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Gaozhan Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Lei Nie
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
7
|
Nguyen TMT, Kim J, Doan TT, Lee MW, Lee M. APEX Proximity Labeling as a Versatile Tool for Biological Research. Biochemistry 2019; 59:260-269. [PMID: 31718172 DOI: 10.1021/acs.biochem.9b00791] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most proteins are specifically localized in membrane-encapsulated organelles or non-membrane-bound compartments. The subcellular localization of proteins facilitates their functions and integration into functional networks; therefore, protein localization is tightly regulated in diverse biological contexts. However, protein localization has been mainly analyzed through immunohistochemistry or the fractionation of subcellular compartments, each of which has major drawbacks. Immunohistochemistry can examine only a handful of proteins at a time, and fractionation inevitably relies on the lysis of cells, which disrupts native cellular conditions. Recently, an engineered ascorbate peroxidase (APEX)-based proximity labeling technique combined with mass spectrometry was developed, which allows for temporally and spatially resolved proteomic mapping. In the presence of H2O2, engineered APEX oxidizes biotin-phenols into biotin-phenoxyl radicals, and these short-lived radicals biotinylate electron-rich amino acids within a radius of several nanometers. Biotinylated proteins are subsequently enriched by streptavidin and identified by mass spectrometry. This permits the sensitive and efficient labeling of proximal proteins around locally expressed APEX. Through the targeted expression of APEX in the subcellular region of interest, proteomic profiling of submitochondrial spaces, the outer mitochondrial membrane, the endoplasmic reticulum (ER)-mitochondrial contact, and the ER membrane has been performed. Furthermore, this method has been modified to define interaction networks in the vicinity of target proteins and has also been applied to analyze the spatial transcriptome. In this Perspective, we provide an outline of this newly developed technique and discuss its potential applications to address diverse biological questions.
Collapse
Affiliation(s)
- Thanh My Thi Nguyen
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Thi Tram Doan
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| |
Collapse
|
8
|
Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun 2019; 10:4399. [PMID: 31562315 PMCID: PMC6764964 DOI: 10.1038/s41467-019-12382-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/03/2019] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial Rho (Miro) GTPases localize to the outer mitochondrial membrane and are essential machinery for the regulated trafficking of mitochondria to defined subcellular locations. However, their sub-mitochondrial localization and relationship with other critical mitochondrial complexes remains poorly understood. Here, using super-resolution fluorescence microscopy, we report that Miro proteins form nanometer-sized clusters along the mitochondrial outer membrane in association with the Mitochondrial Contact Site and Cristae Organizing System (MICOS). Using knockout mouse embryonic fibroblasts we show that Miro1 and Miro2 are required for normal mitochondrial cristae architecture and Endoplasmic Reticulum-Mitochondria Contacts Sites (ERMCS). Further, we show that Miro couples MICOS to TRAK motor protein adaptors to ensure the concerted transport of the two mitochondrial membranes and the correct distribution of cristae on the mitochondrial membrane. The Miro nanoscale organization, association with MICOS complex and regulation of ERMCS reveal new levels of control of the Miro GTPases on mitochondrial functionality. Mitochondrial cristae organization and ER-mitochondria contact sites are critical structures for cellular function. Here, the authors use super-resolution microscopy to show that Miro GTPases form clusters required for normal ER-mitochondria contact sites formation and to link cristae organization to the mitochondrial transport machinery.
Collapse
|
9
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|
10
|
Pre-embedding labeling for subcellular detection of molecules with electron microscopy. Tissue Cell 2019; 57:103-110. [DOI: 10.1016/j.tice.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Olson MG, Jorgenson LM, Widner RE, Rucks EA. Proximity Labeling of the Chlamydia trachomatis Inclusion Membrane. Methods Mol Biol 2019; 2042:245-278. [PMID: 31385281 DOI: 10.1007/978-1-4939-9694-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the study of intracellular bacteria that reside within a membrane-bound vacuole, there are many questions related to how prokaryotic or eukaryotic transmembrane or membrane-associated proteins are organized and function within the membranes of these pathogen-containing vacuoles. Yet this host-pathogen interaction interface has proven difficult to experimentally resolve. For example, one method to begin to understand protein function is to determine the protein-binding partners; however, examining protein-protein interactions of hydrophobic transmembrane proteins is not widely successful using standard immunoprecipitation or coimmunoprecipitation techniques. In these scenarios, the lysis conditions that maintain protein-protein interactions are not compatible with solubilizing hydrophobic membrane proteins. In this chapter, we outline two proximity labeling systems to circumvent these issues to study (1) eukaryotic proteins that localize to the membrane-bound inclusion formed by Chlamydia trachomatis using BioID, and (2) chlamydial proteins that are inserted into the inclusion membrane using APEX2. BioID is a promiscuous biotin ligase to tag proximal proteins with biotin. APEX2 is an ascorbate peroxidase that creates biotin-phenoxyl radicals to label proximal proteins with biotin or 3,3'-diaminobenzidine intermediates for examination of APEX2 labeling of subcellular structures using transmission electron microscopy. We present how these methods were originally conceptualized and developed, so that the user can understand the strengths and limitations of each proximity labeling system. We discuss important considerations regarding experimental design, which include careful consideration of background conditions and statistical analysis of mass spectrometry results. When applied in the appropriate context with adequate controls, these methods can be powerful tools toward understanding membrane interfaces between intracellular pathogens and their hosts.
Collapse
Affiliation(s)
- Macy G Olson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lisa M Jorgenson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ray E Widner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth A Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
12
|
Publisher Note. Tissue Cell 2018. [DOI: 10.1016/j.tice.2018.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Cruz-Lopez D, Ramos D, Castilloveitia G, Schikorski T. Quintuple labeling in the electron microscope with genetically encoded enhanced horseradish peroxidase. PLoS One 2018; 13:e0200693. [PMID: 30011315 PMCID: PMC6047818 DOI: 10.1371/journal.pone.0200693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022] Open
Abstract
Genetic encoded multilabeling is essential for modern cell biology. In fluorescence microscopy this need has been satisfied by the development of numerous color-variants of the green fluorescent protein. In electron microscopy, however, true genetic encoded multilabeling is currently not possible. Here, we introduce combinatorial cell organelle type-specific labeling as a strategy for multilabeling. First, we created a reliable and high sensitive label by evolving the catalytic activity of horseradish peroxidase (HRP). We then built fusion proteins that targeted our new enhanced HRP (eHRP) to three cell organelles whose labeling pattern did not overlap with each other. The labeling of the endoplasmic reticulum, synaptic vesicles and the plasma membrane consequently allowed for triple labeling in the EM. The combinatorial expression of the three organelle-specific constructs increased the number of clearly distinguishable labels to seven. This strategy of multilabeling for EM closes a significant gap in our tool set and has a broad application range in cell biology.
