1
|
Leih M, Plemel RL, West M, Angers CG, Merz AJ, Odorizzi G. Disordered hinge regions of the AP-3 adaptor complex promote vesicle budding from the late Golgi in yeast. J Cell Sci 2024; 137:jcs262234. [PMID: 39330471 DOI: 10.1242/jcs.262234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Vesicles bud from maturing Golgi cisternae in a programmed sequence. Budding is mediated by adaptors that recruit cargoes and facilitate vesicle biogenesis. In Saccharomyces cerevisiae, the AP-3 adaptor complex directs cargoes from the Golgi to the lysosomal vacuole. The AP-3 core consists of small and medium subunits complexed with two non-identical large subunits, β3 (Apl6) and δ (Apl5). The C-termini of β3 and δ were thought to be flexible hinges linking the core to ear domains that bind accessory proteins involved in vesicular transport. We found by computational modeling that the yeast β3 and δ hinges are intrinsically disordered and lack folded ear domains. When either hinge is truncated, AP-3 is recruited to the Golgi, but vesicle budding is impaired and cargoes normally sorted into the AP-3 pathway are mistargeted. This budding deficiency causes AP-3 to accumulate on ring-like Golgi structures adjacent to GGA adaptors that, in wild-type cells, bud vesicles downstream of AP-3 during Golgi maturation. Thus, each of the disordered hinges of yeast AP-3 has a crucial role in mediating transport vesicle formation at the Golgi.
Collapse
Affiliation(s)
- Mitchell Leih
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Cortney G Angers
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Hollopeter G. Stepwise assembly of the AP2 endocytic clathrin adaptor complex. Proc Natl Acad Sci U S A 2024; 121:e2415313121. [PMID: 39250673 PMCID: PMC11420168 DOI: 10.1073/pnas.2415313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
|
3
|
Thomason PA, Corbyn R, Lilla S, Sumpton D, Gilbey T, Insall RH. Biogenesis of lysosome-related organelles complex-2 is an evolutionarily ancient proto-coatomer complex. Curr Biol 2024; 34:3564-3581.e6. [PMID: 39059394 DOI: 10.1016/j.cub.2024.06.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/06/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is an inherited disorder of intracellular vesicle trafficking affecting the function of lysosome-related organelles (LROs). At least 11 genes underlie the disease, encoding four protein complexes, of which biogenesis of lysosome-related organelles complex-2 (BLOC-2) is the last whose molecular action is unknown. We find that the unicellular eukaryote Dictyostelium unexpectedly contains a complete BLOC-2, comprising orthologs of the mammalian subunits HPS3, -5, and -6, and a fourth subunit, an ortholog of the Drosophila LRO-biogenesis gene, Claret. Lysosomes from Dictyostelium BLOC-2 mutants fail to mature, similar to LROs from HPS patients, but for all endolysosomes rather than a specialized subset. They also strongly resemble lysosomes from WASH mutants. Dictyostelium BLOC-2 localizes to the same compartments as WASH, and in BLOC-2 mutants, WASH is inefficiently recruited, accounting for their impaired lysosomal maturation. BLOC-2 is recruited to endolysosomes via its HPS3 subunit. Structural modeling suggests that all four subunits are proto-coatomer proteins, with important implications for BLOC-2's molecular function. The discovery of Dictyostelium BLOC-2 permits identification of orthologs throughout eukaryotes. BLOC-2 and lysosome-related organelles, therefore, pre-date the evolution of Metazoa and have broader and more conserved functions than previously thought.
Collapse
Affiliation(s)
- Peter A Thomason
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | - Ryan Corbyn
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Thomas Gilbey
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Robert H Insall
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK; Division of Cell & Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Begley M, Aragon M, Baker RW. A structure-based mechanism for initiation of AP-3 coated vesicle formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597630. [PMID: 38895279 PMCID: PMC11185636 DOI: 10.1101/2024.06.05.597630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Adaptor protein complex 3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 is in a constitutively open, active conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted the core of human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy (cryo-EM). Similar to yeast AP-3, human AP-3 is in a constitutively open conformation, with the cargo-binding domain of the μ3 subunit conformationally free. To reconstitute AP-3 activation by the small GTPase Arf1, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures that show the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane-recruitment is driven by one of two predicted Arf1 binding sites on AP-3. In this conformation, AP-3 is flexibly tethered to the membrane and its cargo binding domain remains conformationally dynamic. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3 mediated vesicle coat assembly.
Collapse
Affiliation(s)
- Matthew Begley
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
| | - Mahira Aragon
- New York Structural Biology Center; New York, NY 10027, USA
| | - Richard W. Baker
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
- UNC Lineberger Comprehensive Cancer Center. UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Arrindell J, Desnues B. Vimentin: from a cytoskeletal protein to a critical modulator of immune response and a target for infection. Front Immunol 2023; 14:1224352. [PMID: 37475865 PMCID: PMC10354447 DOI: 10.3389/fimmu.2023.1224352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Vimentin is an intermediate filament protein that plays a role in cell processes, including cell migration, cell shape and plasticity, or organelle anchorage. However, studies from over the last quarter-century revealed that vimentin can be expressed at the cell surface and even secreted and that its implications in cell physiology largely exceed structural and cytoskeletal functions. Consequently, vimentin contributes to several pathophysiological conditions such as cancer, autoimmune and inflammatory diseases, or infection. In this review, we aimed at covering these various roles and highlighting vimentin implications in the immune response. We also provide an overview of how some microbes including bacteria and viruses have acquired the ability to circumvent vimentin functions in order to interfere with host responses and promote their uptake, persistence, and egress from host cells. Lastly, we discuss the therapeutic approaches associated with vimentin targeting, leading to several beneficial effects such as preventing infection, limiting inflammatory responses, or the progression of cancerous events.
