1
|
Ono S. Segregated localization of two calponin-related proteins within sarcomeric thin filaments in Caenorhabditis elegans striated muscle. Cytoskeleton (Hoboken) 2024; 81:127-140. [PMID: 37792405 PMCID: PMC11249056 DOI: 10.1002/cm.21794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Vasilescu C, Colpan M, Ojala TH, Manninen T, Mutka A, Ylänen K, Rahkonen O, Poutanen T, Martelius L, Kumari R, Hinterding H, Brilhante V, Ojanen S, Lappalainen P, Koskenvuo J, Carroll CJ, Fowler VM, Gregorio CC, Suomalainen A. Recessive TMOD1 mutation causes childhood cardiomyopathy. Commun Biol 2024; 7:7. [PMID: 38168645 PMCID: PMC10761686 DOI: 10.1038/s42003-023-05670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.R189W) in three individuals from two unrelated families with childhood-onset dilated and restrictive cardiomyopathy. To decipher the mechanism of pathogenicity of the R189W mutation in TMOD1, we utilized a wide array of methods, including protein analyses, biochemistry and cultured cardiomyocytes. Structural modeling revealed potential defects in the local folding of TMOD1R189W and its affinity for actin. Cardiomyocytes expressing GFP-TMOD1R189W demonstrated longer thin filaments than GFP-TMOD1wt-expressing cells, resulting in compromised filament length regulation. Furthermore, TMOD1R189W showed weakened activity in capping actin filament pointed ends, providing direct evidence for the variant's effect on actin filament length regulation. Our data indicate that the p.R189W variant in TMOD1 has altered biochemical properties and reveals a unique mechanism for childhood-onset cardiomyopathy.
Collapse
Affiliation(s)
- Catalina Vasilescu
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA
| | - Tiina H Ojala
- Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Tuula Manninen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Aino Mutka
- Department of Pathology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Kaisa Ylänen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland
| | - Otto Rahkonen
- Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Tuija Poutanen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland
| | - Laura Martelius
- Department of Pediatric Radiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Hinterding
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Virginia Brilhante
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Simo Ojanen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | | | - Christopher J Carroll
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Molecular and Clinical Sciences, St. George's, University of London, London, United Kingdom
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA.
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine, New York, NY, 10029, USA.
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
- HUSlab, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland.
| |
Collapse
|
3
|
Dai F, Guo M, Shao Y, Li C. Novel secreted STPKLRR from Vibrio splendidus AJ01 promotes pathogen internalization via mediating tropomodulin phosphorylation dependent cytoskeleton rearrangement. PLoS Pathog 2023; 19:e1011419. [PMID: 37216400 DOI: 10.1371/journal.ppat.1011419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
We previously demonstrated that the flagellin of intracellular Vibrio splendidus AJ01 could be specifically identified by tropomodulin (Tmod) and further mediate p53-dependent coelomocyte apoptosis in the sea cucumber Apostichopus japonicus. In higher animals, Tmod serves as a regulator in stabilizing the actin cytoskeleton. However, the mechanism on how AJ01 breaks the AjTmod-stabilized cytoskeleton for internalization remains unclear. Here, we identified a novel AJ01 Type III secretion system (T3SS) effector of leucine-rich repeat-containing serine/threonine-protein kinase (STPKLRR) with five LRR domains and a serine/threonine kinase (STYKc) domain, which could specifically interact with tropomodulin domain of AjTmod. Furthermore, we found that STPKLRR directly phosphorylated AjTmod at serine 52 (S52) to reduce the binding stability between AjTmod and actin. After AjTmod dissociated from actin, the F-actin/G-actin ratio decreased to induce cytoskeletal rearrangement, which in turn promoted the internalization of AJ01. The STPKLRR knocked out strain could not phosphorylated AjTmod and displayed lower internalization capacity and pathogenic effect compared to AJ01. Overall, we demonstrated for the first time that the T3SS effector STPKLRR with kinase activity was a novel virulence factor in Vibrio and mediated self-internalization by targeting host AjTmod phosphorylation dependent cytoskeleton rearrangement, which provided a candidate target to control AJ01 infection in practice.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
4
|
Colpan M, Iwanski J, Gregorio CC. CAP2 is a regulator of actin pointed end dynamics and myofibrillogenesis in cardiac muscle. Commun Biol 2021; 4:365. [PMID: 33742108 PMCID: PMC7979805 DOI: 10.1038/s42003-021-01893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2's function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2's multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.
Collapse
Affiliation(s)
- Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Jessika Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
5
|
Role of intrinsic disorder in muscle sarcomeres. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:311-340. [PMID: 31521234 DOI: 10.1016/bs.pmbts.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role and utility of intrinsically disordered regions (IDRs) is reviewed for two groups of sarcomeric proteins, such as members of tropomodulin/leiomodin (Tmod/Lmod) protein homology group and myosin binding protein C (MyBP-C). These two types of sarcomeric proteins represent very different but strongly interdependent functions, being responsible for maintaining structure and operation of the muscle sarcomere. The role of IDRs in the formation of complexes between thin filaments and Tmods/Lmods is discussed within the framework of current understanding of the thin filament length regulation. For MyBP-C, the function of IDRs is discussed in the context of MYBP-C-dependent sarcomere contraction and actomyosin activation.
Collapse
|
6
|
Ly T, Pappas CT, Johnson D, Schlecht W, Colpan M, Galkin VE, Gregorio CC, Dong WJ, Kostyukova AS. Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics. Mol Biol Cell 2018; 30:268-281. [PMID: 30462572 PMCID: PMC6589558 DOI: 10.1091/mbc.e18-06-0406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations K15N and R21H in striated muscle tropomyosin are linked to dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Tropomyosin, together with the troponin complex, regulates muscle contraction and, along with tropomodulin and leiomodin, controls the uniform thin-filament lengths crucial for normal sarcomere structure and function. We used Förster resonance energy transfer to study effects of the tropomyosin mutations on the structure and kinetics of the cardiac troponin core domain associated with the Ca2+-dependent regulation of cardiac thin filaments. We found that the K15N mutation desensitizes thin filaments to Ca2+ and slows the kinetics of structural changes in troponin induced by Ca2+ dissociation from troponin, while the R21H mutation has almost no effect on these parameters. Expression of the K15N mutant in cardiomyocytes decreases leiomodin’s thin-filament pointed-end assembly but does not affect tropomodulin’s assembly at the pointed end. Our in vitro assays show that the R21H mutation causes a twofold decrease in tropomyosin’s affinity for F-actin and affects leiomodin’s function. We suggest that the K15N mutation causes DCM by altering Ca2+-dependent thin-filament regulation and that one of the possible HCM-causing mechanisms by the R21H mutation is through alteration of leiomodin’s function.