Collapse
Affiliation(s)
- Didiana Cruz-Lopez
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Dianne Ramos
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Gloria Castilloveitia
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Thomas Schikorski
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| |
Collapse
|
14
|
Serebrenik YV, Hellerschmied D, Toure M, López-Giráldez F, Brookner D, Crews CM. Targeted protein unfolding uncovers a Golgi-specific transcriptional stress response. Mol Biol Cell 2018; 29:1284-1298. [PMID: 29851555 PMCID: PMC5994893 DOI: 10.1091/mbc.e17-11-0693] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, organelle-specific stress-response mechanisms are vital for maintaining cellular homeostasis. The Golgi apparatus, an essential organelle of the secretory system, is the major site of protein modification and sorting within a cell and functions as a platform for spatially regulated signaling. Golgi homeostasis mechanisms that regulate organelle structure and ensure precise processing and localization of protein substrates remain poorly understood. Using a chemical biology strategy to induce protein unfolding, we uncover a Golgi-specific transcriptional response. An RNA-sequencing profile of this stress response compared with the current state-of-the-art Golgi stressors, nigericin and xyloside, demonstrates the enhanced precision of Golgi targeting achieved with our system. The data set further reveals previously uncharacterized genes that we find to be essential for Golgi structural integrity. These findings highlight the Golgi's ability to sense misfolded proteins and establish new aspects of Golgi autoregulation.
Collapse
Affiliation(s)
- Yevgeniy V. Serebrenik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Doris Hellerschmied
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Momar Toure
- Department of Chemistry, Yale University, New Haven, CT 06511
| | | | - Dennis Brookner
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|
15
|
Ruggiero C, Grossi M, Fragassi G, Di Campli A, Di Ilio C, Luini A, Sallese M. The KDEL receptor signalling cascade targets focal adhesion kinase on focal adhesions and invadopodia. Oncotarget 2017. [PMID: 29535802 PMCID: PMC5828207 DOI: 10.18632/oncotarget.23421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Membrane trafficking via the Golgi-localised KDEL receptor activates signalling cascades that coordinate both trafficking and other cellular functions, including autophagy and extracellular matrix degradation. In this study, we provide evidence that membrane trafficking activates KDEL receptor and the Src family kinases at focal adhesions of HeLa cells, where this phosphorylates ADP-ribosylation factor GTPase-activating protein with SH3 domain, ankyrin repeat and PH domain (ASAP)1 and focal adhesion kinase (FAK). Previous studies have reported extracellular matrix degradation at focal adhesions. Here, matrix degradation was not seen at focal adhesions, although it occurred at invadopodia, where it was increased by KDEL receptor activation. This activation of KDEL receptor at invadopodia of A375 cells promoted recruitment and phosphorylation of FAK on tyrosines 397 and 861. From the functional standpoint, FAK overexpression inhibited steady-state and KDEL-receptor-stimulated extracellular matrix degradation, whereas overexpression of the FAK-Y397F mutant only inhibited KDEL-receptor-stimulated matrix degradation. Finally, we show that the Src and FAK activated downstream of KDEL receptor are part of parallel signalling pathways. In conclusion, membrane-traffic-generated signalling via KDEL receptor activates Src not only at the Golgi complex, but also at focal adhesions. By acting on Src and FAK, KDEL receptor increases invadopodia-mediated matrix degradation.
Collapse
Affiliation(s)
- Carmen Ruggiero
- CNRS, NEOGENEX CNRS International Associated Laboratory, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Sophia Antipolis, Valbonne, France
| | - Mauro Grossi
- CNRS, NEOGENEX CNRS International Associated Laboratory, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Sophia Antipolis, Valbonne, France
| | - Giorgia Fragassi
- Department of Medicine and Agency Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Regional Health Care Agency of Abruzzo, Pescara, Italy
| | | | - Carmine Di Ilio
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Michele Sallese
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Centre for Research on Ageing and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Shi Y, Wang L, Zhang J, Zhai Y, Sun F. Determining the target protein localization in 3D using the combination of FIB-SEM and APEX2. BIOPHYSICS REPORTS 2017; 3:92-99. [PMID: 29238746 PMCID: PMC5719812 DOI: 10.1007/s41048-017-0043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 11/05/2022] Open
Abstract
Determining the cellular localization of proteins of interest at nanometer resolution is necessary for elucidating their functions. Besides super-resolution fluorescence microscopy, conventional electron microscopy (EM) combined with immunolabeling or clonable EM tags provides a unique approach to correlate protein localization information and cellular ultrastructural information. However, there are still rare cases of such correlation in three-dimensional (3D) spaces. Here, we developed an approach by combining the focus ion beam scanning electron microscopy (FIB-SEM) and a promising clonable EM tag APEX2 (an enhanced ascorbate peroxidase 2) to determine the target protein localization within 3D cellular ultrastructural context. We further utilized this approach to study the 3D localization of mitochondrial dynamics-related proteins (MiD49/51, Mff, Fis1, and Mfn2) in the cells where the target proteins were overexpressed. We found that all the target proteins were located at the surface of the mitochondrial outer membrane accompanying with mitochondrial clusters. Mid49/51, Mff, and hFis1 spread widely around the mitochondrial surface while Mfn2 only exists at the contact sites.
Collapse
Affiliation(s)
- Yang Shi
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,Sino-Danish Center for Education and Research, Beijing, 100190 China
| | - Li Wang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianguo Zhang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,Sino-Danish Center for Education and Research, Beijing, 100190 China
| |
Collapse
|
17
|
Optimizing the fragment complementation of APEX2 for detection of specific protein-protein interactions in live cells. Sci Rep 2017; 7:12039. [PMID: 28955036 PMCID: PMC5617831 DOI: 10.1038/s41598-017-12365-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/07/2017] [Indexed: 12/23/2022] Open
Abstract
Dynamic protein-protein interactions (PPIs) play crucial roles in cell physiological processes. The protein-fragment complementation (PFC) assay has been developed as a powerful approach for the detection of PPIs, but its potential for identifying protein interacting regions is not optimized. Recently, an ascorbate peroxidase (APEX2)-based proximity-tagging method combined with mass spectrometry was developed to identify potential protein interactions in live cells. In this study, we tested whether APEX2 could be employed for PFC. By screening split APEX2 pairs attached to FK506-binding protein 12 (FKBP) and the FKBP12-rapamycin binding (FRB) domain, which interact with each other only in the presence of rapamycin, we successfully obtained an optimized pair for visualizing the interaction between FRB and FKBP12 with high specificity and sensitivity in live cells. The robustness of this APEX2 pair was confirmed by its application toward detecting the STIM1 and Orial1 homodimers in HEK-293 cells. With a subsequent mass spectrometry analysis, we obtained five different biotinylated sites that were localized to the known interaction region on STIM1 and were only detected when the homodimer formed. These results suggest that our PFC pair of APEX2 provides a potential tool for detecting PPIs and identifying binding regions with high specificity in live cells.
