1
|
Gong Q, Li C, Wang H, Cao J, Li Z, Zhou M, Li Y, Chu Y, Liu H, Wang R. Discovery of Phenylpyrazole Derivatives as a New Class of Selective Inhibitors of MCL-1 with Antitumor Activity. ACS OMEGA 2024; 9:27369-27396. [PMID: 38947842 PMCID: PMC11209699 DOI: 10.1021/acsomega.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
MCL-1, an antiapoptotic member of the BCL-2 family, is dysregulated and overexpressed in various tumors. In tumors with MCL-1 overexpression, selective inhibitors of MCL-1 are expected to overcome the drug resistance caused by BCL-2 inhibitors currently used in clinical treatment. Here, we employed docking-based virtual screening to identify an active hit, LC126, with binding affinity around 10 μM for MCL-1 and BCL-2. Under the guidance of structure-based design, we obtained a few selective inhibitors of MCL-1 after three rounds of structural optimization. The representative compound GQN-B37-E exhibited binding affinity for MCL-1 at the submicromolar range (K i = 0.6 μM) without apparent binding to BCL-2 or BCL-XL. 15N-heteronuclear single-quantum coherence NMR spectra suggested that this compound binds to the BH3-domain-binding pocket in the MCL-1 surface. Cellular assays revealed that GQN-B37-Me, the precursor of GQN-B37-E, is effective particularly on leukemia cells (such as H929 and MV-4-11) to induce caspase-dependent apoptosis. Its interaction with MCL-1 in cells was confirmed by coimmunoprecipitation. Administration of GQN-B37-Me to MV-4-11 xenograft mice at 50 mg/kg every 2 days for 20 days led to 43% tumor growth inhibition. GQN-B37-Me also exhibited reasonable in vitro stability in GSH and liver microsomes from several species. This new class of MCL-1 inhibitor may have potential to be further developed into a preclinical candidate for treating leukemia.
Collapse
Affiliation(s)
- Qineng Gong
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic
of China
| | - Chunpu Li
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haojie Wang
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic
of China
| | - Jinrui Cao
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic
of China
| | - Zuo Li
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic
of China
| | - Mi Zhou
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic
of China
| | - Yan Li
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic
of China
| | - Yong Chu
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic
of China
| | - Hong Liu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Renxiao Wang
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic
of China
| |
Collapse
|
2
|
Musa M, Abid M, Bradshaw TD, Boocock DJ, Coveney C, Argent SP, Woodward S. Probing the Mechanism of Action of Bis(phenolato) Amine (ONO Donor Set) Titanium(IV) Anticancer Agents. J Med Chem 2024; 67:2732-2744. [PMID: 38331433 PMCID: PMC10895680 DOI: 10.1021/acs.jmedchem.3c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
The need for anticancer therapies that overcome metallodrug resistance while minimizing adverse toxicities is targeted, herein, using titanium coordination complexes. Octahedral titanium(IV) trans,mer-[Ti{R1N(CH2-2-MeO-4-R1-C6H2)2}2] [R1 = Et, allyl, n-Pr, CHO, F, CH2(morpholino), the latter from the formyl derivative; R2 = Me, Et; not all combinations] are attained from Mannich reactions of commercial 2-methoxyphenols (27-74% overall yield, 2 steps). These crystalline (four X-ray structures) Ti(IV)-complexes are active against MCF-7, HCT-116, HT-29, PANC-1, and MDA-MB-468 cancer cell lines (GI50 = 0.5-38 μM). Their activity and cancer selectivity (vs nontumor MRC-5 cells) typically exceeds that of cisplatin (up to 16-fold). Proteomic analysis (in MCF-7) supported by other studies (G2/M cell cycle arrest, ROS generation, γH2AX production, caspase activation, annexin positivity, western blot, and kinase screens in MCF-7 and HCT-116) suggest apoptosis elicited by more than one mechanism of action. Comparison of these data to the modes of action proposed for salan Ti(IV) complexes is made.
Collapse
Affiliation(s)
- Mustapha Musa
- GSK
Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
| | - Mohammed Abid
- Department
of Chemistry, College of Science, University
of Anbar, Anbarshire 31001, Iraq
| | - Tracey D. Bradshaw
- BDI,
School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David J. Boocock
- School
of Science and Technology, Nottingham Trent
University, Clifton, Nottingham NG11 8NS, U.K.
| | - Clare Coveney
- School
of Science and Technology, Nottingham Trent
University, Clifton, Nottingham NG11 8NS, U.K.
| | - Stephen P. Argent
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Simon Woodward
- GSK
Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
| |
Collapse
|
3
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Wang J, He Y, Yang C, Luo Q, Wang B. Myeloid cell leukemia-1 as a candidate prognostic biomarker in cancers: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2023; 23:1017-1027. [PMID: 37467344 DOI: 10.1080/14737140.2023.2238900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Studies have shown that myeloma cell leukemia-1 (MCL-1) is associated with the prognosis of patients with cancer. To further validate the prognostic value of MCL-1 in cancer, a meta-analysis was conducted. METHODS Six databases were searched using Boolean logic search formulas. Data were extracted from the included literature, and pooled odds ratio, hazard ratio, and 95% confidence interval were calculated to determine the relationship between MCL-1 levels and clinicopathological characteristics and prognosis of patients with cancer. When heterogeneity was found to be significant, a random effects model was used, otherwise, a fixed effects model was used. RESULTS Twelve articles were included in this meta-analysis, totaling 2208 patients with cancer across 14 studies. A high MCL-1 expression level was associated with patients with high T stage, M stage, and TNM stage in some cancers. Additionally, high MCL-1 expression was likely to be observed in patients with poorly differentiated digestive system tumors and patients with lung adenocarcinoma. Notably, a higher expression of MCL-1 was found to be associated with shorter overall survival in patients with hematological tumors, digestive system tumors, and lung cancer. CONCLUSION MCL-1 may be a prognostic biomarker in patients with some types of cancer.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Respiratory and Critical Care Medicine, Ya'an People's Hospital, Ya'an, Sichuan, China
| | - Yu He
- Department of Respiratory and Critical Care Medicine, Ya'an People's Hospital, Ya'an, Sichuan, China
| | - Chao Yang
- Department of Respiratory and Critical Care Medicine, Ya'an People's Hospital, Ya'an, Sichuan, China
| | - Qiurui Luo
- Department of Respiratory and Critical Care Medicine, Ya'an People's Hospital, Ya'an, Sichuan, China
| | - Bingchi Wang
- Department of Respiratory and Critical Care Medicine, Ya'an People's Hospital, Ya'an, Sichuan, China
| |
Collapse
|
5
|
Sancho M, Leiva D, Lucendo E, Orzáez M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. FEBS J 2022; 289:6209-6234. [PMID: 34310025 PMCID: PMC9787394 DOI: 10.1111/febs.16136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Myeloid cell leukemia-1 (MCL1), an antiapoptotic member of the BCL2 family characterized by a short half-life, functions as a rapid sensor that regulates cell death and other relevant processes that include cell cycle progression and mitochondrial homeostasis. In cancer, MCL1 overexpression contributes to cell survival and resistance to diverse chemotherapeutic agents; for this reason, several MCL1 inhibitors are currently under preclinical and clinical development for cancer treatment. However, the nonapoptotic functions of MCL1 may influence their therapeutic potential. Overall, the complexity of MCL1 regulation and function represent challenges to the clinical application of MCL1 inhibitors. We now summarize the current knowledge regarding MCL1 structure, regulation, and function that could impact the clinical success of MCL1 inhibitors.
Collapse
Affiliation(s)
- Mónica Sancho
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Diego Leiva
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Estefanía Lucendo
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Mar Orzáez
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
6
|
Allyl Isothiocyanate (AITC) Induces Apoptotic Cell Death In Vitro and Exhibits Anti-Tumor Activity in a Human Glioblastoma GBM8401/luc2 Model. Int J Mol Sci 2022; 23:ijms231810411. [PMID: 36142326 PMCID: PMC9499574 DOI: 10.3390/ijms231810411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Some clinically used anti-cancer drugs are obtained from natural products. Allyl isothiocyanate (AITC), a plant-derived compound abundant in cruciferous vegetables, has been shown to possess an anti-cancer ability in human cancer cell lines in vitro, including human brain glioma cells. However, the anti-cancer effects of AITC in human glioblastoma (GBM) cells in vivo have not yet been examined. In the present study, we used GBM8401/luc2 human glioblastoma cells and a GBM8401/luc2-cell-bearing animal model to identify the treatment efficacy of AITC. Here, we confirm that AITC reduced total cell viability and induced cell apoptosis in GBM8401/luc2 cells in vitro. Furthermore, Western blotting also showed that AITC induced apoptotic cell death through decreased the anti-apoptotic protein BCL-2, MCL-1 expression, increased the pro-apoptotic protein BAX expression, and promoted the activities of caspase-3, -8, and -9. Therefore, we further investigated the anti-tumor effects of AITC on human GBM8401/luc2 cell xenograft mice. The human glioblastoma GBM8401/luc2 cancer cells were subcutaneously injected into the right flank of BALB/c nude mice to generate glioblastoma xenograft mice. The animals were randomly divided into three groups: group I was treated without AITC (control); group II with 0.1 mg/day of AITC; and group III with 0.2 mg/day of AITC every 3 days for 27 days. Bodyweight, and tumor volume (size) were recorded every 3 days. Tumors exhibiting Luc2 intensity were measured, and we quantified intensity using Living Image software on days 0, 12, and 24. After treatment, tumor weight from each mouse was recorded. Tumor tissues were examined for histopathological changes using H&E staining, and we analyzed the protein levels via immunohistochemical analysis. Our results indicate that AITC significantly inhibited tumor growth at both doses of AITC due to the reduction in tumor size and weight. H&E histopathology analysis of heart, liver, spleen, and kidney samples revealed that AITC did not significantly induce toxicity. Body weight did not show significant changes in any experiment group. AITC significantly downregulated the protein expression levels of MCL-1, XIAP, MMP-9, and VEGF; however, it increased apoptosis-associated proteins, such as cleaved caspase-3, -8, and -9, in the tumor tissues compared with the control group. Based on these observations, AITC exhibits potent anti-cancer activity in the human glioblastoma cell xenograft model via inhibiting tumor cell proliferation and the induction of cell apoptosis. AITC may be a potential anti-GBM cancer drug that could be used in the future.
