1
|
Lynes EM, Simmen T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1893-905. [PMID: 21756943 PMCID: PMC7172674 DOI: 10.1016/j.bbamcr.2011.06.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first listed what was known at the time about domain formation within the ER. In the time that has passed since, additional ER domains have been discovered and characterized. These include the mitochondria-associated membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD) occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2 (PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM.
Collapse
Affiliation(s)
- Emily M Lynes
- Department of Cell Biology, University of Alberta, Alberta, Canada
| | | |
Collapse
|
2
|
Chotani MA, Flavahan NA. Intracellular α(2C)-adrenoceptors: storage depot, stunted development or signaling domain? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1495-503. [PMID: 21605601 DOI: 10.1016/j.bbamcr.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
G-protein coupled receptors (GPCRs) are generally considered to function as cell surface signaling structures that respond to extracellular mediators, many of which do not readily access the cell's interior. Indeed, most GPCRs are preferentially targeted to the plasma membrane. However, some receptors, including α(2C)-Adrenoceptors, challenge conventional concepts of GPCR activity by being preferentially retained and localized within intracellular organelles. This review will address the issues associated with this unusual GPCR localization and discuss whether it represents a novel sub-cellular niche for GPCR signaling, whether these receptors are being stored for rapid deployment to the cell surface, or whether they represent immature or incomplete receptor systems.
Collapse
Affiliation(s)
- Maqsood A Chotani
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | |
Collapse
|
3
|
Aoki S, Honma M, Kariya Y, Nakamichi Y, Ninomiya T, Takahashi N, Udagawa N, Suzuki H. Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis. J Bone Miner Res 2010; 25:1907-21. [PMID: 20560139 DOI: 10.1002/jbmr.89] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The amount of the receptor activator of NF-κB ligand (RANKL) on the osteoblastic cell surface is considered to determine the magnitude of the signal input to osteoclast precursors and the degree of osteoclastogenesis. Previously, we have shown that RANKL is localized predominantly in lysosomal organelles, but little is found on the osteoblastic cell surface, and consequently, the regulated subcellular trafficking of RANKL in osteoblastic cells is important for controlled osteoclastogenesis. Here we have examined the involvement of osteoprotegerin (OPG), which is currently recognized as a decoy receptor for RANKL, in the regulation of RANKL behavior. It was suggested that OPG already makes a complex with RANKL in the Golgi apparatus and that the complex formation is necessary for RANKL sorting to the secretory lysosomes. It was also shown that each structural domain of OPG is indispensable for exerting OPG function as a traffic regulator. In particular, the latter domains of OPG, whose physiologic functions have been unclear, were indicated to sort RANKL molecules to lysosomes from the Golgi apparatus. In addition, the overexpression of RANK-OPG chimeric protein, which retained OPG function as a decoy receptor but lost the function as a traffic regulator, inhibited endogenous OPG function as a traffic regulator selectively in osteoblastic cells and resulted in the upregulation of osteoclastogenic ability despite the increased number of decoy receptor molecules. Conclusively, OPG function as a traffic regulator for RANKL is crucial for regulating osteoclastogenesis at least as well as that as a decoy receptor.
Collapse
Affiliation(s)
- Shigeki Aoki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Montero JC, Rodríguez-Barrueco R, Yuste L, Juanes PP, Borges J, Esparís-Ogando A, Pandiella A. The extracellular linker of pro-neuregulin-alpha2c is required for efficient sorting and juxtacrine function. Mol Biol Cell 2006; 18:380-93. [PMID: 17108327 PMCID: PMC1783780 DOI: 10.1091/mbc.e06-06-0511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neuregulins (NRGs) play important roles in animal physiology, and their disregulation has been linked to diseases such as cancer or schizophrenia. The NRGs may be produced as transmembrane proteins (proNRGs), even though they lack an N-terminal signal sequence. This raises the question of how NRGs are sorted to the plasma membrane. It is also unclear whether in their transmembrane state, the NRGs are biologically active. During studies aimed at solving these questions, we found that deletion of the extracellular juxtamembrane region termed the linker, decreased cell surface exposure of the mutant proNRG(DeltaLinker), and caused its entrapment at the cis-Golgi. We also found that cell surface-exposed transmembrane NRG forms retain biological activity. Thus, a mutant whose cleavage is impaired but is correctly sorted to the plasma membrane activated ErbB receptors in trans and also stimulated proliferation. Because the linker is implicated in surface sorting and the regulation of the cleavage of transmembrane NRGs, our data indicate that this region exerts multiple important roles in the physiology of NRGs.