Collapse
|
18
|
Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nat Protoc 2017; 12:916-946. [PMID: 28384138 DOI: 10.1038/nprot.2017.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our groups have recently developed related approaches for sample preparation for super-resolution imaging within endogenous cellular environments using correlative light and electron microscopy (CLEM). Four distinct techniques for preparing and acquiring super-resolution CLEM data sets for aldehyde-fixed specimens are provided, including Tokuyasu cryosectioning, whole-cell mount, cell unroofing and platinum replication, and resin embedding and sectioning. The choice of the best protocol for a given application depends on a number of criteria that are discussed in detail. Tokuyasu cryosectioning is relatively rapid but is limited to small, delicate specimens. Whole-cell mount has the simplest sample preparation but is restricted to surface structures. Cell unroofing and platinum replication creates high-contrast, 3D images of the cytoplasmic surface of the plasma membrane but is more challenging than whole-cell mount. Resin embedding permits serial sectioning of large samples but is limited to osmium-resistant probes, and is technically difficult. Expected results from these protocols include super-resolution localization (∼10-50 nm) of fluorescent targets within the context of electron microscopy ultrastructure, which can help address cell biological questions. These protocols can be completed in 2-7 d, are compatible with a number of super-resolution imaging protocols, and are broadly applicable across biology.
Collapse
|
19
|
Rämö O, Kumar D, Gucciardo E, Joensuu M, Saarekas M, Vihinen H, Belevich I, Smolander OP, Qian K, Auvinen P, Jokitalo E. NOGO-A/RTN4A and NOGO-B/RTN4B are simultaneously expressed in epithelial, fibroblast and neuronal cells and maintain ER morphology. Sci Rep 2016; 6:35969. [PMID: 27786289 PMCID: PMC5081510 DOI: 10.1038/srep35969] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/07/2016] [Indexed: 02/08/2023] Open
Abstract
Reticulons (RTNs) are a large family of membrane associated proteins with various functions. NOGO-A/RTN4A has a well-known function in limiting neurite outgrowth and restricting the plasticity of the mammalian central nervous system. On the other hand, Reticulon 4 proteins were shown to be involved in forming and maintaining endoplasmic reticulum (ER) tubules. Using comparative transcriptome analysis and qPCR, we show here that NOGO-B/RTN4B and NOGO-A/RTN4A are simultaneously expressed in cultured epithelial, fibroblast and neuronal cells. Electron tomography combined with immunolabelling reveal that both isoforms localize preferably to curved membranes on ER tubules and sheet edges. Morphological analysis of cells with manipulated levels of NOGO-B/RTN4B revealed that it is required for maintenance of normal ER shape; over-expression changes the sheet/tubule balance strongly towards tubules and causes the deformation of the cell shape while depletion of the protein induces formation of large peripheral ER sheets.
Collapse
Affiliation(s)
- Olli Rämö
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Darshan Kumar
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Erika Gucciardo
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Merja Joensuu
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maiju Saarekas
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilya Belevich
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Olli-Pekka Smolander
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kui Qian
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Ohsaki Y, Kawai T, Yoshikawa Y, Cheng J, Jokitalo E, Fujimoto T. PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Biol 2016; 212:29-38. [PMID: 26728854 PMCID: PMC4700481 DOI: 10.1083/jcb.201507122] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PML-II plays a critical role in generating nuclear lipid droplets, which are associated with promyelocytic leukemia nuclear bodies as well as with the extension of the inner nuclear membrane. Lipid droplets (LDs) in the nucleus of hepatocyte-derived cell lines were found to be associated with premyelocytic leukemia (PML) nuclear bodies (NBs) and type I nucleoplasmic reticulum (NR) or the extension of the inner nuclear membrane. Knockdown of PML isoform II (PML-II) caused a significant decrease in both nuclear LDs and type I NR, whereas overexpression of PML-II increased both. Notably, these effects were evident only in limited types of cells, in which a moderate number of nuclear LDs exist intrinsically, and PML-II was targeted not only at PML NBs, but also at the nuclear envelope, excluding lamins and SUN proteins. Knockdown of SUN proteins induced a significant increase in the type I NR and nuclear LDs, but these effects were cancelled by simultaneous knockdown of PML-II. Nuclear LDs harbored diacylglycerol O-acyltransferase 2 and CTP:phosphocholine cytidylyltransferase α and incorporated newly synthesized lipid esters. These results corroborated that PML-II plays a critical role in generating nuclear LDs in specific cell types.
Collapse
Affiliation(s)
- Yuki Ohsaki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Kawai
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yukichika Yoshikawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
21
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy. Sci Rep 2015; 5:17740. [PMID: 26643905 PMCID: PMC4672345 DOI: 10.1038/srep17740] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022] Open
Abstract
Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches.
Collapse
|
23
|
STIM1 Is a Novel Component of ER-Chlamydia trachomatis Inclusion Membrane Contact Sites. PLoS One 2015; 10:e0125671. [PMID: 25915399 PMCID: PMC4411163 DOI: 10.1371/journal.pone.0125671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022] Open
Abstract
Productive developmental cycle of the obligate intracellular bacterial pathogen Chlamydia trachomatis depends on the interaction of the replicative vacuole, named the inclusion, with cellular organelles. We have recently reported the formation of ER-Inclusion membrane contact sites (MCSs), where the endoplasmic reticulum (ER) is in apposition to the inclusion membrane. These platforms contain the C. trachomatis inclusion membrane protein IncD, the mammalian ceramide transfer protein CERT and the ER resident proteins VAPA/B and were proposed to play a role in the non-vesicular trafficking of lipids to the inclusion. Here, we identify STIM1 as a novel component of ER-Inclusion MCSs. STIM1, an ER calcium (Ca2+) sensor that relocate to ER-Plasma Membrane (PM) MCSs upon Ca2+ store depletion, associated with C. trachomatis inclusion. STIM1, but not the general ER markers Rtn3C and Sec61ß, was enriched at the inclusion membrane. Ultra-structural studies demonstrated that STIM1 localized to ER-Inclusion MCSs. Time-course experiments showed that STIM1, CERT and VAPB co-localized throughout the developmental cycle. By contrast, Orai1, the PM Ca2+ channel that interacts with STIM1 at ER-PM MCSs, did not associate with C. trachomatis inclusion. Upon ER Ca2+ store depletion, a pool of STIM1 relocated to ER-PM MCSs, while the existing ER-Inclusion MCSs remained enriched in STIM1. Finally, we have identified the CAD domain, which mediates STIM1-Orai1 interaction, as the minimal domain required for STIM1 enrichment at ER-Inclusion MCSs. Altogether this study identifies STIM1 as a novel component of ER-C. trachomatis inclusion MCSs. We discuss the potential role(s) of STIM1 during the infection process.