Collapse
|
7
|
Winder ML, Campbell KJ. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022; 21:1439-1455. [PMID: 35349392 PMCID: PMC9278428 DOI: 10.1080/15384101.2022.2054096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).
Collapse
Affiliation(s)
- Matthew L Winder
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| |
Collapse
|
8
|
Giri J, Basu M, Roy S, Mishra T, Jana K, Chande A, Ukil A. Translationally Controlled Tumor Protein-Mediated Stabilization of Host Antiapoptotic Protein MCL-1 Is Critical for Establishment of Infection by Intramacrophage Parasite Leishmania donovani. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2540-2548. [PMID: 35562118 DOI: 10.4049/jimmunol.2100748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
In the early phase of infection, the intramacrophage pathogen Leishmania donovani protects its niche with the help of the antiapoptotic protein myeloid cell leukemia-1 (MCL-1). Whether Leishmania could exploit MCL-1, an extremely labile protein, at the late phase is still unclear. A steady translational level of MCL-1 observed up to 48 h postinfection and increased caspase-3 activity in MCL-1-silenced infected macrophages documented its importance in the late hours of infection. The transcript level of MCL-1 showed a sharp decline at 6 h postinfection, and persistent MCL-1 expression in cyclohexamide-treated cells negates the possibility of de novo protein synthesis, thereby suggesting infection-induced stability. Increased ubiquitination, a prerequisite for proteasomal degradation of MCL-1, was also found to be absent in the late hours of infection. Lack of interaction with its specific E3 ubiquitin ligase MULE (MCL-1 ubiquitin ligase E3) and specific deubiquitinase USP9X prompted us to search for blockade of the ubiquitin-binding site in MCL-1. To this end, TCTP (translationally controlled tumor protein), a well-known binding partner of MCL-1 and antiapoptotic regulator, was found to be strongly associated with MCL-1 during infection. Phosphorylation of TCTP, a requirement for MCL-1 binding, was also increased in infected macrophages. Knockdown of TCTP decreased MCL-1 expression and short hairpin RNA-mediated silencing of TCTP in an infected mouse model of visceral leishmaniasis showed decreased parasite burden and induction of liver cell apoptosis. Collectively, our investigation revealed a key mechanism of how L. donovani exploits TCTP to establish infection within the host.
Collapse
Affiliation(s)
- Jayeeta Giri
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Moumita Basu
- Biosciences and Bioengineering Department, Indian Institute of Technology, Mumbai, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal, India; and
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme VIIM, Kolkata, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal, India; and
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India;
| |
Collapse
|
9
|
What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy? Cell Death Differ 2022; 29:1079-1093. [PMID: 35388168 DOI: 10.1038/s41418-022-00987-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
In many human cancers the control of apoptosis is dysregulated, for instance as a result of the overexpression of pro-survival BCL-2 proteins. This promotes tumorigenesis by protecting nascent neoplastic cells from stress and renders malignant cells resistant to anti-cancer agents. Therefore, several BH3 mimetic drugs targeting distinct pro-survival proteins have been developed. The BCL-2 inhibitor Venetoclax/ABT-199, has been approved for treatment of certain blood cancers and tens of thousands of patients have already been treated effectively with this drug. To advance the clinical development of MCL-1 and BCL-XL inhibitors, a more detailed understanding of their distinct and overlapping roles in the survival of malignant as well as non-transformed cells in healthy tissues is required. Here, we discuss similarities and differences in pro-survival BCL-2 protein structure, subcellular localisation and binding affinities to the pro-apoptotic BCL-2 family members. We summarise the findings from gene-targeting studies in mice to discuss the specific roles of distinct pro-survival BCL-2 family members during embryogenesis and the survival of non-transformed cells in healthy tissues in adults. Finally, we elaborate how these findings align with or differ from the observations from the clinical development and use of BH3 mimetic drugs targeting different pro-survival BCL-2 proteins.
Collapse
|
10
|
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022; 12:biom12020162. [PMID: 35204663 PMCID: PMC8961529 DOI: 10.3390/biom12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis.
Collapse
|
11
|
BH3 Mimetics in Hematologic Malignancies. Int J Mol Sci 2021; 22:ijms221810157. [PMID: 34576319 PMCID: PMC8466478 DOI: 10.3390/ijms221810157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Hematologic malignancies (HM) comprise diverse cancers of lymphoid and myeloid origin, including lymphomas (approx. 40%), chronic lymphocytic leukemia (CLL, approx. 15%), multiple myeloma (MM, approx. 15%), acute myeloid leukemia (AML, approx. 10%), and many other diseases. Despite considerable improvement in treatment options and survival parameters in the new millennium, many patients with HM still develop chemotherapy-refractory diseases and require re-treatment. Because frontline therapies for the majority of HM (except for CLL) are still largely based on classical cytostatics, the relapses are often associated with defects in DNA damage response (DDR) pathways and anti-apoptotic blocks exemplified, respectively, by mutations or deletion of the TP53 tumor suppressor, and overexpression of anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family. BCL2 homology 3 (BH3) mimetics represent a novel class of pro-apoptotic anti-cancer agents with a unique mode of action—direct targeting of mitochondria independently of TP53 gene aberrations. Consequently, BH3 mimetics can effectively eliminate even non-dividing malignant cells with adverse molecular cytogenetic alterations. Venetoclax, the nanomolar inhibitor of BCL2 anti-apoptotic protein has been approved for the therapy of CLL and AML. Numerous venetoclax-based combinatorial treatment regimens, next-generation BCL2 inhibitors, and myeloid cell leukemia 1 (MCL1) protein inhibitors, which are another class of BH3 mimetics with promising preclinical results, are currently being tested in several clinical trials in patients with diverse HM. These pivotal trials will soon answer critical questions and concerns about these innovative agents regarding not only their anti-tumor efficacy but also potential side effects, recommended dosages, and the optimal length of therapy as well as identification of reliable biomarkers of sensitivity or resistance. Effective harnessing of the full therapeutic potential of BH3 mimetics is a critical mission as it may directly translate into better management of the aggressive forms of HM and could lead to significantly improved survival parameters and quality of life in patients with urgent medical needs.
Collapse
|
12
|
Al-Odat O, von Suskil M, Chitren R, Elbezanti W, Srivastava S, Budak-Alpddogan T, Jonnalagadda S, Aggarwal B, Pandey M. Mcl-1 Inhibition: Managing Malignancy in Multiple Myeloma. Front Pharmacol 2021; 12:699629. [PMID: 34349655 PMCID: PMC8327170 DOI: 10.3389/fphar.2021.699629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cells neoplasm. The overexpression of Bcl-2 family proteins, particularly myeloid cell leukemia 1 (Mcl-1), plays a critical role in the pathogenesis of MM. The overexpression of Mcl-1 is associated with drug resistance and overall poor prognosis of MM. Thus, inhibition of the Mcl-1 protein considered as a therapeutic strategy to kill the myeloma cells. Over the last decade, the development of selective Mcl-1 inhibitors has seen remarkable advancement. This review presents the critical role of Mcl-1 in the progression of MM, the most prominent BH3 mimetic and semi-BH3 mimetic that selectively inhibit Mcl-1, and could be used as single agent or combined with existing therapies.
Collapse
Affiliation(s)
- Omar Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Robert Chitren
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Weam Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Hematology, Cooper Health University, Camden, NJ, United States
| | | | | | - Subash Jonnalagadda
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | | | - Manoj Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
13
|
Bcl-2 Family of Proteins in the Control of Mitochondrial Calcium Signalling: An Old Chap with New Roles. Int J Mol Sci 2021; 22:ijms22073730. [PMID: 33918511 PMCID: PMC8038216 DOI: 10.3390/ijms22073730] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.
Collapse
|
14
|
Singh Mali R, Zhang Q, DeFilippis RA, Cavazos A, Kuruvilla VM, Raman J, Mody V, Choo EF, Dail M, Shah NP, Konopleva M, Sampath D, Lasater EA. Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models. Haematologica 2021; 106:1034-1046. [PMID: 32414851 PMCID: PMC8017817 DOI: 10.3324/haematol.2019.244020] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
FLT3 internal tandem duplication (FLT3-ITD) mutations account for ~25% of adult acute myeloid leukemia cases and are associated with poor prognosis. Venetoclax, a selective BCL-2 inhibitor, has limited monotherapy activity in relapsed/refractory acute myeloid leukemia with no responses observed in a small subset of FLT3-ITD+ patients. Further, FLT3-ITD mutations emerged at relapse following venetoclax monotherapy and combination therapy suggesting a potential mechanism of resistance. Therefore, we investigated the convergence of FLT3-ITD signaling on the BCL-2 family proteins and determined combination activity of venetoclax and FLT3-ITD inhibition in preclinical models. In vivo, venetoclax combined with quizartinib, a potent FLT3 inhibitor, showed greater anti-tumor efficacy and prolonged survival compared to monotherapies. In a patient-derived FLT3-ITD+ xenograft model, cotreatment with venetoclax and quizartinib at clinically relevant doses had greater anti-tumor activity in the tumor microenvironment compared to quizartinib or venetoclax alone. Use of selective BCL-2 family inhibitors further identified a role for BCL-2, BCL-XL and MCL-1 in mediating survival in FLT3-ITD+ cells in vivo and highlighted the need to target all three proteins for greatest anti-tumor activity. Assessment of these combinations in vitro revealed synergistic combination activity for quizartinib and venetoclax but not for quizartinib combined with BCL-XL or MCL-1 inhibition. FLT3-ITD inhibition was shown to indirectly target both BCL-XL and MCL-1 through modulation of protein expression, thereby priming cells toward BCL-2 dependence for survival. These data demonstrate that FLT3-ITD inhibition combined with venetoclax has impressive anti-tumor activity in FLT3-ITD+ acute myeloid leukemia preclinical models and provides strong mechanistic rational for clinical studies.