Collapse
Affiliation(s)
- Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Dylan Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834
| | - William Schlecht
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Wen-Ji Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| |
Collapse
|
7
|
Pappas CT, Farman GP, Mayfield RM, Konhilas JP, Gregorio CC. Cardiac-specific knockout of Lmod2 results in a severe reduction in myofilament force production and rapid cardiac failure. J Mol Cell Cardiol 2018; 122:88-97. [PMID: 30102883 DOI: 10.1016/j.yjmcc.2018.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
Leiomodin-2 (Lmod2) is a striated muscle-specific actin binding protein that is implicated in assembly of thin filaments. The necessity of Lmod2 in the adult mouse and role it plays in the mechanics of contraction are unknown. To answer these questions, we generated cardiac-specific conditional Lmod2 knockout mice (cKO). These mice die within a week of induction of the knockout with severe left ventricular systolic dysfunction and little change in cardiac morphology. Cardiac trabeculae isolated from cKO mice have a significant decrease in maximum force production and a blunting of myofilament length-dependent activation. Thin filaments are non-uniform and substantially reduced in length in cKO hearts, affecting the functional overlap of the thick and thin filaments. Remarkably, we also found that Lmod2 levels are directly linked to thin filament length and cardiac function in vivo, with a low amount (<20%) of Lmod2 necessary to maintain cardiac function. Thus, Lmod2 plays an essential role in maintaining proper cardiac thin filament length in adult mice, which in turn is necessary for proper generation of contractile force. Dysregulation of thin filament length in the absence of Lmod2 contributes to heart failure.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA.
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Rachel M Mayfield
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - John P Konhilas
- Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Ly T, Krieger I, Tolkatchev D, Krone C, Moural T, Samatey FA, Kang C, Kostyukova AS. Structural destabilization of tropomyosin induced by the cardiomyopathy-linked mutation R21H. Protein Sci 2017; 27:498-508. [PMID: 29105867 DOI: 10.1002/pro.3341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022]
Abstract
The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled-coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1-28 Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1-28 Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ∼30-fold decrease of αTM1a1-28 Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1-28 Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1-28 Zip's coiled-coil structure, most notably from residue Ala18 to residue His31, it may not affect the N-terminal end of tropomyosin. The drastic decrease of αTM1a1-28 Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction.
Collapse
Affiliation(s)
- Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Cheyenna Krone
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Timothy Moural
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Fadel A Samatey
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| |
Collapse
|
9
|
HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci U S A 2017; 114:11956-11961. [PMID: 29078393 DOI: 10.1073/pnas.1713763114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small heat shock protein HSPB7 is highly expressed in the heart. Several mutations within HSPB7 are associated with dilated cardiomyopathy and heart failure in human patients. However, the precise role of HSPB7 in the heart is still unclear. In this study, we generated global as well as cardiac-specific HSPB7 KO mouse models and found that loss of HSPB7 globally or specifically in cardiomyocytes resulted in embryonic lethality before embryonic day 12.5. Using biochemical and cell culture assays, we identified HSPB7 as an actin filament length regulator that repressed actin polymerization by binding to monomeric actin. Consistent with HSPB7's inhibitory effects on actin polymerization, HSPB7 KO mice had longer actin/thin filaments and developed abnormal actin filament bundles within sarcomeres that interconnected Z lines and were cross-linked by α-actinin. In addition, loss of HSPB7 resulted in up-regulation of Lmod2 expression and mislocalization of Tmod1. Furthermore, crossing HSPB7 null mice into an Lmod2 null background rescued the elongated thin filament phenotype of HSPB7 KOs, but double KO mice still exhibited formation of abnormal actin bundles and early embryonic lethality. These in vivo findings indicated that abnormal actin bundles, not elongated thin filament length, were the cause of embryonic lethality in HSPB7 KOs. Our findings showed an unsuspected and critical role for a specific small heat shock protein in directly modulating actin thin filament length in cardiac muscle by binding monomeric actin and limiting its availability for polymerization.
Collapse
|
10
|
Fowler VM, Dominguez R. Tropomodulins and Leiomodins: Actin Pointed End Caps and Nucleators in Muscles. Biophys J 2017; 112:1742-1760. [PMID: 28494946 DOI: 10.1016/j.bpj.2017.03.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022] Open
Abstract
Cytoskeletal structures characterized by actin filaments with uniform lengths, including the thin filaments of striated muscles and the spectrin-based membrane skeleton, use barbed and pointed-end capping proteins to control subunit addition/dissociation at filament ends. While several proteins cap the barbed end, tropomodulins (Tmods), a family of four closely related isoforms in vertebrates, are the only proteins known to specifically cap the pointed end. Tmods are ∼350 amino acids in length, and comprise alternating tropomyosin- and actin-binding sites (TMBS1, ABS1, TMBS2, and ABS2). Leiomodins (Lmods) are related in sequence to Tmods, but display important differences, including most notably the lack of TMBS2 and the presence of a C-terminal extension featuring a proline-rich domain and an actin-binding WASP-Homology 2 domain. The Lmod subfamily comprises three somewhat divergent isoforms expressed predominantly in muscle cells. Biochemically, Lmods differ from Tmods, acting as powerful nucleators of actin polymerization, not capping proteins. Structurally, Lmods and Tmods display crucial differences that correlate well with their different biochemical activities. Physiologically, loss of Lmods in striated muscle results in cardiomyopathy or nemaline myopathy, whereas complete loss of Tmods leads to failure of myofibril assembly and developmental defects. Yet, interpretation of some of the in vivo data has led to the idea that Tmods and Lmods are interchangeable or, at best, different variants of two subfamilies of pointed-end capping proteins. Here, we review and contrast the existing literature on Tmods and Lmods, and propose a model of Lmod function that attempts to reconcile the in vitro and in vivo data, whereby Lmods nucleate actin filaments that are subsequently capped by Tmods during sarcomere assembly, turnover, and repair.
Collapse
Affiliation(s)
- Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality. Proc Natl Acad Sci U S A 2015; 112:13573-8. [PMID: 26487682 DOI: 10.1073/pnas.1508273112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.
Collapse
|
12
|
Cell type-restricted expression of erythrocyte tropomodulin Isoform41 in exon 1 knockout/LacZ knock-in heterozygous mice. Gene Expr Patterns 2015; 17:45-55. [PMID: 25721257 DOI: 10.1016/j.gep.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/03/2015] [Accepted: 02/13/2015] [Indexed: 01/26/2023]
Abstract
Full-length erythrocyte tropomodulin (E-Tmod or Tmod1) isoform of 41 kDa is an actin nucleation protein and caps the pointed end of tropomyosin-coated actin filaments. It participates in the length control of short actin protofilaments in the erythrocyte membrane skeletal network as well as the organization of microfilaments in non-erythroid cells. Recently we discovered and characterized a truncated isoform of 29 kDa, which lacks the N-terminal sequence encoded by exons 1 and 2 required for nucleation and capping. Thus, it is important to study the expression pattern of solely the E-Tmod41 isoform in tissues. We utilized our exon 1 knockout (KO) mouse model with a knock-in lacZ reporter gene which reports the expression of E-Tmod41, but not E-Tmod29. Because this homozygous isoform-specific KO is an embryonic lethal mutation, we used heterozygous mice. X-gal staining localized specific signals at the single cell level and revealed a timed expression during embryonic development and restricted expression in adult mice. Our results showed that E-Tmod41 expressing cells include developing and young erythroid cells, developing somites, young fiber cells in the lens, certain subtype(s) of tubular cells in the kidney, smooth muscle cells in various tissues, and horizontal cells in the retina. A comparison with previous studies revealed that most if not all tissues known to express E-Tmod contained lacZ-expressing cells. Interestingly, some tubular cells were lacZ-positive while others in the same renal tubule were not, indicating heterogeneity within the tubular cells. Combined with double immunocytochemistry, we further localized E-Tmod41 to dendritic spines of horizontal cells. These timed and cell-type restricted expressions of E-Tmod41 suggest a role of actin nucleation and/or short actin protofilaments in these cell types and sub-cellular structures.