Collapse
|
24
|
Kuipers J, van Ham TJ, Kalicharan RD, Veenstra-Algra A, Sjollema KA, Dijk F, Schnell U, Giepmans BNG. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles. Cell Tissue Res 2015; 360:61-70. [PMID: 25786736 PMCID: PMC4379394 DOI: 10.1007/s00441-015-2142-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 11/25/2022]
Abstract
Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely difficult. Even when combining light microscopy (LM) with EM (correlated LM and EM: CLEM) to find areas of interest, the labeling of molecules is still a challenge. We present a new genetically encoded probe for CLEM, named "FLIPPER", which facilitates quantitative analysis of ultrastructural features in cells. FLIPPER consists of a fluorescent protein (cyan, green, orange, or red) for LM visualization, fused to a peroxidase allowing visualization of targets at the EM level. The use of FLIPPER is straightforward and because the module is completely genetically encoded, cells can be optimally prepared for EM examination. We use FLIPPER to quantify cellular morphology at the EM level in cells expressing a normal and disease-causing point-mutant cell-surface protein called EpCAM (epithelial cell adhesion molecule). The mutant protein is retained in the endoplasmic reticulum (ER) and could therefore alter ER function and morphology. To reveal possible ER alterations, cells were co-transfected with color-coded full-length or mutant EpCAM and a FLIPPER targeted to the ER. CLEM examination of the mixed cell population allowed color-based cell identification, followed by an unbiased quantitative analysis of the ER ultrastructure by EM. Thus, FLIPPER combines bright fluorescent proteins optimized for live imaging with high sensitivity for EM labeling, thereby representing a promising tool for CLEM.
Collapse
Affiliation(s)
- Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tjakko J. van Ham
- Present Address: Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ruby D. Kalicharan
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anneke Veenstra-Algra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Klaas A. Sjollema
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Freark Dijk
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ulrike Schnell
- Present Address: Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, Tex. USA
| | - Ben N. G. Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
25
|
Chuang JZ, Hsu YC, Sung CH. Ultrastructural visualization of trans-ciliary rhodopsin cargoes in mammalian rods. Cilia 2015; 4:4. [PMID: 25664179 PMCID: PMC4320831 DOI: 10.1186/s13630-015-0013-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/15/2015] [Indexed: 11/28/2022] Open
Abstract
Background Cilia are vital to various cellular and sensory functions. The pathway by which ciliary membrane proteins translocate through the transition zone is not well understood. Direct morphological characterization of ciliary cargoes in transit remains lacking. In the vertebrate photoreceptor, rhodopsin is synthesized and transported from the inner segment to the disc membranes of the outer segment (OS), which is a modified cilium. To date, the membrane topology of the basal OS and the mechanisms by which rhodopsin is transported through the transition zone (i.e., connecting cilium) and by which nascent disc membranes are formed remain controversial. Results Using an antibody recognizing its cytoplasmic C-terminus, we localize rhodopsin on both the plasma membrane and lumen of the connecting cilium by immuno-electron microscopy (EM). We also use transmission EM to visualize the electron-dense enzymatic products derived from the rhodopsin-horseradish peroxidase (HRP) fusion in transfected rodent rods. In the connecting cilium, rhodopsin is not only expressed in the plasma membrane but also in the lumen on two types of membranous carriers, long smooth tubules and small, coated, filament-bound vesicles. Additionally, membrane-bound rhodopsin carriers are also found in close proximity to the nascent discs at the basal OS axoneme and in the distal inner segment. This topology-indicative HRP-rhodopsin reporter shows that the nascent basalmost discs and the mature discs have the same membrane topology, with no indication of evagination or invagination from the basal OS plasma membranes. Serial block face and focus ion beam scanning EM analyses both indicate that the transport carriers enter the connecting cilium lumen from either the basal body lumen or cytoplasmic space between the axonemal microtubules and the ciliary plasma membrane. Conclusions Our results suggest the existence of multiple ciliary gate entry pathways in rod photoreceptors. Rhodopsin is likely transported across the connecting cilium on the plasma membrane and through the lumens on two types of tubulovesicular carriers produced in the inner segment. Our findings agree with a previous model that rhodopsin carriers derived from the cell body may fuse directly onto nascent discs as they grow and mature. Electronic supplementary material The online version of this article (doi:10.1186/s13630-015-0013-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jen-Zen Chuang
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065 USA
| | - Ya-Chu Hsu
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065 USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065 USA ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10067 USA ; The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, LC313, New York, NY 10065 USA
| |
Collapse
|
26
|
Abstract
Protein trafficking within the secretory pathway of mammalian cells is amenable to analysis by biochemical methods. This can be achieved by monitoring posttranslational modifications that occur naturally within the secretory pathway, or by measuring the delivery of cargo to the cell surface or extracellular medium. These approaches can be combined with additional manipulations such as specific temperature blocks that permit analysis of distinct trafficking steps. Biochemical analysis is advantageous in that it permits both a sensitive and quantitative measure of trafficking along the pathway. The methods discussed in this chapter permit the analysis of trafficking of both endogenous cargo proteins and ectopically expressed model cargos, which can be followed using either Western blotting or metabolic pulse-chase approaches. These methods are relatively straightforward and suitable for use in most modern cell biology laboratories. In addition to the well-established methods that we describe here in detail, we also refer to the development of more recent tailored approaches that add further to the arsenal of tools that can be used to assess trafficking in the secretory pathway.
Collapse
Affiliation(s)
- Peristera Roboti
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
27
|
Abstract
Since electron microscopy (EM) first appeared in the 1930s, it has held centre stage as the primary tool for the exploration of biological structure. Yet, with the recent developments of light microscopy techniques that overcome the limitations imposed by the diffraction boundary, the question arises as to whether the importance of EM in on the wane. This Commentary describes some of the pioneering studies that have shaped our understanding of cell structure. These include the development of cryo-EM techniques that have given researchers the ability to capture images of native structures and at the molecular level. It also describes how a number of recent developments significantly increase the ability of EM to visualise biological systems across a range of length scales, and in 3D, ensuring that EM will remain at the forefront of biology research for the foreseeable future.
Collapse
Affiliation(s)
- Graham Knott
- BioEM Facility, Centre Interdisciplinaire de Microscopie Electronique, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
28
|
Joensuu M, Belevich I, Rämö O, Nevzorov I, Vihinen H, Puhka M, Witkos TM, Lowe M, Vartiainen MK, Jokitalo E. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays. Mol Biol Cell 2014; 25:1111-26. [PMID: 24523293 PMCID: PMC3967974 DOI: 10.1091/mbc.e13-12-0712] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.