Collapse
Affiliation(s)
- Raghuveer Singh Mali
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Qi Zhang
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Anna DeFilippis
- Division of Hematology and Oncology, University of California at San Francisco, San Francisco, USA
| | - Antonio Cavazos
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Vinitha Mary Kuruvilla
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jayant Raman
- Division of Hematology and Oncology, University of California at San Francisco, San Francisco, USA
| | - Vidhi Mody
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Edna F Choo
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Monique Dail
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Neil P Shah
- Helen Diller Comprehensive Cancer Center, University of California at San Francisco, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Deepak Sampath
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Elisabeth A Lasater
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
15
|
Phosphatase PP2A enhances MCL-1 protein half-life in multiple myeloma cells. Cell Death Dis 2021; 12:229. [PMID: 33658484 PMCID: PMC7930201 DOI: 10.1038/s41419-020-03351-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Multiple myeloma (MM), a treatable but incurable malignancy, is characterized by the growth of clonal plasma cells in protective niches in the bone marrow. MM cells depend on expression of BCL-2 family proteins, in particular MCL-1, for survival. The regulation of MCL-1 is complex and cell type-dependent. Unraveling the exact mechanism by which MCL-1 is overexpressed in MM may provide new therapeutic strategies for inhibition in malignant cells, preferably limiting side effects in healthy cells. In this study, we reveal that one cause of overexpression could be stabilization of the MCL-1 protein. We demonstrate this in a subset of MM and diffuse large B cell lymphoma (DLBCL) cell lines and MM patient samples. We applied a phosphatase siRNA screen to identify phosphatases responsible for MCL-1 stabilization in MM, and revealed PP2A as the MCL-1 stabilizing phosphatase. Using the PP2A inhibitor okadaic acid, we validated that PP2A dephosphorylates MCL-1 at Ser159 and/or Thr163, and thereby stabilizes MCL-1 in MM cells with long MCL-1 half-life, but not in DLBCL cells. Combined kinase and phosphatase inhibition experiments suggest that the MCL-1 half-life in MM is regulated by the counteracting functions of JNK and PP2A. These findings increase the understanding of the mechanisms by which MCL-1 is post-translationally regulated, which may provide novel strategies to inhibit MCL-1 in MM cells.
Collapse
|
16
|
Cruz-Gordillo P, Honeywell ME, Harper NW, Leete T, Lee MJ. ELP-dependent expression of MCL1 promotes resistance to EGFR inhibition in triple-negative breast cancer cells. Sci Signal 2020; 13:13/658/eabb9820. [PMID: 33203722 DOI: 10.1126/scisignal.abb9820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted therapeutics for cancer generally exploit "oncogene addiction," a phenomenon in which the growth and survival of tumor cells depend on the activity of a particular protein. However, the efficacy of oncogene-targeted therapies varies substantially. For instance, targeting epidermal growth factor receptor (EGFR) signaling is effective in some non-small cell lung cancer (NSCLC) but not in triple-negative breast cancer (TNBC), although these cancers show a similar degree of increase in EGFR activity. Using a genome-wide CRISPR-Cas9 genetic knockout screen, we found that the Elongator (ELP) complex mediates insensitivity to the EGFR inhibitor erlotinib in TNBC cells by promoting the synthesis of the antiapoptotic protein Mcl-1. Depleting ELP proteins promoted apoptotic cell death in an EGFR inhibition-dependent manner. Pharmacological inhibition of Mcl-1 synergized with EGFR inhibition in a panel of genetically diverse TNBC cells. The findings indicate that TNBC "addiction" to EGFR signaling is masked by the ELP complex and that resistance to EGFR inhibitors in TNBC might be overcome by cotargeting Mcl-1.
Collapse
Affiliation(s)
- Peter Cruz-Gordillo
- Program in Systems Biology, University of Massachusetts Medical School, Worcester MA 01605, USA
| | - Megan E Honeywell
- Program in Systems Biology, University of Massachusetts Medical School, Worcester MA 01605, USA
| | - Nicholas W Harper
- Program in Systems Biology, University of Massachusetts Medical School, Worcester MA 01605, USA
| | - Thomas Leete
- Program in Systems Biology, University of Massachusetts Medical School, Worcester MA 01605, USA
| | - Michael J Lee
- Program in Systems Biology, University of Massachusetts Medical School, Worcester MA 01605, USA. .,Program in Molecular Medicine, Department of Molecular, Cell, and Cancer Biology (MCCB), University of Massachusetts Medical School, Worcester MA 01605, USA
| |
Collapse
|
17
|
Wu X, Luo Q, Liu Z. Ubiquitination and deubiquitination of MCL1 in cancer: deciphering chemoresistance mechanisms and providing potential therapeutic options. Cell Death Dis 2020; 11:556. [PMID: 32699213 PMCID: PMC7376237 DOI: 10.1038/s41419-020-02760-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
MCL1 is an important antiapoptotic member of the BCL-2 family that is distinguishable from other family members based on its relatively short half-life. Emerging studies have revealed the crucial role of MCL1 in the chemoresistance of cancer cells. The antiapoptotic function of MCL1 makes it a popular therapeutic target, although specific inhibitors have begun to emerge only recently. Notably, emerging studies have reported that several E3 ligases and deubiquitinases modulate MCL1 stability, providing an alternate means of targeting MCL1 activity. In addition, the emergence and development of proteolysis-targeting chimeras, the function of which is based on ubiquitination-mediated degradation, has shown great potential. In this review, we provide an overview of the studies investigating the ubiquitination and deubiquitination of MCL1, summarize the latest evidence regarding the development of therapeutic strategies targeting MCL1 in cancer treatment, and discuss the promising future of targeting MCL1 via the ubiquitin–proteasome system in clinical practice.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
18
|
Hickman KA, Hariharan S, De Melo J, Ylanko J, Lustig LC, Penn LZ, Andrews DW. Image-Based Analysis of Protein Stability. Cytometry A 2020; 97:363-377. [PMID: 31774248 PMCID: PMC7187295 DOI: 10.1002/cyto.a.23928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Short half-life proteins regulate many essential processes, including cell cycle, transcription, and apoptosis. However, few well-characterized protein-turnover pathways have been identified because traditional methods to measure protein half-life are time and labor intensive. To overcome this barrier, we developed a protein stability probe and high-content screening pipeline for novel regulators of short half-life proteins using automated image analysis. Our pilot probe consists of the short half-life protein c-MYC (MYC) fused to Venus fluorescent protein (MYC-Venus). This probe enables protein half-life to be scored as a function of fluorescence intensity and distribution. Rapid turnover prevents maximal fluorescence of the probe due to the relatively longer maturation time of the fluorescent protein. Cells expressing the MYC-Venus probe were analyzed using a pipeline in which automated confocal microscopy and image analyses were used to score MYC-Venus stability by two strategies: assaying the percentage of cells with Venus fluorescence above background, and phenotypic comparative analysis. To evaluate this high-content screening pipeline and our probe, a kinase inhibitor library was screened by confocal microscopy to identify known and novel kinases that regulate MYC stability. Compounds identified were shown to increase the half-life of both MYC-Venus and endogenous MYC, validating the probe and pipeline. Fusion of another short half-life protein, myeloid cell leukemia 1 (MCL1), with Venus also demonstrated an increase in percent Venus-positive cells after treatment with inhibitors known to stabilize MCL1. Together, the results validate the use of our automated microscopy and image analysis pipeline of stability probe-expressing cells to rapidly and quantitatively identify regulators of short half-life proteins. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- K. Ashley Hickman
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Santosh Hariharan
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Jason De Melo
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
| | - Jarkko Ylanko
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
| | - Lindsay C. Lustig
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Linda Z. Penn
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - David W. Andrews
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| |
Collapse
|
19
|
Liu Y, Ma Y, Tu Z, Zhang C, Du M, Wang Y, Yang F, Wang X, Chen T. Mcl-1 inhibits Mff-mediated mitochondrial fragmentation and apoptosis. Biochem Biophys Res Commun 2020; 523:620-626. [PMID: 31941601 DOI: 10.1016/j.bbrc.2019.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is involved in the regulation of mitochondrial fission and fusion. This report aims to explore whether Mcl-1 can interact with mitochondrial fission factor (Mff) and regulate Mff-mediated mitochondrial fragmentation and apoptosis. Fluorescence images of living cells coexpressing YFP-Mff and CFP-Mcl-1 showed that Mcl-1 markedly inhibited Mff-mediated mitochondrial fragmentation and apoptosis, suggesting that Mcl-1 played a key role in inhibiting mitochondrial fission. The cells coexpressing YFP-Mff and CFP-Mcl-1 exhibited consistent fluorescence resonance energy transfer (FRET) efficiency with that of the cells coexpressing CFP-Mcl-1 and YFP, demonstrating that Mcl-1 did not directly bind to Mff on mitochondria. Collectively, Mcl-1 inhibits Mff-mediated mitochondrial fission and apoptosis not via directly binding to Mff on mitochondria.