Collapse
Affiliation(s)
- Juan C. Montero
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ruth Rodríguez-Barrueco
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Laura Yuste
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pedro P. Juanes
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Joana Borges
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Hathaway HJ, Evans SC, Dubois DH, Foote CI, Elder BH, Shur BD. Mutational analysis of the cytoplasmic domain of beta1,4-galactosyltransferase I: influence of phosphorylation on cell surface expression. J Cell Sci 2003; 116:4319-30. [PMID: 12966167 DOI: 10.1242/jcs.00720] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta1,4-galactosyltransferase I (GalT I) exists in two subcellular compartments where it performs two distinct functions. The majority of GalT I is localized in the Golgi complex where it participates in glycoprotein biosynthesis; however, a small portion of GalT I is expressed on the cell surface where it functions as a matrix receptor by binding terminal N-acetylglucosamine residues on extracellular glycoside ligands. The GalT I polypeptide occurs in two alternate forms that differ only in the length of their cytoplasmic domains. It is thought that the longer cytoplasmic domain is responsible for GalT I function as a cell surface receptor because of its ability to associate with the detergent-insoluble cytoskeleton. In this study, we demonstrate that the long GalT I cytoplasmic and transmembrane domains are capable of targeting a reporter protein to the plasma membrane, whereas the short cytoplasmic and transmembrane domains do not have this property. The surface-localized GalT I reporter protein partitions with the detergent-insoluble pool, a portion of which co-fractionates with caveolin-containing lipid rafts. Site-directed mutagenesis of the cytoplasmic domain identified a requirement for serine and threonine residues for cell surface expression and function. Replacing either the serine or threonine with aspartic acid reduces surface expression and function, whereas substitution with neutral alanine has no effect on surface expression or function. These results suggest that phosphorylation negatively regulates GalT I function as a surface receptor. Consistent with this, phosphorylation of the endogenous, full-length GalT I inhibits its stable expression on the cell surface. Thus, the 13 amino acid extension unique to the long GalT I isoform is required for GalT I expression on the cell surface, the function of which is regulated by phosphorylation.
Collapse
Affiliation(s)
- Helen J Hathaway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
6
|
VanSlyke JK, Deschenes SM, Musil LS. Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell 2000; 11:1933-46. [PMID: 10848620 PMCID: PMC14894 DOI: 10.1091/mbc.11.6.1933] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1999] [Revised: 02/11/2000] [Accepted: 03/14/2000] [Indexed: 11/11/2022] Open
Abstract
More than 130 different mutations in the gap junction integral plasma membrane protein connexin32 (Cx32) have been linked to the human peripheral neuropathy X-linked Charcot-Marie-Tooth disease (CMTX). How these various mutants are processed by the cell and the mechanism(s) by which they cause CMTX are unknown. To address these issues, we have studied the intracellular transport, assembly, and degradation of three CMTX-linked Cx32 mutants stably expressed in PC12 cells. Each mutant had a distinct fate: E208K Cx32 appeared to be retained in the endoplasmic reticulum (ER), whereas both the E186K and R142W mutants were transported to perinuclear compartments from which they trafficked either to lysosomes (R142W Cx32) or back to the ER (E186K Cx32). Despite these differences, each mutant was soluble in nonionic detergent but unable to assemble into homomeric connexons. Degradation of both mutant and wild-type connexins was rapid (t(1/2) < 3 h) and took place at least in part in the ER by a process sensitive to proteasome inhibitors. The mutants studied are therefore unlikely to cause disease by accumulating in degradation-resistant aggregates but instead are efficiently cleared from the cell by quality control processes that prevent abnormal connexin molecules from traversing the secretory pathway.