Collapse
|
13
|
Shim W, Yu H, Ja KPMM, Parasuram M, Lim KP, Wong P. Electrotonic coupled metabolic purification of chick cardiomyocytes. Methods Mol Biol 2015; 1299:167-175. [PMID: 25836584 DOI: 10.1007/978-1-4939-2572-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cardiomyocytes isolated from chick and rodent are widely used in studying cardiac physiology. However, contaminating non-cardiomyocytes are an inherent problem that hinders downstream analysis. Here, we report a novel electrical stimulation coupled with metabolic selection method using cytosine arabinoside (AraC) to efficiently eliminate contaminating cells in isolating chick embryonic cardiomyocytes. Compared with conventional methods of pre-plating or AraC alone, electrical stimulation coupled with AraC increased the percentage purity of cardiomyocytes by 2-6-fold with added effect of improved contractile function and maturation. This simple method could be useful in isolating and maintaining purified cardiomyocytes for long-term studies of cardiac physiology.
Collapse
Affiliation(s)
- Winston Shim
- Stem Cell Laboratory, National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore (NHCS), 5 Hospital Drive, 9th Floor, Singapore, 169609, Singapore,
| | | | | | | | | | | |
Collapse
|
14
|
McKeown CR, Nowak RB, Gokhin DS, Fowler VM. Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn 2014; 243:800-17. [PMID: 24500875 DOI: 10.1002/dvdy.24115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We explored a function for tropomyosin (TM) in mammalian myofibril assembly and cardiac development by analyzing a deletion in the mouse TPM1 gene targeting αTM1, the major striated muscle TM isoform. RESULTS Mice lacking αTM1 are embryonic lethal at E9.5 with enlarged, misshapen, and non-beating hearts characterized by an abnormally thin myocardium and reduced trabeculae. αTM1-deficient cardiomyocytes do not assemble striated myofibrils, instead displaying aberrant non-striated F-actin fibrils with α-actinin puncta dispersed irregularly along their lengths. αTM1's binding partner, tropomodulin1 (Tmod1), is also disorganized, and both myomesin-containing thick filaments as well as titin Z1Z2 fail to assemble in a striated pattern. Adherens junctions are reduced in size in αTM1-deficient cardiomyocytes, α-actinin/F-actin adherens belts fail to assemble at apical cell-cell contacts, and cell contours are highly irregular, resulting in abnormal cell shapes and a highly folded cardiac surface. In addition, Tmod1-deficient cardiomyocytes exhibit failure of α-actinin/F-actin adherens belt assembly. CONCLUSIONS Absence of αTM1 resulting in unstable F-actin may preclude sarcomere formation and/or lead to degeneration of partially assembled sarcomeres due to unregulated actomyosin interactions. Our data also identify a novel αTM1/Tmod1-based pathway stabilizing F-actin at cell-cell junctions, which may be required for maintenance of cell shapes during embryonic cardiac morphogenesis.
Collapse
Affiliation(s)
- Caroline R McKeown
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
15
|
Colpan M, Moroz NA, Kostyukova AS. Tropomodulins and tropomyosins: working as a team. J Muscle Res Cell Motil 2013; 34:247-60. [PMID: 23828180 DOI: 10.1007/s10974-013-9349-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
Abstract
Actin filaments are major components of the cytoskeleton in eukaryotic cells and are involved in vital cellular functions such as cell motility and muscle contraction. Tmod and TM are crucial constituents of the actin filament network, making their presence indispensable in living cells. Tropomyosin (TM) is an alpha-helical, coiled coil protein that covers the grooves of actin filaments and stabilizes them. Actin filament length is optimized by tropomodulin (Tmod), which caps the slow growing (pointed end) of thin filaments to inhibit polymerization or depolymerization. Tmod consists of two structurally distinct regions: the N-terminal and the C-terminal domains. The N-terminal domain contains two TM-binding sites and one TM-dependent actin-binding site, whereas the C-terminal domain contains a TM-independent actin-binding site. Tmod binds to two TM molecules and at least one actin molecule during capping. The interaction of Tmod with TM is a key regulatory factor for actin filament organization. The binding efficacy of Tmod to TM is isoform-dependent. The affinities of Tmod/TM binding influence the proper localization and capping efficiency of Tmod at the pointed end of actin filaments in cells. Here we describe how a small difference in the sequence of the TM-binding sites of Tmod may result in dramatic change in localization of Tmod in muscle cells or morphology of non-muscle cells. We also suggest most promising directions to study and elucidate the role of Tmod-TM interaction in formation and maintenance of sarcomeric and cytoskeletal structure.
Collapse
Affiliation(s)
- Mert Colpan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 118 Dana Hall, Spokane St., Pullman, WA, 99164, USA
| | | | | |
Collapse
|
16
|
Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA. Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:812-22. [DOI: 10.1016/j.bbamcr.2012.09.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022]
|
17
|
Formation, contraction, and mechanotransduction of myofribrils in cardiac development: clues from genetics. Biochem Res Int 2012; 2012:504906. [PMID: 22720160 PMCID: PMC3376475 DOI: 10.1155/2012/504906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 01/24/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect in humans. It is a leading infant mortality factor worldwide, caused by defective cardiac development. Mutations in transcription factors, signalling and structural molecules have been shown to contribute to the genetic component of CHD. Recently, mutations in genes encoding myofibrillar proteins expressed in the embryonic heart have also emerged as an important genetic causative factor of the disease, which implies that the contraction of the early heart primordium contributes to its morphogenesis. This notion is supported by increasing evidence suggesting that not only contraction but also formation, mechanosensing, and mechanotransduction of the cardiac myofibrillar proteins influence heart development. In this paper, we summarize the genetic clues supporting this idea.
Collapse
|
18
|
Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton (Hoboken) 2012; 69:337-70. [PMID: 22488942 DOI: 10.1002/cm.21031] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/31/2023]
Abstract
Tropomodulins are a family of four proteins (Tmods 1-4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a TM-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods' functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1-3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
19
|
Donlin LT, Andresen C, Just S, Rudensky E, Pappas CT, Kruger M, Jacobs EY, Unger A, Zieseniss A, Dobenecker MW, Voelkel T, Chait BT, Gregorio CC, Rottbauer W, Tarakhovsky A, Linke WA. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 2012; 26:114-9. [PMID: 22241783 DOI: 10.1101/gad.177758.111] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein lysine methylation is one of the most widespread post-translational modifications in the nuclei of eukaryotic cells. Methylated lysines on histones and nonhistone proteins promote the formation of protein complexes that control gene expression and DNA replication and repair. In the cytoplasm, however, the role of lysine methylation in protein complex formation is not well established. Here we report that the cytoplasmic protein chaperone Hsp90 is methylated by the lysine methyltransferase Smyd2 in various cell types. In muscle, Hsp90 methylation contributes to the formation of a protein complex containing Smyd2, Hsp90, and the sarcomeric protein titin. Deficiency in Smyd2 results in the loss of Hsp90 methylation, impaired titin stability, and altered muscle function. Collectively, our data reveal a cytoplasmic protein network that employs lysine methylation for the maintenance and function of skeletal muscle.