Collapse
Affiliation(s)
- Merja Joensuu
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Ilya Belevich
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
- Electron Microscopy Unit, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Olli Rämö
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Ilya Nevzorov
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
- Electron Microscopy Unit, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Maija Puhka
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Tomasz M. Witkos
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Maria K. Vartiainen
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
- Electron Microscopy Unit, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Miyagawa-Yamaguchi A, Kotani N, Honke K. Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. PLoS One 2014; 9:e93054. [PMID: 24671047 PMCID: PMC3966864 DOI: 10.1371/journal.pone.0093054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts that are enriched in glycosylphosphatidylinositol (GPI)-anchored proteins serve as a platform for important biological events. To elucidate the molecular mechanisms of these events, identification of co-clustering molecules in individual raft domains is required. Here we describe an approach to this issue using the recently developed method termed enzyme-mediated activation of radical source (EMARS), by which molecules in the vicinity within 300 nm from horseradish peroxidase (HRP) set on the probed molecule are labeled. GPI-anchored HRP fusion proteins (HRP-GPIs), in which the GPI attachment signals derived from human decay accelerating factor and Thy-1 were separately connected to the C-terminus of HRP, were expressed in HeLa S3 cells, and the EMARS reaction was catalyzed by these expressed HRP-GPIs under a living condition. As a result, these different HRP-GPIs had differences in glycosylation and localization and formed distinct clusters. This novel approach distinguished molecular clusters associated with individual GPI-anchored proteins, suggesting that it can identify co-clustering molecules in individual raft domains.
Collapse
Affiliation(s)
- Arisa Miyagawa-Yamaguchi
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
| | - Norihiro Kotani
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
- Department of Biochemistry, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Koichi Honke
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
- Department of Biochemistry, Kochi University Medical School, Nankoku, Kochi, Japan
- * E-mail:
| |
Collapse
|
30
|
Stevenson NL, Martin-Martin B, Freeman J, Kriston-Vizi J, Ketteler R, Cutler DF. G protein-coupled receptor kinase 2 moderates recruitment of THP-1 cells to the endothelium by limiting histamine-invoked Weibel-Palade body exocytosis. J Thromb Haemost 2014; 12:261-272. [PMID: 24735118 PMCID: PMC4238739 DOI: 10.1111/jth.12470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/21/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) are a major family of signaling molecules, central to the regulation of inflammatory responses. Their activation upon agonist binding is attenuated by GPCR kinases (GRKs), which desensitize the receptors through phosphorylation. G protein-coupled receptor kinase 2(GRK2) down-regulation in leukocytes has been closely linked to the progression of chronic inflammatory disorders such as rheumatoid arthritis and multiple sclerosis. Because leukocytes must interact with the endothelium to infiltrate inflamed tissues, we hypothesized that GRK2 down-regulation in endothelial cells would also be pro-inflammatory. OBJECTIVES To determine whether GRK2 down-regulation in endothelial cells is pro-inflammatory. METHODS siRNA-mediated ablation of GRK2 in human umbilical vein endothelial cells (HUVECs) was used in analyses of the role of this kinase. Microscopic and biochemical analyses of Weibel-Palade body (WPB) formation and functioning, live cell imaging of calcium concentrations and video analyses of adhesion of monocyte-like THP-1 cells provide clear evidence of GRK2 function in histamine activation of endothelial cells. RESULTS G protein-coupled receptor kinase 2 depletion in HUVECs increases WPB exocytosis and P-selectin-dependent adhesion of THP-1 cells to the endothelial surface upon histamine stimulation, relative to controls. Further, live imaging of intracellular calcium concentrations reveals amplified histamine receptor signaling in GRK2-depleted cells, suggesting GRK2 moderates WPB exocytosis through receptor desensitization. CONCLUSIONS G protein-coupled receptor kinase 2 deficiency in endothelial cells results in increased pro-inflammatory signaling and enhanced leukocyte recruitment to activated endothelial cells. The ability of GRK2 to modulate initiation of inflammatory responses in endothelial cells as well as leukocytes now places GRK2 at the apex of control of this finely balanced process.
Collapse
Affiliation(s)
- N L Stevenson
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, UCL, London, UK
| | | | | | | | | | | |
Collapse
|
31
|
Ruggiero C, Cancino J, Giannotta M, Sallese M. Signaling initiated by the secretory compartment. Methods Enzymol 2014; 534:133-54. [PMID: 24359952 DOI: 10.1016/b978-0-12-397926-1.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Classical signal transduction is initiated at the plasma membrane by extracellular signals and propagates to the cytosolic face of the same membrane. Multiple studies have shown that endomembranes can act as signaling platforms for this plasma-membrane-originated signaling. Recent evidence has indicated that endomembranes can also trigger their own signaling cascades that involve some of the molecular players that are classically engaged in signal transduction at the plasma membrane. Endomembrane-initiated signaling is important for synchronization of the functioning of the secretory pathway and coordination of the activities of the secretory organelles with other cellular machineries. However, these endomembrane-initiated regulatory circuits are only partially understood to date. This novel field is slowed by a lack of specific tools and the objective difficulties in the study of signal transduction of endomembrane-localized receptors, as their accessibility is limited. For example, the ligand-binding site of the KDEL receptor (that transduces endomembrane signaling) is positioned in the lumen of the Golgi complex. Here we report some approaches that are suitable for the study of endomembrane-initiated signaling.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Department of Cellular and Translational Pharmacology, Fondazione Mario Negri Sud, Unit of Genomic Approaches to Membrane Traffic, Santa Maria Imbaro (CH), Italy
| | - Jorge Cancino
- Department of Life Sciences, Institute of Protein Biochemistry, National Research Council and Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | - Michele Sallese
- Department of Cellular and Translational Pharmacology, Fondazione Mario Negri Sud, Unit of Genomic Approaches to Membrane Traffic, Santa Maria Imbaro (CH), Italy.
| |
Collapse
|
32
|
Peddie CJ, Liv N, Hoogenboom JP, Collinson LM. Integrated Light and Scanning Electron Microscopy of GFP-Expressing Cells. Methods Cell Biol 2014; 124:363-89. [DOI: 10.1016/b978-0-12-801075-4.00017-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Armacki M, Joodi G, Nimmagadda SC, de Kimpe L, Pusapati GV, Vandoninck S, Van Lint J, Illing A, Seufferlein T. A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis. Oncogene 2013; 33:1167-80. [DOI: 10.1038/onc.2013.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 12/25/2022]
|
34
|
Abstract
Multiple studies have shown that endomembranes can act as signaling platforms for plasma-membrane-originated signaling. In particular, the Golgi complex operates as a relay station for signaling, which is initiated by classical ligand-receptor systems at the plasma membrane, acting as a positive or negative regulator of these plasma-membrane signals. Thus, the Golgi complex has emerged as a hub for intracellular signaling. Furthermore, recent evidence has indicated that the Golgi complex can also trigger its own signaling cascades, which involve some of the molecular players that are classically engaged in signal transduction at the plasma membrane. This aspect of the Golgi complex, namely, the ability to generate autonomous signaling, has been experimentally addressed only in the last few years. These studies have revealed that the transport vesicles that leave the ER for the Golgi complex also carry signal molecules that can then be sensed by a receptor in the Golgi complex to coordinate secretory organelles. The receptor involved in the sensing of incoming traffic at the Golgi complex has been shown to be the KDEL receptor (KDELR), a proposed new G-protein-coupled receptor. Upon binding to a KDEL-containing ligand (a chaperone), the KDELR can activate a signaling cascade that regulates anterograde intra-Golgi trafficking. However, this Golgi-based signaling response is only partially understood to date. Here we report on several approaches that are suitable for the study of traffic-initiated and KDELR-dependent signaling.