Collapse
Affiliation(s)
- J K VanSlyke
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
7
|
Rösch K, Naeher D, Laird V, Goder V, Spiess M. The topogenic contribution of uncharged amino acids on signal sequence orientation in the endoplasmic reticulum. J Biol Chem 2000; 275:14916-22. [PMID: 10747915 DOI: 10.1074/jbc.m000456200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal sequences for insertion of proteins into the endoplasmic reticulum induce translocation of either the C- or the N-terminal sequence across the membrane. The end that is translocated is primarily determined by the flanking charges and the hydrophobic domain of the signal. To characterize the hydrophobic contribution to topogenesis, we have challenged the translocation machinery in vivo in transfected COS cells with model proteins differing exclusively in the apolar segment of the signal. Homo-oligomers of hydrophobic amino acids as different in size and shape as Val(19), Trp(19), and Tyr(22) generated functional signal sequences with similar topologies in the membrane. The longer a homo-oligomeric sequence of a given residue, the more N-terminal translocation was obtained. To determine the topogenic contribution of all uncharged amino acids in the context of a hydrophobic signal sequence, two residues in a generic oligoleucine signal were exchanged for all uncharged amino acids. The resulting scale resembles a hydrophobicity scale with the more hydrophobic residues promoting N-terminal translocation. In addition, the helix breakers glycine and proline showed a position-dependent effect, which raises the possibility of a conformational contribution to topogenesis.
Collapse
Affiliation(s)
- K Rösch
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Koehler CM, Leuenberger D, Merchant S, Renold A, Junne T, Schatz G. Human deafness dystonia syndrome is a mitochondrial disease. Proc Natl Acad Sci U S A 1999; 96:2141-6. [PMID: 10051608 PMCID: PMC26750 DOI: 10.1073/pnas.96.5.2141] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human deafness dystonia syndrome results from the mutation of a protein (DDP) of unknown function. We show now that DDP is a mitochondrial protein and similar to five small proteins (Tim8p, Tim9p, Tim10p, Tim12p, and Tim13p) of the yeast mitochondrial intermembrane space. Tim9p, Tim10p, and Tim12p mediate the import of metabolite transporters from the cytoplasm into the mitochondrial inner membrane and interact structurally and functionally with Tim8p and Tim13p. DDP is most similar to Tim8p. Tim8p exists as a soluble 70-kDa complex with Tim13p and Tim9p, and deletion of Tim8p is synthetically lethal with a conditional mutation in Tim10p. The deafness dystonia syndrome thus is a novel type of mitochondrial disease that probably is caused by a defective mitochondrial protein-import system.
Collapse
Affiliation(s)
- C M Koehler
- Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
We have previously reported a mutated protein C, designated protein C Nagoya (PCN), characterized by the deletion of a single guanine residue (8857G). This frameshift mutation results in the replacement of the carboxyl-terminal 39 amino acids of wild-type protein C (G381-P419) by 81 abnormal amino acids. This elongated mutant was not effectively secreted, and was retained in the endoplasmic reticulum. To determine why PCN is not secreted, we constructed a series of mutants from which some or all of the 81 amino acids were deleted. None of these shortened proteins were secreted from producing cells, indicating that the carboxyl-terminal extension is not mainly responsible for the intracellular retention of PCN, and that the 39 carboxyl-terminal amino acids of wild-type protein C are required for secretion. To determine which residues are essential for the secretion of protein C, deletion mutants of the carboxyl-terminal region (D401-P419) were prepared. Metabolic labeling showed that mutants of protein C truncated before W417, Q414, E411, or K410 were efficiently secreted. On the other hand, the mutants truncated before D409 were retained and degraded intracellularly. Immunofluorescence and immunoelectron microscopy showed that truncation before D409 blocks the movement from rough endoplasmic reticulum to the Golgi apparatus. To understand the conformational change in the carboxyl-terminal region, two models of truncated activated protein C were constructed using energy optimization and molecular dynamics with water molecules.