Collapse
Affiliation(s)
- Laura T Donlin
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Junkin M, Leung SL, Whitman S, Gregorio CC, Wong PK. Cellular self-organization by autocatalytic alignment feedback. J Cell Sci 2011; 124:4213-20. [PMID: 22193956 PMCID: PMC3258106 DOI: 10.1242/jcs.088898] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2011] [Indexed: 01/11/2023] Open
Abstract
Myoblasts aggregate, differentiate and fuse to form skeletal muscle during both embryogenesis and tissue regeneration. For proper muscle function, long-range self-organization of myoblasts is required to create organized muscle architecture globally aligned to neighboring tissue. However, how the cells process geometric information over distances considerably longer than individual cells to self-organize into well-ordered, aligned and multinucleated myofibers remains a central question in developmental biology and regenerative medicine. Using plasma lithography micropatterning to create spatial cues for cell guidance, we show a physical mechanism by which orientation information can propagate for a long distance from a geometric boundary to guide development of muscle tissue. This long-range alignment occurs only in differentiating myoblasts, but not in non-fusing myoblasts perturbed by microfluidic disturbances or other non-fusing cell types. Computational cellular automata analysis of the spatiotemporal evolution of the self-organization process reveals that myogenic fusion in conjunction with rotational inertia functions in a self-reinforcing manner to enhance long-range propagation of alignment information. With this autocatalytic alignment feedback, well-ordered alignment of muscle could reinforce existing orientations and help promote proper arrangement with neighboring tissue and overall organization. Such physical self-enhancement might represent a fundamental mechanism for long-range pattern formation during tissue morphogenesis.
Collapse
Affiliation(s)
- Michael Junkin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721USA
| | - Siu Ling Leung
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721USA
| | - Samantha Whitman
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85721USA
| | - Carol C. Gregorio
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85721USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721USA
- Biomedical Engineering IDP and BIO5 Institute, University of Arizona, Tucson, AZ 85721USA
| |
Collapse
|
21
|
Tropomodulin capping of actin filaments in striated muscle development and physiology. J Biomed Biotechnol 2011; 2011:103069. [PMID: 22013379 PMCID: PMC3196151 DOI: 10.1155/2011/103069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 11/17/2022] Open
Abstract
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.
Collapse
|
22
|
Morrow JS, Rimm DL, Kennedy SP, Cianci CD, Sinard JH, Weed SA. Of Membrane Stability and Mosaics: The Spectrin Cytoskeleton. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
24
|
Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS, Gregorio CC. Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J Cell Sci 2010; 123:3136-45. [PMID: 20736303 DOI: 10.1242/jcs.071837] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of actin filament assembly is essential for efficient contractile activity in striated muscle. Leiomodin is an actin-binding protein and homolog of the pointed-end capping protein, tropomodulin. These proteins are structurally similar, sharing a common domain organization that includes two actin-binding sites. Leiomodin also contains a unique C-terminal extension that has a third actin-binding WH2 domain. Recently, the striated-muscle-specific isoform of leiomodin (Lmod2) was reported to be an actin nucleator in cardiomyocytes. Here, we have identified a function of Lmod2 in the regulation of thin filament lengths. We show that Lmod2 localizes to the pointed ends of thin filaments, where it competes for binding with tropomodulin-1 (Tmod1). Overexpression of Lmod2 results in loss of Tmod1 assembly and elongation of the thin filaments from their pointed ends. The Lmod2 WH2 domain is required for lengthening because its removal results in a molecule that caps the pointed ends similarly to Tmod1. Furthermore, Lmod2 transcripts are first detected in the heart after it has begun to beat, suggesting that the primary function of Lmod2 is to maintain thin filament lengths in the mature heart. Thus, Lmod2 antagonizes the function of Tmod1, and together, these molecules might fine-tune thin filament lengths.
Collapse
Affiliation(s)
- Takehiro Tsukada
- Department of Cell Biology and Anatomy, and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
25
|
Gokhin DS, Lewis RA, McKeown CR, Nowak RB, Kim NE, Littlefield RS, Lieber RL, Fowler VM. Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology. ACTA ACUST UNITED AC 2010; 189:95-109. [PMID: 20368620 PMCID: PMC2854367 DOI: 10.1083/jcb.201001125] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In skeletal muscle fibers, tropomodulin 1 (Tmod1) can be compensated for, structurally but not functionally, by Tmod3 and -4. During myofibril assembly, thin filament lengths are precisely specified to optimize skeletal muscle function. Tropomodulins (Tmods) are capping proteins that specify thin filament lengths by controlling actin dynamics at pointed ends. In this study, we use a genetic targeting approach to explore the effects of deleting Tmod1 from skeletal muscle. Myofibril assembly, skeletal muscle structure, and thin filament lengths are normal in the absence of Tmod1. Tmod4 localizes to thin filament pointed ends in Tmod1-null embryonic muscle, whereas both Tmod3 and -4 localize to pointed ends in Tmod1-null adult muscle. Substitution by Tmod3 and -4 occurs despite their weaker interactions with striated muscle tropomyosins. However, the absence of Tmod1 results in depressed isometric stress production during muscle contraction, systemic locomotor deficits, and a shift to a faster fiber type distribution. Thus, Tmod3 and -4 compensate for the absence of Tmod1 structurally but not functionally. We conclude that Tmod1 is a novel regulator of skeletal muscle physiology.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pappas CT, Krieg PA, Gregorio CC. Nebulin regulates actin filament lengths by a stabilization mechanism. ACTA ACUST UNITED AC 2010; 189:859-70. [PMID: 20498015 PMCID: PMC2878950 DOI: 10.1083/jcb.201001043] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nebulin molecular ruler hypothesis is challenged as a truncated form of nebulin can stabilize actin filaments that are longer than the mini-nebulin itself. Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin filaments extended beyond the end of mini-nebulin, an observation which is inconsistent with a strict ruler function. However, under conditions that promote actin filament depolymerization, filaments associated with mini-nebulin were remarkably maintained at lengths either matching or longer than mini-nebulin. This indicates that mini-nebulin is able to stabilize portions of the filament it has no contact with. Knockdown of nebulin also resulted in more dynamic populations of thin filament components, whereas expression of mini-nebulin decreased the dynamics at both filament ends (i.e., recovered loss of endogenous nebulin). Thus, nebulin regulates thin filament architecture by a mechanism that includes stabilizing the filaments and preventing actin depolymerization.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology and Anatomy and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
27
|
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89:1217-67. [PMID: 19789381 PMCID: PMC3076733 DOI: 10.1152/physrev.00017.2009] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3-4 MDa), nebulin (600-800 kDa), and obscurin (approximately 720-900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a "molecular template," "molecular blueprint," or "molecular ruler" is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis.
Collapse
|
28
|
Kostyukova AS. Capping complex formation at the slow-growing end of the actin filament. BIOCHEMISTRY (MOSCOW) 2009; 73:1467-72. [PMID: 19216712 DOI: 10.1134/s0006297908130075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin filaments are polar; their barbed (fast-growing) and pointed (slow-growing) ends differ in structure and dynamic properties. The slow-growing end is regulated by tropomodulins, a family of capping proteins that require tropomyosins for optimal function. There are four tropomodulin isoforms; their distributions vary depending on tissue type and change during development. The C-terminal half of tropomodulin contains one compact domain represented by alternating alpha-helices and beta-structures. The tropomyosin-independent actin-capping site is located at the C-terminus. The N-terminal half has no regular structure; however, it contains a tropomyosin-dependent actin-capping site and two tropomyosin-binding sites. One tropomodulin molecule can bind two tropomyosin molecules. Effectiveness of tropomodulin binding to tropomyosin depends on the tropomyosin isoform. Regulation of tropomodulin binding at the pointed end as well as capping effectiveness in the presence of specific tropomyosins may affect formation of local cytoskeleton and dynamics of actin filaments in cells.