Collapse
|
35
|
Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 2012; 30:1143-8. [PMID: 23086203 PMCID: PMC3699407 DOI: 10.1038/nbt.2375] [Citation(s) in RCA: 517] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 11/09/2022]
Abstract
Electron microscopy (EM) is the standard method for imaging cellular structures with nanometer resolution, but existing genetic tags are inactive in most cellular compartments or require light and can be difficult to use. Here we report the development of 'APEX', a genetically encodable EM tag that is active in all cellular compartments and does not require light. APEX is a monomeric 28-kDa peroxidase that withstands strong EM fixation to give excellent ultrastructural preservation. We demonstrate the utility of APEX for high-resolution EM imaging of a variety of mammalian organelles and specific proteins using a simple and robust labeling procedure. We also fused APEX to the N or C terminus of the mitochondrial calcium uniporter (MCU), a recently identified channel whose topology is disputed. These fusions give EM contrast exclusively in the mitochondrial matrix, suggesting that both the N and C termini of MCU face the matrix. Because APEX staining is not dependent on light activation, APEX should make EM imaging of any cellular protein straightforward, regardless of the size or thickness of the specimen.
Collapse
Affiliation(s)
- Jeffrey D Martell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken) 2012; 69:625-43. [PMID: 22991200 PMCID: PMC3746372 DOI: 10.1002/cm.21051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/23/2023]
Abstract
Cortactin is a branched actin regulator and tumor-overexpressed protein that promotes vesicular trafficking at a variety of cellular sites, including endosomes and the trans-Golgi network. To better understand its role in secretory trafficking, we investigated its function in Golgi homeostasis. Here, we report that knockdown (KD) of cortactin leads to a dramatic change in Golgi morphology by light microscopy, dependent on binding the Arp2/3 actin-nucleating complex. Surprisingly, there was little effect of cortactin-KD on anterograde trafficking of the constitutive cargo vesicular stomatitis virus glycoprotein (VSVG), Golgi assembly from endoplasmic reticulum membranes upon Brefeldin A washout, or Golgi ultrastructure. Instead, electron microscopy studies revealed that cortactin-KD cells contained a large number of immature-appearing late endosomal/lysosomal (LE/Lys) hybrid organelles, similar to those found in lysosomal storage diseases. Consistent with a defect in LE/Lys trafficking, cortactin-KD cells also exhibited accumulation of free cholesterol and retention of the retrograde Golgi cargo mannose-6-phosphate receptor in LE. Inhibition of LE maturation by treatment of control cells with Rab7 siRNA or chloroquine led to a compact Golgi morphology similar to that observed in cortactin-KD cells. Furthermore, the Golgi morphology defects of cortactin-KD cells could be rescued by removal of cholesterol-containing lipids from the media, suggesting that buildup of cholesterol-rich membranes in immature LE/Lys induced disturbances in retrograde trafficking. Taken together, these data reveal that LE/Lys maturation and trafficking are highly sensitive to cortactin-regulated branched actin assembly and suggests that cytoskeletal-induced Golgi morphology changes can be a consequence of altered trafficking at late endosomes.
Collapse
Affiliation(s)
- Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
37
|
Puhka M, Joensuu M, Vihinen H, Belevich I, Jokitalo E. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol Biol Cell 2012; 23:2424-32. [PMID: 22573885 PMCID: PMC3386207 DOI: 10.1091/mbc.e10-12-0950] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During mitosis, ER network reorganization can lead to packing of the ER into tight concentric layers at the cell cortex and occurs in tandem with rounding of the cell. Morphometric and 3D EM analysis shows that in addition to reorganization, ER sheets undergo transformation toward more fenestrated and tubular forms before anaphase in mammalian cells. The endoplasmic reticulum (ER) is both structurally and functionally complex, consisting of a dynamic network of interconnected sheets and tubules. To achieve a more comprehensive view of ER organization in interphase and mitotic cells and to address a discrepancy in the field (i.e., whether ER sheets persist, or are transformed to tubules, during mitosis), we analyzed the ER in four different mammalian cell lines using live-cell imaging, high-resolution electron microscopy, and three dimensional electron microscopy. In interphase cells, we found great variation in network organization and sheet structures among different cell lines. In mitotic cells, we show that the ER undergoes both spatial reorganization and structural transformation of sheets toward more fenestrated and tubular forms. However, the extent of spatial reorganization and sheet-to-tubule transformation varies among cell lines. Fenestration and tubulation of the ER correlates with a reduced number of membrane-bound ribosomes.
Collapse
Affiliation(s)
- Maija Puhka
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
38
|
Ellisman MH, Deerinck TJ, Shu X, Sosinsky GE. Picking faces out of a crowd: genetic labels for identification of proteins in correlated light and electron microscopy imaging. Methods Cell Biol 2012; 111:139-55. [PMID: 22857927 DOI: 10.1016/b978-0-12-416026-2.00008-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Correlated light and electron microscopic (CLEM) imaging is a powerful method for dissecting cell and tissue function at high resolution. Each imaging mode provides unique information, and the combination of the two can contribute to a better understanding of the spatiotemporal patterns of protein expression, trafficking, and function. Critical to these methods is the use of genetically appended tags that highlight specific proteins of interest in order to be able to pick them out of their complex cellular environment. Here we review and discuss the current generation of genetic labels for direct protein identification by CLEM, addressing their relative strengths and weaknesses and in what experiments they would be most useful.
Collapse
Affiliation(s)
- Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093-0608, USA
| | | | | | | |
Collapse
|
39
|
Prior MJ, Larance M, Lawrence RT, Soul J, Humphrey S, Burchfield J, Kistler C, Davey JR, La-Borde PJ, Buckley M, Kanazawa H, Parton RG, Guilhaus M, James DE. Quantitative proteomic analysis of the adipocyte plasma membrane. J Proteome Res 2011; 10:4970-82. [PMID: 21928809 DOI: 10.1021/pr200446r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adipocyte is a key regulator of mammalian metabolism. To advance our understanding of this important cell, we have used quantitative proteomics to define the protein composition of the adipocyte plasma membrane (PM) in the presence and absence of insulin. Using this approach, we have identified a high confidence list of 486 PM proteins, 52 of which potentially represent novel cell surface proteins, including a member of the adiponectin receptor family and an unusually high number of hydrolases with no known function. Several novel insulin-responsive proteins including the sodium/hydrogen exchanger, NHE6 and the collagens III and VI were also identified, and we provide evidence of PM-ER association suggestive of a unique functional association between these two organelles in the adipocyte. Together these studies provide a wealth of potential therapeutic targets for the manipulation of adipocyte function and a valuable resource for metabolic research and PM biology.