Collapse
|
10
|
Abstract
AbstractWe have previously reported a mutated protein C, designated protein C Nagoya (PCN), characterized by the deletion of a single guanine residue (8857G). This frameshift mutation results in the replacement of the carboxyl-terminal 39 amino acids of wild-type protein C (G381-P419) by 81 abnormal amino acids. This elongated mutant was not effectively secreted, and was retained in the endoplasmic reticulum. To determine why PCN is not secreted, we constructed a series of mutants from which some or all of the 81 amino acids were deleted. None of these shortened proteins were secreted from producing cells, indicating that the carboxyl-terminal extension is not mainly responsible for the intracellular retention of PCN, and that the 39 carboxyl-terminal amino acids of wild-type protein C are required for secretion. To determine which residues are essential for the secretion of protein C, deletion mutants of the carboxyl-terminal region (D401-P419) were prepared. Metabolic labeling showed that mutants of protein C truncated before W417, Q414, E411, or K410 were efficiently secreted. On the other hand, the mutants truncated before D409 were retained and degraded intracellularly. Immunofluorescence and immunoelectron microscopy showed that truncation before D409 blocks the movement from rough endoplasmic reticulum to the Golgi apparatus. To understand the conformational change in the carboxyl-terminal region, two models of truncated activated protein C were constructed using energy optimization and molecular dynamics with water molecules.
Collapse
|
11
|
Gut A, Kappeler F, Hyka N, Balda MS, Hauri HP, Matter K. Carbohydrate-mediated Golgi to cell surface transport and apical targeting of membrane proteins. EMBO J 1998; 17:1919-29. [PMID: 9524115 PMCID: PMC1170538 DOI: 10.1093/emboj/17.7.1919] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polarized expression of most epithelial plasma membrane proteins is achieved by selective transport from the Golgi apparatus or from endosomes to a specific cell surface domain. In Madin-Darby canine kidney (MDCK) cells, basolateral sorting generally depends on distinct cytoplasmic targeting determinants. Inactivation of these signals often resulted in apical expression, suggesting that apical transport of transmembrane proteins occurs either by default or is mediated by widely distributed characteristics of membrane glycoproteins. We tested the hypothesis of N-linked carbohydrates acting as apical targeting signals using three different membrane proteins. The first two are normally not glycosylated and the third one is a glycoprotein. In all three cases, N-linked carbohydrates were clearly able to mediate apical targeting and transport. Cell surface transport of proteins containing cytoplasmic basolateral targeting determinants was not significantly affected by N-linked sugars. In the absence of glycosylation and a basolateral sorting signal, the reporter proteins accumulated in the Golgi complex of MDCK as well as CHO cells, indicating that efficient transport from the Golgi apparatus to the cell surface is signal-mediated in polarized and non-polarized cells.
Collapse
Affiliation(s)
- A Gut
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
For the Golgi apparatus to perform its various unique roles it must maintain a population of resident proteins. These residents include the enzymes that modify the proteins and lipids passing through the Golgi, as well as the proteins involved in vesicle formation and protein sorting. For several of these residents, it has been possible to identify regions that are crucial for specifying a Golgi localization. Consideration of how these targeting domains could function has provided insights into the organization of the Golgi and its protein and lipid content.