Collapse
Affiliation(s)
- Yangpei Liu
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China.
| | - Yunyun Ma
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Zhuang Tu
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Chenshuang Zhang
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Mengyan Du
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Yong Wang
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Fangfang Yang
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Tongsheng Chen
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
20
|
Djajawi TM, Liu L, Gong JN, Huang AS, Luo MJ, Xu Z, Okamoto T, Call MJ, Huang DCS, van Delft MF. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ 2020; 27:2484-2499. [PMID: 32094511 PMCID: PMC7370232 DOI: 10.1038/s41418-020-0517-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
MCL1, a BCL2 relative, is critical for the survival of many cells. Its turnover is often tightly controlled through both ubiquitin-dependent and -independent mechanisms of proteasomal degradation. Several cell stress signals, including DNA damage and cell cycle arrest, are known to elicit distinct E3 ligases to ubiquitinate and degrade MCL1. Another trigger that drives MCL1 degradation is engagement by NOXA, one of its BH3-only protein ligands, but the mechanism responsible has remained unclear. From an unbiased genome-wide CRISPR-Cas9 screen, we discovered that the ubiquitin E3 ligase MARCH5, the ubiquitin E2 conjugating enzyme UBE2K, and the mitochondrial outer membrane protein MTCH2 co-operate to mark MCL1 for degradation by the proteasome—specifically when MCL1 is engaged by NOXA. This mechanism of degradation also required the MCL1 transmembrane domain and distinct MCL1 lysine residues to proceed, suggesting that the components likely act on the MCL1:NOXA complex by associating with it in a specific orientation within the mitochondrial outer membrane. MTCH2 has not previously been reported to regulate protein stability, but is known to influence the mitochondrial localization of certain key apoptosis regulators and to impact metabolism. We have now pinpointed an essential but previously unappreciated role for MTCH2 in turnover of the MCL1:NOXA complex by MARCH5, further strengthening its links to BCL2-regulated apoptosis.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lei Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jia-Nan Gong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ming-Jie Luo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhen Xu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Melissa J Call
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Preston JA, Bewley MA, Marriott HM, McGarry Houghton A, Mohasin M, Jubrail J, Morris L, Stephenson YL, Cross S, Greaves DR, Craig RW, van Rooijen N, Bingle CD, Read RC, Mitchell TJ, Whyte MKB, Shapiro SD, Dockrell DH. Alveolar Macrophage Apoptosis-associated Bacterial Killing Helps Prevent Murine Pneumonia. Am J Respir Crit Care Med 2020; 200:84-97. [PMID: 30649895 DOI: 10.1164/rccm.201804-0646oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rationale: Antimicrobial resistance challenges therapy of pneumonia. Enhancing macrophage microbicidal responses would combat this problem but is limited by our understanding of how alveolar macrophages (AMs) kill bacteria. Objectives: To define the role and mechanism of AM apoptosis-associated bacterial killing in the lung. Methods: We generated a unique CD68.hMcl-1 transgenic mouse with macrophage-specific overexpression of the human antiapoptotic Mcl-1 protein, a factor upregulated in AMs from patients at increased risk of community-acquired pneumonia, to address the requirement for apoptosis-associated killing. Measurements and Main Results: Wild-type and transgenic macrophages demonstrated comparable ingestion and initial phagolysosomal killing of bacteria. Continued ingestion (for ≥12 h) overwhelmed initial killing, and a second, late-phase microbicidal response killed viable bacteria in wild-type macrophages, but this response was blunted in CD68.hMcl-1 transgenic macrophages. The late phase of bacterial killing required both caspase-induced generation of mitochondrial reactive oxygen species and nitric oxide, the peak generation of which coincided with the late phase of killing. The CD68.hMcl-1 transgene prevented mitochondrial reactive oxygen species but not nitric oxide generation. Apoptosis-associated killing enhanced pulmonary clearance of Streptococcus pneumoniae and Haemophilus influenzae in wild-type mice but not CD68.hMcl-1 transgenic mice. Bacterial clearance was enhanced in vivo in CD68.hMcl-1 transgenic mice by reconstitution of apoptosis with BH3 mimetics or clodronate-encapsulated liposomes. Apoptosis-associated killing was not activated during Staphylococcus aureus lung infection. Conclusions: Mcl-1 upregulation prevents macrophage apoptosis-associated killing and establishes that apoptosis-associated killing is required to allow AMs to clear ingested bacteria. Engagement of macrophage apoptosis should be investigated as a novel, host-based antimicrobial strategy.
Collapse
Affiliation(s)
- Julie A Preston
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Martin A Bewley
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - A McGarry Houghton
- 3 Clinical Research Division, Fred Hutchinson Cancer Research Center, and.,4 Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Mohammed Mohasin
- 5 Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Lucy Morris
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Yvonne L Stephenson
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Simon Cross
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom.,7 Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David R Greaves
- 8 Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ruth W Craig
- 9 Department of Pharmacology and Toxicology, Geissel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Nico van Rooijen
- 10 Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Colin D Bingle
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Robert C Read
- 11 University of Southampton Medical School, Southampton, United Kingdom.,12 National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Timothy J Mitchell
- 13 Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom; and
| | - Moira K B Whyte
- 6 MRC Centre for Inflammation Research.,14 Department of Respiratory Medicine, and
| | - Steven D Shapiro
- 15 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David H Dockrell
- 6 MRC Centre for Inflammation Research.,16 Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Particulate Matter 2.5 Mediates Cutaneous Cellular Injury by Inducing Mitochondria-Associated Endoplasmic Reticulum Stress: Protective Effects of Ginsenoside Rb1. Antioxidants (Basel) 2019; 8:antiox8090383. [PMID: 31505827 PMCID: PMC6769862 DOI: 10.3390/antiox8090383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/25/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
The prevalence of fine particulate matter-induced harm to the human body is increasing daily. The aim of this study was to elucidate the mechanism by which particulate matter 2.5 (PM2.5) induces damage in human HaCaT keratinocytes and normal human dermal fibroblasts, and to evaluate the preventive capacity of the ginsenoside Rb1. PM2.5 induced oxidative stress by increasing the production of reactive oxygen species, leading to DNA damage, lipid peroxidation, and protein carbonylation; this effect was inhibited by ginsenoside Rb1. Through gene silencing of endoplasmic reticulum (ER) stress-related genes such as PERK, IRE1, ATF, and CHOP, and through the use of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), it was demonstrated that PM2.5-induced ER stress also causes apoptosis and ultimately leads to cell death; however, this phenomenon was reversed by ginsenoside Rb1. We also found that TUDCA partially restored the production of ATP that was inhibited by PM2.5, and its recovery ability was significantly higher than that of ginsenoside Rb1, indicating that the process of ER stress leading to cell damage may also occur via the mitochondrial pathway. We concluded that ER stress acts alone or via the mitochondrial pathway in the induction of cell damage by PM2.5, and that ginsenoside Rb1 blocks this process. Ginsenoside Rb1 shows potential for use in skin care products to protect the skin against damage by fine particles.
Collapse
|
23
|
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139:1-15. [PMID: 31102709 DOI: 10.1016/j.freeradbiomed.2019.05.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
To protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Kuusanmäki H, Leppä AM, Pölönen P, Kontro M, Dufva O, Deb D, Yadav B, Brück O, Kumar A, Everaus H, Gjertsen BT, Heinäniemi M, Porkka K, Mustjoki S, Heckman CA. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica 2019; 105:708-720. [PMID: 31296572 PMCID: PMC7049363 DOI: 10.3324/haematol.2018.214882] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Heikki Kuusanmäki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki .,Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Aino-Maija Leppä
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mika Kontro
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Olli Dufva
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Debashish Deb
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki
| | - Bhagwan Yadav
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Oscar Brück
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Ashwini Kumar
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Bjørn T Gjertsen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Porkka
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Satu Mustjoki
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki
| |
Collapse
|
25
|
Grundy M, Balakrishnan S, Fox M, Seedhouse CH, Russell NH. Genetic biomarkers predict response to dual BCL-2 and MCL-1 targeting in acute myeloid leukaemia cells. Oncotarget 2018; 9:37777-37789. [PMID: 30701031 PMCID: PMC6340871 DOI: 10.18632/oncotarget.26540] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukaemia (AML) cells often up-regulate pro-survival members of the BCL-2 protein family, such as BCL-2 and MCL-1, to avoid apoptosis. Venetoclax (ABT-199) targets BCL-2 and has shown promising efficacy in AML but over-expression of MCL-1 can cause resistance. A co-operative approach, targeting both BCL-2 and MCL-1 may therefore prove beneficial. This study investigated the potential synergistic relationship between Venetoclax and the MCL-1 inhibitor S63845 in AML cells. We treated MV4-11 cells and primary AML samples for 4 hours with Venetoclax, S63845 or the combination. We used a short-term flow cytometric technique to assess synergy using cytochrome C release as a read out of response. The combination of Venetoclax and S63845 produced a synergistic apoptotic response in MV4-11 cells and primary samples, including the leukaemia re-populating leukaemic stem cell (LSC) population, in 92% of the samples. Known molecular biomarkers of response to BCL-2 and MCL-1 targeting agents were corroborated, and augmented, with the short-term functional assay. The assay also predicted potential biomarkers of response to the combination of BCL-2 and MCL-1 targeting agents. Primary samples with an IDH2_140 mutation were more sensitive to Venetoclax as a single agent whereas samples with a FLT3-ITD mutation were more resistant. This resistance could be reversed when combined with S63845. All FLT3-ITD and NPM1 mutated samples were sensitive to the combination of drugs. We report that co-operatively targeting BCL-2 and MCL-1 may be beneficial in AML and a short-term in vitro assay can identify patients who might best respond to this combination.