Collapse
Affiliation(s)
- A S Kostyukova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
29
|
A nebulin ruler does not dictate thin filament lengths. Biophys J 2009; 96:1856-65. [PMID: 19254544 DOI: 10.1016/j.bpj.2008.10.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 10/28/2008] [Indexed: 11/21/2022] Open
Abstract
To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01-1.03 mum from the Z-line, but Tmod localized 1.13-1.31 mum from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly.
Collapse
|
30
|
Harmon EB, Harmon ML, Larsen TD, Paulson AF, Perryman MB. Myotonic dystrophy protein kinase is expressed in embryonic myocytes and is required for myotube formation. Dev Dyn 2008; 237:2353-66. [DOI: 10.1002/dvdy.21653] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
31
|
Littlefield RS, Fowler VM. Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin Cell Dev Biol 2008; 19:511-9. [PMID: 18793739 DOI: 10.1016/j.semcdb.2008.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 08/19/2008] [Indexed: 01/18/2023]
Abstract
The actin (thin) filaments in striated muscle are highly regulated and precisely specified in length to optimally overlap with the myosin (thick) filaments for efficient myofibril contraction. Here, we review and critically discuss recent evidence for how thin filament lengths are controlled in vertebrate skeletal, vertebrate cardiac, and invertebrate (arthropod) sarcomeres. Regulation of actin polymerization dynamics at the slow-growing (pointed) ends by the capping protein tropomodulin provides a unified explanation for how thin filament lengths are physiologically optimized in all three muscle types. Nebulin, a large protein thought to specify thin filament lengths in vertebrate skeletal muscle through a ruler mechanism, may not control pointed-end actin dynamics directly, but instead may stabilize a large core region of the thin filament. We suggest that this stabilizing function for nebulin modifies the lengths primarily specified by pointed-end actin dynamics to generate uniform filament lengths in vertebrate skeletal muscle. We suggest that nebulette, a small homolog of nebulin, may stabilize a correspondingly shorter core region and allow individual thin filament lengths to vary according to working sarcomere lengths in vertebrate cardiac muscle. We present a unified model for thin filament length regulation where these two mechanisms cooperate to tailor thin filament lengths for specific contractile environments in diverse muscles.
Collapse
Affiliation(s)
- Ryan S Littlefield
- Center for Cell Dynamics, University of Washington, Friday Harbor Laboratories, Friday Harbor, WA 98250, USA
| | | |
Collapse
|
32
|
Pappas CT, Bhattacharya N, Cooper JA, Gregorio CC. Nebulin interacts with CapZ and regulates thin filament architecture within the Z-disc. Mol Biol Cell 2008; 19:1837-47. [PMID: 18272787 DOI: 10.1091/mbc.e07-07-0690] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The barbed ends of actin filaments in striated muscle are anchored within the Z-disc and capped by CapZ; this protein blocks actin polymerization and depolymerization in vitro. The mature lengths of the thin filaments are likely specified by the giant "molecular ruler" nebulin, which spans the length of the thin filament. Here, we report that CapZ specifically interacts with the C terminus of nebulin (modules 160-164) in blot overlay, solid-phase binding, tryptophan fluorescence, and SPOTs membrane assays. Binding of nebulin modules 160-164 to CapZ does not affect the ability of CapZ to cap actin filaments in vitro, consistent with our observation that neither of the two C-terminal actin binding regions of CapZ is necessary for its interaction with nebulin. Knockdown of nebulin in chick skeletal myotubes using small interfering RNA results in a reduction of assembled CapZ, and, strikingly, a loss of the uniform alignment of the barbed ends of the actin filaments. These data suggest that nebulin restricts the position of thin filament barbed ends to the Z-disc via a direct interaction with CapZ. We propose a novel molecular model of Z-disc architecture in which nebulin interacts with CapZ from a thin filament of an adjacent sarcomere, thus providing a structural link between sarcomeres.
Collapse
Affiliation(s)
- Christopher T Pappas
- Departments of Cell Biology and Anatomy and *Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721-0106, USA
| | | | | | | |
Collapse
|
33
|
The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression. Proc Natl Acad Sci U S A 2008; 105:1545-50. [PMID: 18230740 DOI: 10.1073/pnas.0703918105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The myocardin family proteins (myocardin, MRTF-A, and MRTF-B) are serum response factor (SRF) cofactors and potent transcription activators. Gene-ablation studies have indicated important developmental functions for myocardin family proteins primarily in regulation of cardiac and smooth muscle development. Using Xenopus genome and cDNA databases, we identified a myocardin-related transcription factor expressed specifically in the skeletal muscle lineage. Synteny and sequence alignments indicate that this gene is the frog orthologue of mouse MASTR [Creemers EE, Sutherland LB, Oh J, Barbosa AC, Olson EN (2006) Coactivation of MEF2 by the SAP domain proteins myocardin and MASTR. Mol Cell 23:83-96]. Inhibition of MASTR function in the Xenopus embryo by using dominant-negative constructions or morpholino knockdown results in a dramatic reduction in expression of skeletal muscle marker genes. Overexpression of MASTR in whole embryos or embryonic tissue explants induces ectopic expression of muscle marker genes. Furthermore, MASTR cooperates with the myogenic regulatory factors MyoD and Myf5 to activate transcription of skeletal muscle genes. An essential function for MASTR in regulation of myogenic development in the vertebrate embryo has not been previously indicated.
Collapse
|
34
|
Weber KL, Fischer RS, Fowler VM. Tmod3 regulates polarized epithelial cell morphology. J Cell Sci 2008; 120:3625-32. [PMID: 17928307 DOI: 10.1242/jcs.011445] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the role of the actin cytoskeleton in morphogenesis of polarized epithelial sheets is generally accepted as centrally important, the regulation of actin dynamics in this process remains unclear. Here, we show that the pointed-end capping protein Tmod3 contributes to epithelial cell shape within confluent monolayers of polarized epithelial cells. Tmod3 localizes to lateral cell membranes in polarized epithelia of several cell types. Reduction of Tmod3 levels by shRNA leads to a loss of F-actin and tropomyosins from lateral cell membranes, and a decrease in epithelial cell height, without effects on localisation of tight junction or adherens junction proteins, or any apparent changes in cell-cell adhesion. Instead, distribution of alphaII-spectrin on lateral membranes is disrupted upon reduction of Tmod3 levels, suggesting that loss of Tmod3 function leads to destabilization and disassembly of tropomyosin-coated actin filaments followed by disorganization of the spectrin-based membrane skeleton on lateral membranes. These data demonstrate for the first time a role for pointed-end capping in morphology regulation of polarized epithelial cells through stabilization of F-actin on lateral membranes. We propose that Tmod3-capped tropomyosin-actin filaments provide crucial links in the spectrin membrane skeleton of polarized epithelial cells, enabling the membrane skeleton to maintain cell shape.