Collapse
Affiliation(s)
- Matthew J Prior
- Diabetes and Obesity Program, Garvan Institute of Medical Research , Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xiong J, Sun WJ, Wang WF, Liao ZK, Zhou FX, Kong HY, Xu Y, Xie CH, Zhou YF. Novel, chimeric, cancer-specific, and radiation-inducible gene promoters for suicide gene therapy of cancer. Cancer 2011; 118:536-48. [PMID: 21717442 DOI: 10.1002/cncr.26289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/24/2011] [Accepted: 04/27/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND Although the promoter of the human telomerase reverse transcriptase (hTERT) gene has been widely used in gene therapy for targeted cancer cells, it has some limitations for clinical use because of its low activity and potential toxicity to certain normal cells. To overcome these defects, the authors generated novel chimeric hTERT promoters that contained the radiation-inducible sequence CC(A/T)(6) GG (known as CArG elements). METHODS Chimeric hTERT promoters were synthesized that contained different numbers of CArG elements, and the activity of chimeric promoters was assessed in different cancer cell lines and normal cells. The potential of selected promoters to successfully control horseradish peroxidase (HRP) and prodrug indole-3-acetic acid (IAA) suicide gene therapy was tested in vitro and in vivo. RESULTS The promoter activity assays indicated that the synthetic promoter that contained 6 repeating CArG units had the best radiation inducibility than any other promoters that contained different numbers of CArG units, and the chimeric promoters retained their cancer-specific characteristics. The chimeric promoter was better at driving radiation-inducible gene therapy than the control promoters. The sensitizer enhancement ratio of the chimeric promoter system determined by clonogenic assay was higher, and the chimeric promoter system resulted in a significantly higher apoptotic level compared with other promoter systems. The combination of chimeric/promoter-mediated gene therapy and radiotherapy significantly inhibited tumor volume in a xenograft mouse model and resulted in a significant prolongation of survival in mice. CONCLUSIONS The current results indicated that a combinational cancer-specific promoter system that is responsive to irradiation has great potential for improving the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Jie Xiong
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin L, Tan RX. Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev 2011; 111:2734-60. [PMID: 21250668 DOI: 10.1021/cr100061j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lan Lin
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
42
|
Gordon DE, Bond LM, Sahlender DA, Peden AA. A targeted siRNA screen to identify SNAREs required for constitutive secretion in mammalian cells. Traffic 2010; 11:1191-204. [PMID: 20545907 DOI: 10.1111/j.1600-0854.2010.01087.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of SNAREs in mammalian constitutive secretion remains poorly defined. To address this, we have developed a novel flow cytometry-based assay for measuring constitutive secretion and have performed a targeted SNARE and Sec1/Munc18 (SM) protein-specific siRNA screen (38 SNAREs, 4 SNARE-like proteins and 7 SM proteins). We have identified the endoplasmic reticulum (ER)/Golgi SNAREs syntaxin 5, syntaxin 17, syntaxin 18, GS27, SLT1, Sec20, Sec22b, Ykt6 and the SM protein Sly1, along with the post-Golgi SNAREs SNAP-29 and syntaxin 19, as being required for constitutive secretion. Depletion of SNAP-29 or syntaxin 19 causes a decrease in the number of fusion events at the cell surface and in SNAP-29-depleted cells causes an increase in the number of docked vesicles at the plasma membrane as determined by total internal reflection fluorescence (TIRF) microscopy. Analysis of syntaxin 19-interacting partners by mass spectrometry indicates that syntaxin 19 can form SNARE complexes with SNAP-23, SNAP-25, SNAP-29, VAMP3 and VAMP8, supporting its role in Golgi to plasma membrane transport or fusion. Surprisingly, we have failed to detect any requirement for a post-Golgi-specific R-SNARE in this process.
Collapse
Affiliation(s)
- David E Gordon
- Department of Clinical Biochemistry, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB20XY, UK
| | | | | | | |
Collapse
|
43
|
Irannejad R, Wedegaertner PB. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. J Biol Chem 2010; 285:32393-404. [PMID: 20720014 DOI: 10.1074/jbc.m110.154963] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Observations of Golgi fragmentation upon introduction of G protein βγ (Gβγ) subunits into cells have implicated Gβγ in a pathway controlling the fission at the trans-Golgi network (TGN) of plasma membrane (PM)-destined transport carriers. However, the subcellular location where Gβγ acts to provoke Golgi fragmentation is not known. Additionally, a role for Gβγ in regulating TGN-to-PM transport has not been demonstrated. Here we report that constitutive or inducible targeting of Gβγ to the Golgi, but not other subcellular locations, causes phospholipase C- and protein kinase D-dependent vesiculation of the Golgi in HeLa cells; Golgi-targeted β(1)γ(2) also activates protein kinase D. Moreover, the novel Gβγ inhibitor, gallein, and the Gβγ-sequestering protein, GRK2ct, reveal that Gβγ is required for the constitutive PM transport of two model cargo proteins, VSV-G and ss-HRP. Importantly, Golgi-targeted GRK2ct, but not a PM-targeted GRK2ct, also blocks protein transport to the PM. To further support a role for Golgi-localized Gβγ, endogenous Gβ was detected at the Golgi in HeLa cells. These results are the first to establish a role for Golgi-localized Gβγ in regulating protein transport from the TGN to the cell surface.
Collapse
Affiliation(s)
- Roshanak Irannejad
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
44
|
Li J, Wang Y, Chiu SL, Cline HT. Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies. Front Neural Circuits 2010; 4:6. [PMID: 20204144 PMCID: PMC2831632 DOI: 10.3389/neuro.04.006.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 02/04/2010] [Indexed: 11/23/2022] Open
Abstract
Synaptic dynamics and reorganization are fundamental features of synaptic plasticity both during synaptic circuit development and in the mature CNS underlying learning, memory, and experience-dependent circuit rearrangements. Combining in vivo time-lapse fluorescence imaging and retrospective electron microscopic analysis provides a powerful technique to decipher the rules governing dynamics of neuronal structure and synaptic connections. Here we have generated a membrane-targeted horseradish peroxidase (mHRP) that allows identification of transfected cells without obscuring the intracellular ultrastructure or organelles and in particular allows identification of synaptic sites using electron microscopy. The expression of mHRP does not affect dendritic arbor growth or dynamics of transfected neurons. Co-expression of EGFP and mHRP was used to study neuronal morphology at both the light and electron microscopic levels. mHRP expression greatly facilitates 3D reconstruction based on serial EM sections. We expect this reagent will be valuable for studying the mechanisms that guide construction of neuronal networks.