Collapse
Affiliation(s)
- Martin Grundy
- Clinical Haematology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Sahana Balakrishnan
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Matthew Fox
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Claire H Seedhouse
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Nigel H Russell
- Clinical Haematology, Nottingham University Hospitals, Nottingham, United Kingdom.,Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Slomp A, Peperzak V. Role and Regulation of Pro-survival BCL-2 Proteins in Multiple Myeloma. Front Oncol 2018; 8:533. [PMID: 30524962 PMCID: PMC6256118 DOI: 10.3389/fonc.2018.00533] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Apoptosis plays a key role in protection against genomic instability and maintaining tissue homeostasis, and also shapes humoral immune responses. During generation of an antibody response, multiple rounds of B-cell expansion and selection take place in germinal centers (GC) before high antigen affinity memory B-cells and long-lived plasma cells (PC) are produced. These processes are tightly regulated by the intrinsic apoptosis pathway, and malignant transformation throughout and following the GC reaction is often characterized by apoptosis resistance. Expression of pro-survival BCL-2 family protein MCL-1 is essential for survival of malignant PC in multiple myeloma (MM). In addition, BCL-2 and BCL-XL contribute to apoptosis resistance. MCL-1, BCL-2, and BCL-XL expression is induced and maintained by signals from the bone marrow microenvironment, but overexpression can also result from genetic lesions. Since MM PC depend on these proteins for survival, inhibiting pro-survival BCL-2 proteins using novel and highly specific BH3-mimetic inhibitors is a promising strategy for treatment. This review addresses the role and regulation of pro-survival BCL-2 family proteins during healthy PC differentiation and in MM, as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
- Anne Slomp
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Victor Peperzak
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Vallet S, Fan F, Malvestiti S, Pecherstorfer M, Sattler M, Schneeweiss A, Schulze-Bergkamen H, Opferman JT, Cardone MH, Jäger D, Podar K. Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer. Breast Cancer Res Treat 2018; 173:585-596. [PMID: 30374681 DOI: 10.1007/s10549-018-5022-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE Recent studies have emphasized a key role for the anti-apoptotic Bcl-2 family member Mcl-1 in conferring tumor cell survival and drug resistance in breast cancer (BC). Mcl-1 inhibitors, such as the BH3-mimetic EU-5346, therefore represent an exciting new class of targeting agents and are a current focus of widespread cancer-drug development efforts. METHODS ONCOMINE analysis was utilized to compare expression profiles of Bcl-2 family members across all major BC subgroups. Potential toxicities of EU-5346 were evaluated using iPS-generated cardiomyocytes, blood cells and astrocytes. The anti-BC cell activity of EU-5346-based therapies was evaluated using [3H]-thymidine uptake and spheroid-forming assays as well as immunoblotting and the Chou-Talalay method. Protein level-based activity of EU-5346, the specific anti-Bcl-2 inhibitor ABT-199 and the specific anti-Bcl-xL inhibitor WEHI-539 was verified in Mcl-1Δ/null versus Mcl-1wt/wt MEFs. RESULTS We previously demonstrated significant anti-tumor activity of EU-5346 in all BC subtypes. Our present results go further and suggest that EU-5346 may induce limited adverse events such as cardiotoxicity, hematotoxicity, and neurotoxicity, frequently observed with other BH3 mimetics. As demonstrated by our mathematical scoring model, the prediction of EU-5643-induced IC50 not only relies on the protein level of Mcl-1 but also on Bak, Bim, and Noxa. Synergistic anti-BC activity of low-dose EU-5346 with the BH3 mimetics ABT-199 or WEHI-539 was observed only in those BC cells expressing Bcl-2 or Bcl-xL, respectively. Similarly, when combined with tamoxifen or trastuzumab, low-dose EU-5346 induced significant anti-BC activity in hormone receptor positive or Her2-positive BC cells, respectively. Finally, EU-5346 in combination with paclitaxel induced synergistic anti-BC activity in both paclitaxel-sensitive and paclitaxel-resistant TNBC cells. CONCLUSION These data strongly support the further clinical development of EU-5346 to improve BC patient survival.
Collapse
Affiliation(s)
- Sonia Vallet
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Fengjuan Fan
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Stefano Malvestiti
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Martin Pecherstorfer
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Schneeweiss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Henning Schulze-Bergkamen
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | | | | | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Applied Tumor Immunity, Heidelberg, Germany
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.
| |
Collapse
|
28
|
Abstract
Regulation of both the extrinsic and the mitochondria-dependent intrinsic apoptotic pathways plays a key role in the development of the hematopoietic system, for sustaining cell survival during generation of various cell types, in eliminating cells with dual identities such as CD4/CD8 double-positive cells (Hettmann, Didonato, Karin, & Leiden, 1999; Ogasawara, Suda, & Nagata, 1995), for sustaining cells during the rapid clonal expansion phase (Schirmer, Vallejo, Weyand, & Gronzy, 1998), as well as eliminating cells during the contraction phase (Yajima et al., 2006). The anti-apoptotic protein Mcl-1 is necessary for sustaining hematopoietic stem cells (HPS) (Akashi et al., 2003; Akashi, Traver, Miyamoto, & Weissman, 2000). The anti-apoptotic factors Mcl-1, Bcl-2, and Bcl-xL were also found to be over-expressed in acute myeloid leukemia (AML) (Kaufmann et al., 2016) and acute lymphocytic leukemia (ALL) (Findley, Gu, Yeager, & Zhou, 1997), suggesting that dis-regulated apoptotic processes could be a factor in the instigation of leukemia and/or its relapse. Molecules targeting these proteins were used as single agents to treat leukemia. However, by using a set of recently developed specific molecule inhibitors targeting anti-apoptotic proteins, distinct roles are being discovered for these anti-apoptotic proteins during hematopoietic and tumor development. Furthermore, using these inhibitors in proper combinations can effectively induce apoptosis in various solid tumors, even though each agent on its own cannot induce apoptosis in them. These new findings suggest that inhibiting anti-apoptotic elements can induce apoptosis without external stimuli in most cells, but it comes with a risk that some combinations could also trigger apoptosis in healthy cells. One way to address the safety issue is by limiting exposure to all the agents to only cancer cells, thus making the combination safe and effective. In this article, we review this rapidly developing idea in cancer research.
Collapse
Affiliation(s)
- Ryuji Yamaguchi
- Anesthesiology, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Lydia Lartigue
- CureMatch, Inc., 6440 Lusk Blvd, San Diego CA 92121, USA.
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA,.
| |
Collapse
|
29
|
Göthert JR, Imsak R, Möllmann M, Kesper S, Göbel M, Dührsen U, Scholz A, Lücking U, Baumann M, Unger A, Schultz-Fademrecht C, Klebl B, Eickhoff J, Choidas A, Dürig J. Potent anti-leukemic activity of a specific cyclin-dependent kinase 9 inhibitor in mouse models of chronic lymphocytic leukemia. Oncotarget 2018; 9:26353-26369. [PMID: 29899864 PMCID: PMC5995184 DOI: 10.18632/oncotarget.25293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 04/07/2018] [Indexed: 12/23/2022] Open
Abstract
Onset of progression even during therapy with novel drugs remains an issue in chronic lymphocytic leukemia (CLL). Thus, there is ongoing demand for novel agents. Approaches targeting cyclin-dependent kinases (CDK) have reached the clinical trial stage. CDK9 mediating RNA transcriptional elongation is the evolving pivotal CLL CDK inhibitor target. However, more CDK9 selective compounds are desirable. Here, we describe the CDK9 inhibitor LDC526 displaying a low nanomolar biochemical activity against CDK9 and an at least 50-fold selectivity against other CDKs. After demonstrating in vitro MEC-1 cell line and primary human CLL cell cytotoxicity we evaluated the LDC526 in vivo effect on human CLL cells transplanted into NOD/scid/γcnull (NSG) mice. LDC526 administration (75 mg/kg) for 5 days resulted in a 77% reduction of human CLL cells in NSG spleens compared to carrier control treatment. Next, we longitudinally studied the LDC526 impact on circulating CLL cells in the TCL1 transgenic mouse model. LDC526 (50 mg/kg) administration for two days led to a 16-fold reduction of blood CLL cell numbers. Remarkably, residual CLL cells exhibited significantly increased intracellular BCL-2 levels. However, the LDC526 cytotoxic effect was not restricted to CLL cells as also declining numbers of normal B and T lymphocytes were observed in LDC526 treated TCL1 mice. Taken together, our in vivo data provide a strong rational for continued LDC526 development in CLL therapy and argue for the combination with BCL-2 inhibitors.
Collapse
Affiliation(s)
- Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Roze Imsak
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Michael Möllmann
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Stefanie Kesper
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Maria Göbel
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Arne Scholz
- Bayer AG, Pharmaceuticals, Drug Discovery, Berlin, Germany
| | - Ulrich Lücking
- Bayer AG, Pharmaceuticals, Drug Discovery, Berlin, Germany
| | | | - Anke Unger
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | | | - Bert Klebl
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Jan Dürig
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| |
Collapse
|
30
|
Grundy M, Jones T, Elmi L, Hall M, Graham A, Russell N, Pallis M. Early changes in rpS6 phosphorylation and BH3 profiling predict response to chemotherapy in AML cells. PLoS One 2018; 13:e0196805. [PMID: 29723246 PMCID: PMC5933738 DOI: 10.1371/journal.pone.0196805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
Blasts from different patients with acute myeloid leukemia (AML) vary in the agent(s) to which they are most responsive. With a myriad of novel agents to evaluate, there is a lack of predictive biomarkers to precisely assign targeted therapies to individual patients. Primary AML cells often survive poorly in vitro, thus confounding conventional cytotoxicity assays. The purpose of this work was to assess the potential of two same-day functional predictive assays in AML cell lines to predict long-term response to chemotherapy. (i) Ribosomal protein S6 (rpS6) is a downstream substrate of PI3K/akt/mTOR/ kinase and MAPK kinase pathways and its dephosphorylation is also triggered by DNA double strand breaks. Phospho-rpS6 is reliably measurable by flow cytometry and thus has the potential to function as a biomarker of responsiveness to several therapeutic agents. (ii) A cell's propensity for apoptosis can be interrogated via a functional assay termed "Dynamic BH3 Profiling" in which mitochondrial outer membrane permeabilization in drug-treated cells can be driven by pro-apoptotic BH3 domain peptides such as PUMA-BH3. The extent to which a particular cell is primed for apoptosis by the drug can be determined by measuring the amount of cytochrome C released on addition of BH3 peptide. We demonstrate that phospho-rpS6 expression and PUMA-BH3 peptide-induced cytochrome C release after 4 hours both predict long term chemoresponsiveness to tyrosine kinase inhibitors and DNA double strand break inducers in AML cell lines. We also describe changes in expression levels of the prosurvival BCL-2 family member Mcl-1 and the pro-apoptotic protein BIM after short term drug culture.