Collapse
Affiliation(s)
- Kari L Weber
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
35
|
Tropomodulin/Tropomyosin Interactions Regulate Actin Pointed End Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:283-92. [DOI: 10.1007/978-0-387-85766-4_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Zajdel RW, McLean MD, Denz CR, Dube S, Thurston HL, Poiesz BJ, Dube DK. Differential expression of tropomyosin during segmental heart development in Mexican axolotl. J Cell Biochem 2007; 99:952-65. [PMID: 16741969 DOI: 10.1002/jcb.20954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Mexican axolotl, Ambystoma mexicanum, serves as an intriguing model to investigate myofibril organization and heart development in vertebrates. The axolotl has a homozygous recessive cardiac lethal gene "c" which causes a failure of ventricular myofibril formation and contraction. However, the conus of the heart beats, and has organized myofibrils. Tropomyosin (TM), an essential component of the thin filament, has three known striated muscle isoforms (TPM1alpha, TPM1kappa, and TPM4alpha) in axolotl hearts. However, it is not known whether there are differential expression patterns of these tropomyosin isoforms in various segments of the heart. Also, it is not understood whether these isoforms contribute to myofibril formation in a segment-specific manner. In this study, we have utilized anti-sense oligonucleotides to separately knockdown post-transcriptional expression of TPM1alpha and TPM4alpha. We then evaluated the organization of myofibrils in the conus and ventricle of normal and cardiac mutant hearts using immunohistochemical techniques. We determined that the TPM1alpha isoform, a product of the TPM1 gene, was essential for myofibrillogenesis in the conus, whereas TPM4alpha, the striated muscle isoform of the TPM4 gene, was essential for myofibrillogenesis in the ventricle. Our results support the segmental theory of vertebrate heart development.
Collapse
Affiliation(s)
- Robert W Zajdel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, New York 13210, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zieseniss A, Terasaki AG, Gregorio CC. Lasp-2 expression, localization, and ligand interactions: A new Z-disc scaffolding protein. ACTA ACUST UNITED AC 2007; 65:59-72. [DOI: 10.1002/cm.20244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Washington NL, Ward S. FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci 2006; 119:2552-62. [PMID: 16735442 DOI: 10.1242/jcs.02980] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FER-1 is required for fusion of specialized vesicles, called membranous organelles, with the sperm plasma membrane during Caenorhabditis elegans spermiogenesis. To investigate its role in membranous organelle fusion, we examined ten fer-1 mutations and found that they all cause the same defect in membrane fusion. FER-1 and the ferlin protein family are membrane proteins with four to seven C2 domains. These domains commonly mediate Ca2+ -dependent lipid-processing events. Most of the fer-1 mutations fall within these C2 domains, showing that they have distinct, non-redundant functions. We found that membranous organelle fusion requires intracellular Ca2+ and that C2 domain mutations alter Ca2+ sensitivity. This suggests that the C2 domains are involved in Ca2+ sensing and further supports their independent function. Using two immunological approaches we found three FER-1 isoforms, two of which might arise from FER-1 by proteolysis. By both light and electron microscopy, these FER-1 proteins were found to be localized to membranous organelle membranes. Dysferlin, a human homologue of FER-1 involved in muscular dystrophy, is required for vesicle fusion during Ca2+ -induced muscle membrane repair. Our results suggest that the ferlin family members share a conserved mechanism to regulate cell-type-specific membrane fusion.
Collapse
Affiliation(s)
- Nicole L Washington
- Department of Molecular and Cellular Biology, The University of Arizona, 1007 E. Lowell Street, Life Sciences South 452, Tucson, AZ, 85721, USA
| | | |
Collapse
|
39
|
Gregorio CC, Perry CN, McElhinny AS. Functional properties of the titin/connectin-associated proteins, the muscle-specific RING finger proteins (MURFs), in striated muscle. J Muscle Res Cell Motil 2006; 26:389-400. [PMID: 16477476 DOI: 10.1007/s10974-005-9021-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient functioning of striated muscle is dependent upon the proper alignment and coordinated activities of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, the exact molecular mechanisms dictating their cooperation and contributions during muscle differentiation and maintenance remain unknown. Recently, the muscle specific RING finger (MURF) family members have established themselves as excellent candidates for linking myofibril components (including the giant, multi-functional protein, titin/connectin), with microtubules, intermediate filaments, and nuclear factors. MURF-1, the only family member expressed throughout development, has been implicated in several studies as an ubiquitin ligase that is upregulated in response to multiple stimuli during muscle atrophy. Cell culture studies suggest that MURF-1 specifically has a role in maintaining titin M-line integrity and yeast two-hybrid studies point toward its participation in muscle stress response pathways and gene expression. MURF-2 is developmentally down-regulated and is assembled at the M-line region of the sarcomere and with microtubules. Functionally, its expression is critical for maintenance of the sarcomeric M-line region, specific populations of stable microtubules, desmin and vimentin intermediate filaments, as well as for myoblast fusion and differentiation. A recent study also links MURF-2 to a titin kinase-based protein complex that is reportedly activated upon mechanical signaling. Finally, MURF-3 is developmentally upregulated, associates with microtubules, the sarcomeric M-line (this report) and Z-line, and is required for microtubule stability and myogenesis. Here, we focus on the biochemical and functional properties of this intriguing family of muscle proteins, and discuss how they may tie together titin-mediated myofibril signaling pathways (perhaps involving the titin kinase domain), biomechanical signaling, the muscle stress response, and gene expression.
Collapse
Affiliation(s)
- Carol C Gregorio
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
40
|
McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, Gregorio CC. Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. ACTA ACUST UNITED AC 2005; 170:947-57. [PMID: 16157704 PMCID: PMC2171443 DOI: 10.1083/jcb.200502158] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many tissues, actin monomers polymerize into actin (thin) filaments of precise lengths. Although the exact mechanisms involved remain unresolved, it is proposed that "molecular rulers" dictate the lengths of the actin filaments. The giant nebulin molecule is a prime candidate for specifying thin filament lengths in striated muscle, but this idea has never been proven. To test this hypothesis, we used RNA interference technology in rat cardiac myocytes. Live cell imaging and triple staining revealed a dramatic elongation of the preexisting thin filaments from their pointed ends upon nebulin knockdown, demonstrating its role in length maintenance; the barbed ends were unaffected. When the thin filaments were depolymerized with latrunculin B, myocytes with decreased nebulin levels reassembled them to unrestricted lengths, demonstrating its importance in length specification. Finally, knockdown of nebulin in skeletal myotubes revealed its involvement in myofibrillogenesis. These data are consistent with nebulin functioning as a thin filament ruler and provide insight into mechanisms dictating macromolecular assembly.
Collapse
MESH Headings
- Acetates
- Actins/metabolism
- Animals
- Antibodies, Monoclonal/metabolism
- Blotting, Western
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cells, Cultured
- Chromones
- Dose-Response Relationship, Drug
- Fluorescent Antibody Technique, Indirect
- Fluorescent Dyes
- Gene Expression Regulation, Developmental
- Microscopy, Fluorescence
- Muscle Development
- Muscle Proteins/analysis
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/embryology
- Myoblasts/cytology
- Myoblasts/metabolism
- Myocytes, Cardiac/chemistry
- RNA, Small Interfering/pharmacology
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Thiazoles/pharmacology
- Thiazolidines
- Transfection
- Xanthenes
Collapse
Affiliation(s)
- Abigail S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
41
|
Plotnikov SV, Millard AC, Campagnola PJ, Mohler WA. Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J 2005; 90:693-703. [PMID: 16258040 PMCID: PMC1367074 DOI: 10.1529/biophysj.105.071555] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several biologically important protein structures give rise to strong second-harmonic generation (SHG) in their native context. In addition to high-contrast optical sections of cells and tissues, SHG imaging can provide detailed structural information based on the physical constraints of the optical effect. In this study we characterize, by biochemical and optical analysis, the critical structures underlying SHG from the complex muscle sarcomere. SHG emission arises from domains of the sarcomere containing thick filaments, even within nascent sarcomeres of differentiating myocytes. SHG from isolated myofibrils is abolished by extraction of myosin, but is unaffected by removal or addition of actin filaments. Furthermore, the polarization dependence of sarcomeric SHG is not affected by either the proportion of myosin head domains or the orientation of myosin heads. By fitting SHG polarization anisotropy readings to theoretical response curves, we find an orientation for the elemental harmonophore that corresponds well to the pitch of the myosin rod alpha-helix along the thick filament axis. Taken together, these data indicate that myosin rod domains are the key structures giving SHG from striated muscle. This study should guide the interpretation of SHG contrast in images of cardiac and skeletal muscle tissue for a variety of biomedical applications.