Collapse
Affiliation(s)
- Jianli Li
- Department of Cell Biology, The Scripps Research Institute La Jolla, CA, USA
| | | | | | | |
Collapse
|
45
|
Ziello JE, Huang Y, Jovin IS. Cellular endocytosis and gene delivery. Mol Med 2010; 16:222-9. [PMID: 20454523 DOI: 10.2119/molmed.2009.00101] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 02/02/2010] [Indexed: 01/03/2023] Open
Abstract
Endocytosis is the process by which cells take up macromolecules from the surrounding medium. The best-characterized process is the so-called clathrin-dependent endocytosis, although much is also currently known about clathrin-independent endocytic processes such as those involving caveolae and lipid rafts. An understanding of endocytosis and the cellular trafficking that occurs thereafter has a great deal of relevance to current molecular medicine. Gene therapy, which is presently being investigated for its therapeutic potential in treating immunodeficiency and metabolic diseases, cancer and heart disease, employs a variety of viral and nonviral vectors, which can be delivered to the target cells of the body and are subsequently endocytosed and dissembled. A variety of vectors can be used to deliver genes to organs in vivo or cells ex vivo. Various routes of vector delivery have been investigated. The mechanisms by which vectors such as adenoviruses, adeno-associated viruses, retroviruses and liposomes enter the cell are increasingly being investigated as the effort to increase the efficiency of gene therapy continues. This review focuses on mechanisms of endocytosis and how they relate to the internal trafficking of viral and nonviral vectors in gene therapy.
Collapse
Affiliation(s)
- Jennifer E Ziello
- Boyer Center for Molecular Medicine, Yale University, New Haven, Connecticut, United States of America
| | | | | |
Collapse
|
46
|
Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol 2010; 12:267-72. [PMID: 20118922 DOI: 10.1038/ncb2026] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 01/17/2009] [Indexed: 01/13/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a critical determinator of cell fate. Signalling from this receptor tyrosine kinase is spatially regulated by progression through the endocytic pathway, governing receptor half-life and accessibility to signalling proteins and phosphatases. Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (ref. 1), which localizes to the cytoplasmic face of the endoplasmic reticulum (ER), raising the question of how PTP1B comes into contact with endosomal EGFR. We show that EGFR-PTP1B interaction occurs by means of direct membrane contacts between the perimeter membrane of multivesicular bodies (MVBs) and the ER. The population of EGFR interacting with PTP1B is the same population that undergo ESCRT-mediated (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B activity promotes the sequestration of EGFR on to MVB internal vesicles. Membrane contacts between endosomes and the ER form in both the presence and absence of stimulation by EGF. Thus membrane contacts between endosomes and the ER may represent a global mechanism for direct interaction between proteins on these two organelles.
Collapse
|
47
|
Pusapati GV, Krndija D, Armacki M, von Wichert G, von Blume J, Malhotra V, Adler G, Seufferlein T. Role of the second cysteine-rich domain and Pro275 in protein kinase D2 interaction with ADP-ribosylation factor 1, trans-Golgi network recruitment, and protein transport. Mol Biol Cell 2010; 21:1011-22. [PMID: 20089835 PMCID: PMC2836954 DOI: 10.1091/mbc.e09-09-0814] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein kinase D (PKD) isoenzymes regulate the formation of transport carriers from the trans-Golgi network (TGN) that are en route to the plasma membrane. The PKD C1a domain is required for the localization of PKDs at the TGN. However, the precise mechanism of how PKDs are recruited to the TGN is still elusive. Here, we report that ADP-ribosylation factor (ARF1), a small GTPase of the Ras superfamily and a key regulator of secretory traffic, specifically interacts with PKD isoenzymes. ARF1, but not ARF6, binds directly to the second cysteine-rich domain (C1b) of PKD2, and precisely to Pro275 within this domain. Pro275 in PKD2 is not only crucial for the PKD2-ARF1 interaction but also for PKD2 recruitment to and PKD2 function at the TGN, namely, protein transport to the plasma membrane. Our data suggest a novel model in which ARF1 recruits PKD2 to the TGN by binding to Pro275 in its C1b domain followed by anchoring of PKD2 in the TGN membranes via binding of its C1a domain to diacylglycerol. Both processes are critical for PKD2-mediated protein transport.
Collapse
|
48
|
Schikorski T. Horseradish peroxidase as a reporter gene and as a cell-organelle-specific marker in correlative light-electron microscopy. Methods Mol Biol 2010; 657:315-27. [PMID: 20602227 DOI: 10.1007/978-1-60761-783-9_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A modern electron microscopic approach to the investigation of the structural organization of proteins and subcellular structures demands the use of molecular genetic techniques. The successful implementation of genetic techniques is closely tied to a reporter gene such as the green fluorescent protein (GFP). Although GFP has been widely used for light microscopy, it has many limitations for use in electron microscopy. In the search for a reporter gene for electron microscopy, interest in the use of horseradish peroxidase (HRP) DNA has recently increased, and several studies already have proven the feasibility of HRP expression in mammalian cells. Here, we describe a protocol that uses a HRP chimera to label the endoplasmic reticulum of HEK cells.
Collapse
Affiliation(s)
- Thomas Schikorski
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico
| |
Collapse
|
49
|
Bailey D, Kaiser WJ, Hollinshead M, Moffat K, Chaudhry Y, Wileman T, Sosnovtsev SV, Goodfellow IG. Feline calicivirus p32, p39 and p30 proteins localize to the endoplasmic reticulum to initiate replication complex formation. J Gen Virol 2009; 91:739-49. [PMID: 19906938 PMCID: PMC2885758 DOI: 10.1099/vir.0.016279-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In common with other positive-strand RNA viruses, replication of feline calicivirus (FCV) results in rearrangement of intracellular membranes and production of numerous membrane-bound vesicular structures on which viral genome replication is thought to occur. In this study, bioinformatics approaches have identified three of the FCV non-structural proteins, namely p32, p39 and p30, as potential transmembrane proteins. These proteins were able to target enhanced cyan fluorescent protein to membrane fractions where they behaved as integral membrane proteins. Immunofluorescence microscopy of these proteins expressed in cells showed co-localization with endoplasmic reticulum (ER) markers. Further electron microscopy analysis of cells co-expressing FCV p39 or p30 with a horseradish peroxidase protein containing the KDEL ER retention motif demonstrated gross morphological changes to the ER. Similar reorganization patterns, especially for those produced by p30, were observed in naturally infected Crandel–Rees feline kidney cells. Together, the data demonstrate that the p32, p39 and p30 proteins of FCV locate to the ER and lead to reorganization of ER membranes. This suggests that they may play a role in the generation of FCV replication complexes and that the endoplasmic reticulum may represent the potential source of the membrane vesicles induced during FCV infection.
Collapse
Affiliation(s)
- Dalan Bailey
- Department of Virology, Imperial College London, London W2 1PG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bortolami S, Cavallini L. Enhanced detection of H2O2in cells expressing Horseradish Peroxidase. Free Radic Res 2009; 43:446-56. [DOI: 10.1080/10715760902870629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|