Collapse
Affiliation(s)
- Martin Grundy
- Clinical Haematology, Nottingham University Hospitals, Nottingham, United Kingdom
- * E-mail:
| | - Thomas Jones
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Liban Elmi
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Michael Hall
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Adam Graham
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Nigel Russell
- Clinical Haematology, Nottingham University Hospitals, Nottingham, United Kingdom
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Monica Pallis
- Clinical Haematology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
31
|
Popgeorgiev N, Jabbour L, Gillet G. Subcellular Localization and Dynamics of the Bcl-2 Family of Proteins. Front Cell Dev Biol 2018; 6:13. [PMID: 29497611 PMCID: PMC5819560 DOI: 10.3389/fcell.2018.00013] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are recognized as major regulators of the mitochondrial pathway of apoptosis. They control the mitochondrial outer membrane permeabilization (MOMP) by directly localizing to this organelle. Further investigations demonstrated that Bcl-2 related proteins are also found in other intracellular compartments such as the endoplasmic reticulum, the Golgi apparatus, the nucleus and the peroxisomes. At the level of these organelles, Bcl-2 family proteins not only regulate MOMP in a remote fashion but also participate in major cellular processes including calcium homeostasis, cell cycle control and cell migration. With the advances of live cell imaging techniques and the generation of fluorescent recombinant proteins, it became clear that the distribution of Bcl-2 proteins inside the cell is a dynamic process which is profoundly affected by changes in the cellular microenvironment. Here, we describe the current knowledge related to the subcellular distribution of the Bcl-2 family of proteins and further emphasize on the emerging concept that this highly dynamic process is critical for cell fate determination.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France
| | - Lea Jabbour
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France
| | - Germain Gillet
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| |
Collapse
|
32
|
Predicting effective pro-apoptotic anti-leukaemic drug combinations using co-operative dynamic BH3 profiling. PLoS One 2018; 13:e0190682. [PMID: 29298347 PMCID: PMC5752038 DOI: 10.1371/journal.pone.0190682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022] Open
Abstract
The BH3-only apoptosis agonists BAD and NOXA target BCL-2 and MCL-1 respectively and co-operate to induce apoptosis. On this basis, therapeutic drugs targeting BCL-2 and MCL-1 might have enhanced activity if used in combination. We identified anti-leukaemic drugs sensitising to BCL-2 antagonism and drugs sensitising to MCL-1 antagonism using the technique of dynamic BH3 profiling, whereby cells were primed with drugs to discover whether this would elicit mitochondrial outer membrane permeabilisation in response to BCL-2-targeting BAD-BH3 peptide or MCL-1-targeting MS1-BH3 peptide. We found that a broad range of anti-leukaemic agents–notably MCL-1 inhibitors, DNA damaging agents and FLT3 inhibitors–sensitise leukaemia cells to BAD-BH3. We further analysed the BCL-2 inhibitors ABT-199 and JQ1, the MCL-1 inhibitors pladienolide B and torin1, the FLT3 inhibitor AC220 and the DNA double-strand break inducer etoposide to correlate priming responses with co-operative induction of apoptosis. ABT-199 in combination with pladienolide B, torin1, etoposide or AC220 strongly induced apoptosis within 4 hours, but the MCL-1 inhibitors did not co-operate with etoposide or AC220. In keeping with the long half-life of BCL-2, the BET domain inhibitor JQ1 was found to downregulate BCL-2 and to prime cells to respond to MS1-BH3 at 48, but not at 4 hours: prolonged priming with JQ1 was then shown to induce rapid cytochrome C release when pladienolide B, torin1, etoposide or AC220 were added. In conclusion, dynamic BH3 profiling is a useful mechanism-based tool for understanding and predicting co-operative lethality between drugs sensitising to BCL-2 antagonism and drugs sensitising to MCL-1 antagonism. A plethora of agents sensitised cells to BAD-BH3-mediated mitochondrial outer membrane permeabilisation in the dynamic BH3 profiling assay and this was associated with effective co-operation with the BCL-2 inhibitory compounds ABT-199 or JQ1.
Collapse
|
33
|
NAP1L1 regulates NF-κB signaling pathway acting on anti-apoptotic Mcl-1 gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1759-1768. [DOI: 10.1016/j.bbamcr.2017.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023]
|
34
|
Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor. Nat Cell Biol 2017; 19:1226-1236. [PMID: 28945232 PMCID: PMC5657599 DOI: 10.1038/ncb3616] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Direct interactions between pro- and anti-apoptotic BCL-2 family members form the basis of cell death decision-making at the outer mitochondrial membrane (OMM). Here we report that three antiapoptotic BCL-2 proteins (MCL-1, BCL-2, and BCL-XL) found untethered from the OMM function as transcriptional regulators of a prosurvival and growth program. Antiapoptotic BCL-2 proteins engage a BCL-2 homology (BH) domain sequence found in Suppressor of Fused (SUFU), a tumor suppressor and antagonist of the GLI DNA binding proteins. BCL-2 proteins directly promote SUFU turnover, inhibit SUFU-GLI interaction, and induce the expression of the GLI target genes BCL-2, MCL-1, and BCL-XL. Antiapoptotic BCL-2 protein/SUFU feedforward signaling promotes cancer cell survival and growth and can be disabled with BH3 mimetics – small molecules that target antiapoptotic BCL-2 proteins. Our findings delineate a chemical strategy for countering drug resistance in GLI-associated tumors and reveal unanticipated functions for BCL-2 proteins as transcriptional regulators.
Collapse
|
35
|
Xu C, Liu Y, Huang J, Wang H, Tan L, Xu Y, Jiang Z, Wang X, Hou Y, Jiang D, Wang Q. The prognostic significance of MCL1 copy number gain in esophageal squamous cell carcinoma. Oncotarget 2017; 8:87699-87709. [PMID: 29152113 PMCID: PMC5675665 DOI: 10.18632/oncotarget.21181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Background MCL1 copy number variations have been reported to be associated with cancer prognosis in several cancers. However, the role of MCL1 gain has not yet been determined in esophageal squamous cell carcinomas (ESCC). Methods Fluorescence in situ hybridization (FISH) for MCL1 was performed on 262 ESCC samples using tissue microarray (TMA). Results The median age of ESCC patients was 62 years (range 37-83), with frequencies between women (16.4%) and men (83.6%). Of the 262 tumors, 77 tumors (29.4%) had high MCL1 gain. In the multivariate analysis, lymph node metastasis (HR: 3.236, P<0.001 for DFS; HR: 3.501, P<0.001 for OS) and clinical stage (HR: 3.388, P<0.001 for DFS; HR: 3.616, P<0.001 for OS) were identified as independent worse prognostic factors. Interestingly, among patients without lymph node metastasis or stage I-II patients, high MCL1 gain was associated with better DFS (P=0.009 or 0.046) and OS (P=0.014 or 0.069) after disease free survival time was more than or equal to 12 months. Reversely, among patients with lymph node metastasis or stage III-IVa patients, high MCL1 gain was associated with poorer DFS (P=0.007 or 0.021) and OS (P=0.029 or 0.068) after disease free survival time was more than or equal to 29 months. Conclusion We observed that high MCL1 gain had bidirectional prognostic significance in ESCC patients with different lymph node status or clinical stage. These findings might provide the useful way of detailed risk stratification in patients with ESCC, and an insight into pathogenesis and mechanism of progression in ESCC.
Collapse
Affiliation(s)
- Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yalan Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yifan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Zhengzeng Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Xin Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China.,Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
36
|
Zhang F, Shen M, Yang L, Yang X, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer. Cancer Biol Ther 2017; 18:606-615. [PMID: 28686074 DOI: 10.1080/15384047.2017.1345391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the cisplatin-resistance of lung cancer.
Collapse
Affiliation(s)
- Fuquan Zhang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Mingjing Shen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Li Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Xiaodong Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Ying Tsai
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Peter C Keng
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yongbing Chen
- b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Soo Ok Lee
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yuhchyau Chen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| |
Collapse
|
37
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
38
|
Carrington EM, Zhan Y, Brady JL, Zhang JG, Sutherland RM, Anstee NS, Schenk RL, Vikstrom IB, Delconte RB, Segal D, Huntington ND, Bouillet P, Tarlinton DM, Huang DC, Strasser A, Cory S, Herold MJ, Lew AM. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ 2017; 24:878-888. [PMID: 28362427 DOI: 10.1038/cdd.2017.30] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Survival of various immune cell populations has been proposed to preferentially rely on a particular anti-apoptotic BCL-2 family member, for example, naive T cells require BCL-2, while regulatory T cells require MCL-1. Here we examined the survival requirements of multiple immune cell subsets in vitro and in vivo, using both genetic and pharmacological approaches. Our findings support a model in which survival is determined by quantitative participation of multiple anti-apoptotic proteins rather than by a single anti-apoptotic protein. This model provides both an insight into how the sum of relative levels of anti-apoptotic proteins BCL-2, MCL-1 and A1 influence survival of T cells, B cells and dendritic cells, and a framework for ascertaining how these different immune cells can be optimally targeted in treatment of immunopathology, transplantation rejection or hematological cancers.