Collapse
Affiliation(s)
- Sergey V Plotnikov
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | | | | | |
Collapse
|
42
|
Ono Y, Schwach C, Antin PB, Gregorio CC. Disruption in the tropomodulin1 (Tmod1) gene compromises cardiomyocyte development in murine embryonic stem cells by arresting myofibril maturation. Dev Biol 2005; 282:336-48. [PMID: 15950601 DOI: 10.1016/j.ydbio.2005.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 03/03/2005] [Accepted: 03/09/2005] [Indexed: 01/20/2023]
Abstract
Tropomodulins (Tmods) comprise a family of capping proteins for actin filament pointed ends. To decipher the significance of Tmod1 functions during de novo myofibrillogenesis, we generated Tmod1 null embryonic stem (ES) cells and studied their differentiation into cardiomyocytes. Strikingly, in vitro cardiomyocyte differentiation of wild type (WT) ES cells faithfully recapitulates in vivo cardiomyocyte differentiation, allowing us to evaluate the phenotypes of Tmod1 knockout (KO) myofibrils irrespective of embryonic lethality of Tmod1 KO mice. Immunofluorescence and electron microscopy studies revealed that Tmod1 null cardiac myocytes were round, morphologically immature, and contained underdeveloped myofibrils that were shorter, narrower, and had fewer thin filaments than those in WT cells. Unexpectedly, clear gaps in the staining pattern for F-actin at the H-zone were detected in most KO cells, indicating the presence of filaments at uniform lengths. This indicates that additional mechanisms other than capping proteins are responsible for thin filament length maintenance in cardiac myocytes. Also unexpectedly, approximately 40% of the KO cardiac myocytes exhibited contractile activity. Our data indicate that differentiating ES cells are a powerful system to investigate the functional properties of contractile proteins and that Tmod1 functions are critical for late stages of myofibrillogenesis, and for the maturation of myofibrils.
Collapse
Affiliation(s)
- Yasuko Ono
- Department of Cell Biology and Anatomy, University of Arizona, 1501 N. Campbell Avenue-LSN 455, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
43
|
Schmid M, Nanda I, Hoehn H, Schartl M, Haaf T, Buerstedde JM, Arakawa H, Caldwell RB, Weigend S, Burt DW, Smith J, Griffin DK, Masabanda JS, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Vignoles M, Garrigues A, Gellin J, Rodionov AV, Galkina SA, Lukina NA, Ben-Ari G, Blum S, Hillel J, Twito T, Lavi U, David L, Feldman MW, Delany ME, Conley CA, Fowler VM, Hedges SB, Godbout R, Katyal S, Smith C, Hudson Q, Sinclair A, Mizuno S. Second report on chicken genes and chromosomes 2005. Cytogenet Genome Res 2005; 109:415-79. [PMID: 15905640 DOI: 10.1159/000084205] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- M Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kostyukova AS, Rapp BA, Choy A, Greenfield NJ, Hitchcock-DeGregori SE. Structural Requirements of Tropomodulin for Tropomyosin Binding and Actin Filament Capping†. Biochemistry 2005; 44:4905-10. [PMID: 15779917 DOI: 10.1021/bi047468p] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulation of actin filament dynamics underlies many cellular functions. Tropomodulin together with tropomyosin can cap the pointed, slowly polymerizing, filament end, inhibiting addition or loss of actin monomers. Tropomodulin has an unstructured N-terminal region that binds tropomyosin and a folded C-terminal domain with six leucine-rich repeats. Of tropomodulin 1's 359 amino acids, an N-terminal fragment (Tmod1(1)(-)(92)) suffices for in vitro function, even though the C-terminal domain can weakly cap filaments independent of tropomyosin. Except for one short alpha-helix with coiled coil propensity (residues 24-35), the Tmod1(1)(-)(92) solution structure shows that the fragment is disordered and highly flexible. On the basis of the solution structure and predicted secondary structure, we have introduced a series of mutations to determine the structural requirements for tropomyosin binding (using native gels and CD) and filament capping (by measuring actin polymerization using pyrene fluorescence). Tmod1(1)(-)(92) fragments with mutations of an interface hydrophobic residue, L27G and L27E, designed to destroy the alpha-helix or coiled coil propensity, lost binding ability to tropomyosin but retained partial capping function in the presence of tropomyosin. Replacement of a flexible region with alpha-helical residues (residues 59-61 mutated to Ala) had no effect on tropomyosin binding but inhibited the capping function. A mutation in a region predicted to be an amphipathic helix (residues 65-75), L71D, destroyed the capping function. The results suggest that molecular flexibility and binding to actin via an amphipathic helix are both required for tropomyosin-dependent capping of the pointed end of the actin filament.
Collapse
Affiliation(s)
- Alla S Kostyukova
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | | | | | | | |
Collapse
|
45
|
Kong KY, Kedes L. Cytoplasmic Nuclear Transfer of the Actin-capping Protein Tropomodulin. J Biol Chem 2004; 279:30856-64. [PMID: 15123707 DOI: 10.1074/jbc.m302845200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomodulin (Tmod) is a cytoskeletal actin-capping protein that interacts with tropomyosin at the pointed end of actin filaments. E-Tmod is an isoform that expresses predominantly in cardiac cells and slow skeletal muscle fibers. We unexpectedly discovered significant levels of Tmod in nuclei and then defined peptide domains in Tmod responsible for nuclear import and export. These domains resemble, and function as, a nuclear export signal (NES) and a pattern 4 nuclear localization signal (NLS). Both motifs are conserved in other Tmod isoforms and across species. Comparisons of wild-type Tmod and Tmod carrying mutations in these peptide domains revealed that Tmod normally traffics through the nucleus. These observations logically presuppose that Tmod functions may include a nuclear role. Indeed, increasing Tmod in the nucleus severely hampered myogenic differentiation and selectively suppressed muscle-specific gene expression (endogenous p21, myosin heavy chain, myogenin, and Tmod) but did not affect endogenous glyceraldehyde-3-phosphate dehydrogenase or expression from a transfected E-GFP vector. These results suggest that, at least in myogenic cells, nuclear Tmod may be involved in the differentiation process.