Collapse
Affiliation(s)
- S Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
13
|
Wahlberg JM, Spiess M. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J Cell Biol 1997; 137:555-62. [PMID: 9151664 PMCID: PMC2139883 DOI: 10.1083/jcb.137.3.555] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The orientation of signal-anchor proteins in the endoplasmic reticulum membrane is largely determined by the charged residues flanking the apolar, membrane-spanning domain and is influenced by the folding properties of the NH2-terminal sequence. However, these features are not generally sufficient to ensure a unique topology. The topogenic role of the hydrophobic signal domain was studied in vivo by expressing mutants of the asialoglycoprotein receptor subunit H1 in COS-7 cells. By replacing the 19-residue transmembrane segment of wild-type and mutant H1 by stretches of 7-25 leucine residues, we found that the length and hydrophobicity of the apolar sequence significantly affected protein orientation. Translocation of the NH2 terminus was favored by long, hydrophobic sequences and translocation of the COOH terminus by short ones. The topogenic contributions of the transmembrane domain, the flanking charges, and a hydrophilic NH2-terminal portion were additive. In combination these determinants were sufficient to achieve unique membrane insertion in either orientation.
Collapse
|
14
|
Bider MD, Wahlberg JM, Kammerer RA, Spiess M. The oligomerization domain of the asialoglycoprotein receptor preferentially forms 2:2 heterotetramers in vitro. J Biol Chem 1996; 271:31996-2001. [PMID: 8943247 DOI: 10.1074/jbc.271.50.31996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human hepatic asialoglycoprotein receptor is a noncovalent hetero-oligomer composed of two homologous subunits, H1 and H2, with an as yet unknown stoichiometry. Ligand specificity and binding affinity depend on the arrangement of the subunits in the complex. An 80-amino acid segment connecting the transmembrane and the carbohydrate binding domains contains heptad repeats characteristic of alpha-helical coiled coil structure. We expressed and purified corresponding peptides, H1S and H2S, and confirmed by circular dichroism spectroscopy that they can assume alpha-helical conformation. Oxidative cross-linking of amino-terminal cysteines generated specific covalent oligomers, indicating that separately H1S forms trimers and H2S tetramers. Upon mixing, covalent heterotetramers were formed with a preferred stoichiometry of 2 H1S and 2 H2S peptides. These results suggest that the stalk segments of the receptor subunits oligomerize to constitute an alpha-helical coiled coil stalk on top of which the carbohydrate binding domains are exposed for ligand binding. We propose that the functional asialoglycoprotein receptor is a 2:2 heterotetramer.
Collapse
Affiliation(s)
- M D Bider
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
15
|
Yamaguchi Y, Heiny ME, Suzuki M, Gitlin JD. Biochemical characterization and intracellular localization of the Menkes disease protein. Proc Natl Acad Sci U S A 1996; 93:14030-5. [PMID: 8943055 PMCID: PMC19489 DOI: 10.1073/pnas.93.24.14030] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Menkes disease is a fatal neurodegenerative disorder of childhood due to the absence or dysfunction of a putative copper-transporting P-type ATPase encoded on the X chromosome. To elucidate the biosynthesis and subcellular localization of this protein, polyclonal antisera were generated against a bacterial fusion protein encoding the 4th to 6th copper-binding domains in the amino terminus of the human Menkes protein. RNA blot analysis revealed abundant Menkes gene expression in several cell lines, and immunoblotting studies utilizing this antiserum readily detected a 178-kDa protein in lysates from these cells. Pulse-chase studies indicate that this protein is synthesized as a single-chain polypeptide which is modified by N-linked glycosylation to a mature endoglycosidase H-resistant form. Sucrose gradient fractionation of HeLa cell lysates followed by immunoblotting of individual fractions with antibodies to proteins of known intracellular location identified the Menkes ATPase in fractions similar to those containing the cation-independent mannose-6-phosphate receptor. Consistent with this observation, confocal immunofluorescence studies of these same cells localized this protein to the trans-Golgi network and a vesicular compartment with no expression in the nucleus or on the plasma membrane. Taken together, these data provide a unique model of copper transport into the secretory pathway of mammalian cells which is compatible with clinical observations in affected patients and with recent data on homologous proteins identified in prokaryotes and yeast.
Collapse
Affiliation(s)
- Y Yamaguchi
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|