Collapse
Affiliation(s)
- Emma M Carrington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jamie L Brady
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn M Sutherland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha S Anstee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn L Schenk
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ingela B Vikstrom
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David M Tarlinton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Immunology & Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - David Cs Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology & Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
39
|
Morciano G, Pedriali G, Sbano L, Iannitti T, Giorgi C, Pinton P. Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mcl-1. Biol Cell 2017; 108:279-293. [PMID: 27234233 DOI: 10.1111/boc.201600019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/24/2016] [Indexed: 01/10/2023]
Abstract
Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl-2 family but also dynamin-related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl-2 family members and active participation of fission-fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl-2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl-1.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Gaia Pedriali
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
40
|
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein that is regulated due to a high number of extracellular stimuli. TCTP has an important role for cell cycle and normal development. On the other side, tumor reversion and malignant transformation have been associated with TCTP. TCTP has been found among the 12 genes that are differentially expressed during mouse oocyte maturation, and an overexpression of this gene was reported in a wide variety of different cancer types. Its antiapoptotic effect is indicated by the interaction with several proapoptotic proteins of the Bcl-2 family and the p53 tumor suppressor protein. In this article, we draw attention to the role of TCTP in cancer, especially, focusing on cell differentiation and tumor reversion, a biological process by which highly tumorigenic cells lose their malignant phenotype. This protein has been shown to be the most strongly downregulated protein in revertant cells compared to the parental cancer cells. Decreased expression of TCTP results either in the reprogramming of cancer cells into reversion or apoptosis. As conventional chemotherapy is frequently associated with the development of drug resistance and high toxicity, the urge for the development of new or additional scientific approaches falls into place. Differentiation therapy aims at reinducing differentiation backward to the nonmalignant cellular state. Here, different approaches have been reported such as the induction of retinoid pathways and the use of histone deacetylase inhibitors. Also, PPARγ agonists and the activation of the vitamin D receptor have been reported as potential targets in differentiation therapy. As TCTP is known as the histamine-releasing factor, antihistaminic drugs have been shown to target this protein. Antihistaminic compounds, hydroxyzine and promethazine, inhibited cell growth of cancer cells and decreased TCTP expression of breast cancer and leukemia cells. Recently, we found that two antihistaminics, levomepromazine and buclizine, inhibited cancer cell growth by direct binding to TCTP and induction of cell differentiation. These data confirmed that TCTP is an exquisite target for anticancer differentiation therapy and antihistaminics have potential to be lead compounds for the direct interaction with TCTP as new inhibitors of human TCTP and tumor growth.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Nicolas Fischer
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
41
|
Seo EJ, Efferth T. Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 2016; 7:16818-39. [PMID: 26921194 PMCID: PMC4941353 DOI: 10.18632/oncotarget.7605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/19/2016] [Indexed: 01/04/2023] Open
Abstract
Translationally controlled tumor protein (TCTP) represents an exquisite target for cancer differentiation therapy, because it was most strikingly down-regulated in tumor reversion experiments. Since TCTP is identical with the histamine releasing factor, antihistamic drugs may inhibit TCTP. Indeed, antihistaminics, such as promethazine, thioridazine, perphemazine and chlorpromazine reveal antiproliferative effects. The aim of this investigation was to study antihistaminic drugs as new TCTP inhibitors to inhibit tumor growth. Levomepromazine and buclizine showed higher in silico binding affinities to TCTP among 12 different antihistaminic compounds including the control drugs, promethazine and hydroxyzine by using Autodock4 and AutodockTools-1.5.7.rc1. Recombinant human TCTP was codon-optimized, expressed in E. coli and purified by chitin affinity chromatography. For experimental validation of in silico data, we applied microscale thermophoresis. Levomepromazine bound with a Kd of 57.2 μM (p < 0.01) and buclizine with a Kd of 433μM (p < 0.01) to recombinant TCTP. Both drugs inhibited MCF-7 breast cancer cell growth in resazurin assays. TCTP expression was down-regulated after treatment with the two drugs. Cell cycle was arrested in the G1 phase without apoptosis as confirmed by the expression of cell cycle and apoptosis-regulating proteins. Annexin V-PI staining and Trypan blue exclusion assay supported that the two drugs are cytostatic rather than cytotoxic. Induction of differentiation with two drugs was detected by the increased appearance of lipid droplets. In conclusion, levomepromazine and buclizine inhibited cancer cell growth by binding to TCTP and induction of cell differentiation. These compounds may serve as lead compounds for cancer differentiation therapy.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
42
|
Liu XX, Tang L, Ge R, Li JK, Kang Y, Zhu MX, Li QS, Hao XL. iTRAQ-based quantitative proteomic analysis of the anti-apoptotic effect of hyperin, which is mediated by Mcl-1 and Bid, in H2O2-injured EA.hy926 cells. Int J Mol Med 2016; 37:1083-90. [PMID: 26935776 DOI: 10.3892/ijmm.2016.2510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/16/2016] [Indexed: 11/06/2022] Open
Abstract
Endothelial injury has been implicated in the pathogenesis of many cardiovascular diseases, including thrombotic disorders. Hyperin (quercetin-3-O-galactoside), a flavonoid compound and major bioactive component of the medicinal herb Apocynum venetum L., is commonly used to prevent endothelium dysfunction. However, its mode of action remains unclear. To the best of our knowledge, we have for the first time investigated the protective effect hyperin exerts against H2O2-induced injury in human endothelium-derived EA.hy926 cells using isobaric tags for relative and absolute quantitation (iTRAQ)‑based quantitative proteomic analysis. The results showed that H2O2 exposure induced alterations in the expression of 250 proteins in the cells. We noted that the expression of 52 proteins associated with processes such as cell apoptosis, cell cycle and cytoskeleton organization, was restored by hyperin treatment. Of the proteins differentially regulated following H2O2 stress, the anti-apoptotic protein, myeloid cell leukemia-1 (Mcl-1), and the pro-apoptotic protein, BH3-interacting domain death agonist (Bid), exhibited marked changes in expression. Hyperin increased Mcl-1 expression and decreased that of Bid in a dose-dependent manner. In addition, flow cytometric analysis and western blot analysis of the apoptosis-related proteins, truncated BID (tBid), cleaved caspase-3, cleaved caspase-9, Fas, FasL and caspase-8, demonstrated that the rate of apoptosis and the pro-apoptotic protein levels were decreased by hyperin pre‑treatment. In the present study we demonstrate that hyperin effectively prevents H2O2‑induced cell injury by regulating the Mcl‑1‑ and Bid-mediated anti‑apoptotic mechanism, suggesting that hyperin is a potential candidate for use in the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Xiao-Xia Liu
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi 030012, P.R. China
| | - Li Tang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rui Ge
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian-Kuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ya Kang
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi 030012, P.R. China
| | - Mei-Xia Zhu
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi 030012, P.R. China
| | - Qing-Shan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xu-Liang Hao
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
43
|
Bashari MH, Fan F, Vallet S, Sattler M, Arn M, Luckner-Minden C, Schulze-Bergkamen H, Zörnig I, Marme F, Schneeweiss A, Cardone MH, Opferman JT, Jäger D, Podar K. Mcl-1 confers protection of Her2-positive breast cancer cells to hypoxia: therapeutic implications. Breast Cancer Res 2016; 18:26. [PMID: 26921175 PMCID: PMC4769490 DOI: 10.1186/s13058-016-0686-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/10/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Molecular mechanisms leading to the adaptation of breast cancer (BC) cells to hypoxia are largely unknown. The anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) is frequently amplified in BC; and elevated Mcl-1 levels have been correlated with poor prognosis. Here we investigated the pathophysiologic role of Mcl-1 in Her2-positive BC cells under hypoxic conditions. METHODS RNA interference and a novel small molecule inhibitor, EU-5346, were used to examine the role of Mcl-1 in Her2-positive BC cell lines and primary BC cells (sensitive or intrinsically resistant to Her2 inhibitors) under hypoxic conditions (using a hypoxic incubation chamber). Mechanisms-of-action were investigated by RT-PCR, mitochondrial isolation, as well as immunoprecipitation/blotting analysis, and microscopy. The specificity against Mcl-1 of the novel small molecule inhibitor EU5346 was verified in Mcl-1(Δ/null) versus Mcl-1(wt/wt) Murine Embryonic Fibroblasts (MEFs). Proliferation, survival, and spheroid formation were assessed in response to Mcl-1 and Her2 inhibition. RESULTS We demonstrate for a strong correlation between high Mcl-1 protein levels and hypoxia, predominantly in Her2-positive BC cells. Surprisingly, genetic depletion of Mcl-1 decreased Her2 and Hif-1α levels followed by inhibition of BC cell survival. In contrast, Mcl-1 protein levels were not downregulated after genetic depletion of Her2 indicating a regulatory role of Mcl-1 upstream of Her2. Indeed, Mcl-1 and Her2 co-localize within the mitochondrial fraction and form a Mcl-1/Her2- protein complex. Similar to genetically targeting Mcl-1 the novel small molecule Mcl-1 inhibitor EU-5346 induced cell death and decreased spheroid formation in Her2-positive BC cells. Of interest, EU-5346 induced ubiquitination of Mcl-1- bound Her2 demonstrating a previously unknown role for Mcl-1 to stabilize Her2 protein levels. Importantly, targeting Mcl-1 was also active in Her2-positive BC cells resistant to Her2 inhibitors, including a brain-primed Her2-positive cell line. CONCLUSION Our data demonstrate a critical role of Mcl-1 in Her2-positive BC cell survival under hypoxic conditions and provide the preclinical framework for the therapeutic use of novel Mcl-1- targeting agents to improve patient outcome in BC.