Collapse
MESH Headings
- Actins/chemistry
- Active Transport, Cell Nucleus
- Amino Acid Motifs
- Animals
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Cell Differentiation
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Cytoskeleton/metabolism
- Electrophoresis, Polyacrylamide Gel
- Green Fluorescent Proteins
- Lentivirus/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Inbred C3H
- Microfilament Proteins/chemistry
- Microfilament Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Models, Genetic
- Mutagenesis, Site-Directed
- Mutation
- Myocytes, Cardiac/cytology
- Nuclear Localization Signals
- Plasmids/metabolism
- Protein Isoforms
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/metabolism
- Transfection
- Tropomodulin
Collapse
Affiliation(s)
- Kimi Y Kong
- Institute for Genetic Medicine and Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
46
|
McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC. Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci 2004; 117:3175-88. [PMID: 15199100 DOI: 10.1242/jcs.01158] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The efficient functioning of striated muscle is dependent upon the structure of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, little is known about how these networks function together during muscle differentiation and maintenance. In vitro studies suggest that members of the muscle-specific RING finger protein family (MURF-1, 2, and 3) act as cytoskeletal adaptors and signaling molecules by associating with myofibril components (including the giant protein, titin), microtubules and/or nuclear factors. We investigated the role of MURF-2, the least-characterized family member, in primary cultures of embryonic chick skeletal and cardiac myocytes. MURF-2 is detected as two species (approximately 55 kDa and approximately 60 kDa) in embryonic muscle, which are down-regulated in adult muscle. Although predominantly located diffusely in the cytoplasm, MURF-2 also colocalizes with a sub-group of microtubules and the M-line region of titin. Reducing MURF-2 levels in cardiac myocytes using antisense oligonucleotides perturbed the structure of stable microtubule populations, the intermediate filament proteins desmin and vimentin, and the sarcomeric M-line region. In contrast, other sarcomeric regions and dynamic microtubules remained unaffected. MURF-2 knock-down studies in skeletal myoblasts also delayed myoblast fusion and myofibrillogenesis. Furthermore, contractile activity was also affected. We speculate that some of the roles of MURF-2 are modulated via titin-based mechanisms.
Collapse
Affiliation(s)
- Abigail S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
47
|
Li H, Cook JD, Terry M, Spitzer NC, Ferrari MB. Calcium transients regulate patterned actin assembly during myofibrillogenesis. Dev Dyn 2004; 229:231-42. [PMID: 14745949 DOI: 10.1002/dvdy.10428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The highly ordered arrangement of sarcomeric myosin during striated muscle development requires spontaneous calcium (Ca(2+)) transients. Here, we show that blocking transients also compromises patterned assembly of actin thin filaments, titin, and capZ. Because a conserved temporal assembly pattern has been described for these proteins, selective inhibitors of either thick or thin filament formation were used to determine their relative temporal interdependencies. For example, inhibition of myosin light chain kinase (MLCK) by application of a specific inhibitory peptide or phorbol myistate acetate (PMA) disrupts myosin assembly without significantly affecting formation of actin bands. The MLCK inhibitor ML-7, however, disrupted actin as well as myosin. Surprisingly, agents that interfere with actin dynamics, such as cytochalasin D, produced only minor organizational disruptions in actin, capZ, and titin staining. However, cytochalasin D and other actin disrupting compounds significantly perturbed myosin organization. The results indicate that (1) Ca(2+) transients regulate one or more of the earliest steps in sarcomere formation, (2) mature actin filaments can assemble independently of myosin band formation, and (3) myosin thick filament assembly is extremely sensitive to disruption of either the actin or titin filament systems.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | | | | | | | | |
Collapse
|
48
|
Ehler E, Fowler VM, Perriard JC. Myofibrillogenesis in the developing chicken heart: Role of actin isoforms and of the pointed end actin capping protein tropomodulin during thin filament assembly. Dev Dyn 2004; 229:745-55. [PMID: 15042698 DOI: 10.1002/dvdy.10482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Recently, important differences between myofibrillogenesis in cultured cardiomyocytes vs. the three-dimensional setting in situ could be determined. We investigated thin filament assembly in situ by confocal microscopy of whole-mount preparations of immunostained embryonic chicken hearts. Of interest, a distinct localisation of different actin isoforms was observed in immature thin filaments. Cardiac alpha-actin is restricted to filaments with a length comparable to mature thin filaments as soon as the first contractions occur, while vascular alpha-actin makes up filaments that extend toward the M-band. The pointed-end actin filament capping protein tropomodulin can be found initially in close association with the plasma membrane, but attains its mature localisation pattern at the ends of the thin filaments only comparatively late during myofibrillogenesis. Thus tropomodulin acts as a length stabilising element of actin filaments also in developing cardiomyocytes in situ, but plays an additional role together with membrane-associated actin filaments in the earliest steps of myofibril assembly.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Institute of Cell Biology, ETH-Zürich Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
49
|
Fritz-Six KL, Cox PR, Fischer RS, Xu B, Gregorio CC, Zoghbi HY, Fowler VM. Aberrant myofibril assembly in tropomodulin1 null mice leads to aborted heart development and embryonic lethality. ACTA ACUST UNITED AC 2003; 163:1033-44. [PMID: 14657235 PMCID: PMC2173615 DOI: 10.1083/jcb.200308164] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tropomodulin1 (Tmod1) caps thin filament pointed ends in striated muscle, where it controls filament lengths by regulating actin dynamics. Here, we investigated myofibril assembly and heart development in a Tmod1 knockout mouse. In the absence of Tmod1, embryonic development appeared normal up to embryonic day (E) 8.5. By E9.5, heart defects were evident, including aborted development of the myocardium and inability to pump, leading to embryonic lethality by E10.5. Confocal microscopy of hearts of E8–8.5 Tmod1 null embryos revealed structures resembling nascent myofibrils with continuous F-actin staining and periodic dots of α-actinin, indicating that I-Z-I complexes assembled in the absence of Tmod1. Myomesin, a thick filament component, was also assembled normally along these structures, indicating that thick filament assembly is independent of Tmod1. However, myofibrils did not become striated, and gaps in F-actin staining (H zones) were never observed. We conclude that Tmod1 is required for regulation of actin filament lengths and myofibril maturation; this is critical for heart morphogenesis during embryonic development.
Collapse
Affiliation(s)
- Kimberly L Fritz-Six
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Mudry RE, Perry CN, Richards M, Fowler VM, Gregorio CC. The interaction of tropomodulin with tropomyosin stabilizes thin filaments in cardiac myocytes. J Cell Biol 2003; 162:1057-68. [PMID: 12975349 PMCID: PMC2172850 DOI: 10.1083/jcb.200305031] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 07/29/2003] [Indexed: 12/30/2022] Open
Abstract
Actin (thin) filament length regulation and stability are essential for striated muscle function. To determine the role of the actin filament pointed end capping protein, tropomodulin1 (Tmod1), with tropomyosin, we generated monoclonal antibodies (mAb17 and mAb8) against Tmod1 that specifically disrupted its interaction with tropomyosin in vitro. Microinjection of mAb17 or mAb8 into chick cardiac myocytes caused a dramatic loss of the thin filaments, as revealed by immunofluorescence deconvolution microscopy. Real-time imaging of live myocytes expressing green fluorescent protein-alpha-tropomyosin and microinjected with mAb17 revealed that the thin filaments depolymerized from their pointed ends. In a thin filament reconstitution assay, stabilization of the filaments before the addition of mAb17 prevented the loss of thin filaments. These studies indicate that the interaction of Tmod1 with tropomyosin is critical for thin filament stability. These data, together with previous studies, indicate that Tmod1 is a multifunctional protein: its actin filament capping activity prevents thin filament elongation, whereas its interaction with tropomyosin prevents thin filament depolymerization.
Collapse
Affiliation(s)
- Ryan E Mudry
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|