Collapse
Affiliation(s)
- Muhammad Hasan Bashari
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Jl. Eijkman 38, Bandung, 02215, Indonesia
| | - Fengjuan Fan
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Sonia Vallet
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Martin Sattler
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Melissa Arn
- Eutropics, Inc., 767C Concord Avenue, Cambridge, MA, 02138, USA
| | - Claudia Luckner-Minden
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Henning Schulze-Bergkamen
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Frederik Marme
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Andreas Schneeweiss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | | | - Joseph T Opferman
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany.
| |
Collapse
|
44
|
Sec6/8 regulates Bcl-2 and Mcl-1, but not Bcl-xl, in malignant peripheral nerve sheath tumor cells. Apoptosis 2016; 21:594-608. [DOI: 10.1007/s10495-016-1230-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Morciano G, Giorgi C, Balestra D, Marchi S, Perrone D, Pinotti M, Pinton P. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Mol Biol Cell 2015; 27:20-34. [PMID: 26538029 PMCID: PMC4694758 DOI: 10.1091/mbc.e15-01-0028] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/29/2015] [Indexed: 01/04/2023] Open
Abstract
The B-cell lymphoma-2 (Bcl-2) family proteins are critical regulators of apoptosis and consist of both proapoptotic and antiapoptotic factors. Within this family, the myeloid cell leukemia factor 1 (Mcl-1) protein exists in two forms as the result of alternative splicing. The long variant (Mcl-1L) acts as an antiapoptotic factor, whereas the short isoform (Mcl-1S) displays proapoptotic activity. In this study, using splice-switching antisense oligonucleotides (ASOs), we increased the synthesis of Mcl-1S, which induced a concurrent reduction of Mcl-1L, resulting in increased sensitivity of cancer cells to apoptotic stimuli. The Mcl-1 ASOs also induced mitochondrial hyperpolarization and a consequent increase in mitochondrial calcium (Ca(2+)) accumulation. The high Mcl-1S/L ratio correlated with significant hyperfusion of the entire mitochondrial network, which occurred in a dynamin-related protein (Drp1)-dependent manner. Our data indicate that the balance between the long and short variants of the Mcl-1 gene represents a key aspect of the regulation of mitochondrial physiology. We propose that the Mcl-1L/S balance is a novel regulatory factor controlling the mitochondrial fusion and fission machinery.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, FE 44121 Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, FE 44121 Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, FE 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies
| |
Collapse
|
46
|
Chang SH, Hwang CS, Yin JH, Chen SD, Yang DI. Oncostatin M-dependent Mcl-1 induction mediated by JAK1/2-STAT1/3 and CREB contributes to bioenergetic improvements and protective effects against mitochondrial dysfunction in cortical neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2306-25. [PMID: 25986861 DOI: 10.1016/j.bbamcr.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
Abstract
Oncostatin M (OSM), a cytokine in the interleukin-6 (IL-6) family, has been proposed to play a protective role in the central nervous system, such as attenuation of excitotoxicity induced by N-methyl-D-aspartate (NMDA) and glutamate. However, the potential neuroprotective effects of OSM against mitochondrial dysfunction have never been reported. In the present study, we tested the hypothesis that OSM may confer neuronal resistance against 3-nitropropionic acid (3-NP), a plant toxin that irreversibly inhibits the complex II of the mitochondrial electron transport chain, and characterized the underlying molecular mechanisms. We found that OSM preconditioning dose- and time-dependently protected cortical neurons against 3-NP toxicity. OSM stimulated expression of myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic Bcl-2 family member expressed in differentiating myeloid cells, that required prior phosphorylation of Janus kinase-1 (JAK1), JAK2, extracellular signal-regulated kinase-1/2 (ERK1/2), signal transducer and activator of transcription-3 (STAT3), STAT1, and cAMP-response element-binding protein (CREB). Pharmacological inhibitors of JAK1, JAK2, ERK1/2, STAT3, STAT1, and CREB as well as the siRNA targeting at STAT3 and Mcl-1 all abolished OSM-dependent 3-NP resistance. Finally, OSM-dependent Mcl-1 induction contributed to the enhancements of mitochondrial bioenergetics including increases in spare respiratory capacity and ATP production. In conclusion, our findings indicated that OSM induces Mcl-1 expression via activation of ERK1/2, JAK1/2, STAT1/3, and CREB; furthermore, OSM-mediated Mcl-1 induction contributes to bioenergetic improvements and neuroprotective effects against 3-NP toxicity in cortical neurons. OSM may thus serve as a novel neuroprotective agent against mitochondrial dysfunction commonly associated with pathogenic mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Shih-Hsin Chang
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Shin Hwang
- Department of Neurology, Taipei City Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiu-Haw Yin
- Department of Neurology, Cheng Hsin General Hospital, Taipei, Taiwan; Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ding-I Yang
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
47
|
Murphy ÁC, Weyhenmeyer B, Noonan J, Kilbride SM, Schimansky S, Loh KP, Kögel D, Letai AG, Prehn JHM, Murphy BM. Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. Apoptosis 2015; 19:629-42. [PMID: 24213561 PMCID: PMC3938842 DOI: 10.1007/s10495-013-0935-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma (GBM) is the most aggressive form of primary brain tumour, with dismal patient outcome. Treatment failure is associated with intrinsic or acquired apoptosis resistance and the presence of a highly tumourigenic subpopulation of cancer cells called GBM stem cells. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising novel therapy for some treatment-resistant tumours but unfortunately GBM can be completely resistant to TRAIL monotherapy. In this study, we identified Mcl-1, an anti-apoptotic Bcl-2 family member, as a critical player involved in determining the sensitivity of GBM to TRAIL-induced apoptosis. Effective targeting of Mcl-1 in TRAIL resistant GBM cells, either by gene silencing technology or by treatment with R-roscovitine, a cyclin-dependent kinase inhibitor that targets Mcl-1, was demonstrated to augment sensitivity to TRAIL, both within GBM cells grown as monolayers and in a 3D tumour model. Finally, we highlight that two separate pathways are activated during the apoptotic death of GBM cells treated with a combination of TRAIL and R-roscovitine, one which leads to caspase-8 and caspase-3 activation and a second pathway, involving a Mcl-1:Noxa axis. In conclusion, our study demonstrates that R-roscovitine in combination with TRAIL presents a promising novel strategy to trigger cell death pathways in glioblastoma.
Collapse
Affiliation(s)
- Á C Murphy
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, St. Stephen's Green, Dublin, 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Valdez BC, Li Y, Murray D, Ji J, Liu Y, Popat U, Champlin RE, Andersson BS. Comparison of the cytotoxicity of cladribine and clofarabine when combined with fludarabine and busulfan in AML cells: Enhancement of cytotoxicity with epigenetic modulators. Exp Hematol 2015; 43:448-61.e2. [PMID: 25704054 DOI: 10.1016/j.exphem.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 11/17/2022]
Abstract
Clofarabine (Clo), fludarabine (Flu), and busulfan (Bu) combinations are efficacious in hematopoietic stem cell transplantation for myeloid leukemia. We sought to determine whether the more affordable drug cladribine (Clad) can provide a viable alternative to Clo, with or without panobinostat (Pano) and 5-aza-2'-deoxycytidine (DAC). Both Clad+Flu+Bu and Clo+Flu+Bu combinations showed synergistic cytotoxicity in KBM3/Bu250(6), HL60, and OCI-AML3 cell lines. Cell exposure to these drug combinations resulted in 60%-80% inhibition of proliferation; activation of the ATM pathway; increase in histone modifications; decrease in HDAC3, HDAC4, HDAC5 and SirT7 proteins; decrease in mitochondrial membrane potential; activation of apoptosis and stress signaling pathways; and downregulation of the AKT pathway. These drug combinations activated DNA-damage response and apoptosis in primary cell samples from AML patients. At lower concentrations of Clad/Clo, Flu, and Bu, inclusion of Pano and DAC enhanced cell killing, increased histone modifications and DNA demethylation, and increased the levels of P16/INK4a, P15/INK4b and P21/Waf1/Cip1 proteins. The observed DNA demethylating activity of Clad and Clo may complement DAC activity; increase demethylation of the gene promoters for SFRP1, DKK3, and WIF1; and cause degradation of β-catenin in cells exposed to Clad/Clo+Flu+Bu+DAC+Pano. The overlapping activities of Clad/Clo+Flu+Bu, Pano, and DAC in DNA-damage formation and repair, histone modifications, DNA demethylation, and apoptosis may underlie their synergism. Our results provide a basis for supplanting Clo with Clad and for including epigenetic modifiers in the pre-hematopoietic stem cell transplantation conditioning regimen for myeloid leukemia patients.
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Yang Li
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Murray
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Jie Ji
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Liu
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Perri M, Yap JL, Yu J, Cione E, Fletcher S, Kane MA. BCL-xL/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells. Exp Cell Res 2014; 327:183-91. [PMID: 25088254 PMCID: PMC4727751 DOI: 10.1016/j.yexcr.2014.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
Abstract
The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia-retinoic acid receptor, alpha fusion protein (PML-RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates > 80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As2O3 has increased survival further, patients that experience relapse and are refractory to atRA and/or As2O3 is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-xL) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-xL/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Benzamides/administration & dosage
- Benzoates/administration & dosage
- Blotting, Western
- Cell Proliferation/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/antagonists & inhibitors
- Retinoic Acid Receptor alpha
- Reverse Transcriptase Polymerase Chain Reaction
- Tetrahydronaphthalenes/administration & dosage
- Tretinoin/administration & dosage
- Tumor Cells, Cultured
- bcl-X Protein/antagonists & inhibitors
- para-Aminobenzoates/administration & dosage
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Mariarita Perri
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA
| | - Jeremy L Yap
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Ed. Polifunzionale, University of Calabria, 87036 Rende, CS, Italy
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA.
| |
Collapse
|
50
|
Anilkumar U, Prehn JHM. Anti-apoptotic BCL-2 family proteins in acute neural injury. Front Cell Neurosci 2014; 8:281. [PMID: 25324720 PMCID: PMC4179715 DOI: 10.3389/fncel.2014.00281] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/25/2014] [Indexed: 12/17/2022] Open
Abstract
Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca2+ homeostasis independent of their classical role in cell death signaling.
Collapse
Affiliation(s)
- Ujval Anilkumar
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|