Collapse
Affiliation(s)
- Jeffrey Arrindell
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
6
|
Dilber C, Yücel G, Şahin Y. Novel homozygous AP3B2 mutations in four individuals with developmental and epileptic encephalopathy: A rare clinical entity. Clin Neurol Neurosurg 2022; 223:107509. [PMID: 36356440 DOI: 10.1016/j.clineuro.2022.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Developmental and epileptic encephalopathies (DEEs) are heterogeneous severe neurodevelopmental disorders characterized by recurrent clinical seizures that begin in the neonatal period and early childhood and regression or delay in cognitive, sensory and motor skills in the context of accompanying epileptiform abnormalities. Adaptor-related protein complex 3 beta-2 subunit (AP3B2) gene variants are thought to cause disruption of neuron-specific neurotransmitter release. METHODS In this case report, whole exome sequencing (WES) was performed on two of the four pediatric patients who came from two unrelated families and were affected by DEE. As a result of WES, previously unreported variants, that is, p.Ala149Serfs* 34 and p.Pro993Argfs* 5, were detected in the AP3B2 gene. These variants were studied using Sanger sequencing in the siblings affected by DEE of the said pediatric patients and in their healthy parents. RESULTS Autosomal recessive variants of the AP3B2 are associated with the development of DEE. To date, only 14 cases of AP3B2 mutations have been reported in the literature. Consequentially, DEE phenotype involving severe global developmental delay emerged, which is characterized by early-onset infantile epileptic encephalopathy, severe hypotonia, postnatal microcephaly, poor eye contact, speech retardation, abnormal involuntary movements, stereotypical hand movements, progressive intellectual disability, and behavioral and neuropsychiatric findings. CONCLUSION Given the limited number of patients reported in the literature, detailed studies of the specific clinical and molecular features of AP3B2 gene variants, will shed light on the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Cengiz Dilber
- Department of Pediatric Neurology, Sütçü İmam Universty Faculty of Medicine, Kahramanmaraş, Turkey.
| | - Gül Yücel
- Department of Pediatric Neurology, Konya City Hospital, Konya, Turkey.
| | - Yavuz Şahin
- Department of Medical Genetics, Genoks Genetic Diseases Diagnosis Center, Gaziantep, Turkey.
| |
Collapse
|
7
|
Xu H, Chang F, Jain S, Heller BA, Han X, Liu Y, Edwards RH. SNX5 targets a monoamine transporter to the TGN for assembly into dense core vesicles by AP-3. J Cell Biol 2022; 221:e202106083. [PMID: 35426896 PMCID: PMC9016777 DOI: 10.1083/jcb.202106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The time course of signaling by peptide hormones, neural peptides, and other neuromodulators depends on their storage inside dense core vesicles (DCVs). Adaptor protein 3 (AP-3) assembles the membrane proteins that confer regulated release of DCVs and is thought to promote their trafficking from endosomes directly to maturing DCVs. We now find that regulated monoamine release from DCVs requires sorting nexin 5 (SNX5). Loss of SNX5 disrupts trafficking of the vesicular monoamine transporter (VMAT) to DCVs. The mechanism involves a role for SNX5 in retrograde transport of VMAT from endosomes to the TGN. However, this role for SNX5 conflicts with the proposed function of AP-3 in trafficking from endosomes directly to DCVs. We now identify a transient role for AP-3 at the TGN, where it associates with DCV cargo. Thus, retrograde transport from endosomes by SNX5 enables DCV assembly at the TGN by AP-3, resolving the apparent antagonism. A novel role for AP-3 at the TGN has implications for other organelles that also depend on this adaptor.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Fei Chang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Shweta Jain
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Bradley Austin Heller
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Departments of Pharmacology and Biological Chemistry, University of Pittsburgh, Pittsburgh, PA
| | - Robert H. Edwards
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
8
|
Eising S, Esch B, Wälte M, Vargas Duarte P, Walter S, Ungermann C, Bohnert M, Fröhlich F. A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways. J Cell Biol 2022; 221:213011. [PMID: 35175277 PMCID: PMC8859911 DOI: 10.1083/jcb.202107148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo-receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.
Collapse
Affiliation(s)
- Sebastian Eising
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Bianca Esch
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Mike Wälte
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
| | - Prado Vargas Duarte
- Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Florian Fröhlich
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
9
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Arora D, Damme DV. Motif-based endomembrane trafficking. PLANT PHYSIOLOGY 2021; 186:221-238. [PMID: 33605419 PMCID: PMC8154067 DOI: 10.1093/plphys/kiab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Endomembrane trafficking, which allows proteins and lipids to flow between the different endomembrane compartments, largely occurs by vesicle-mediated transport. Transmembrane proteins intended for transport are concentrated into a vesicle or carrier by undulation of a donor membrane. This is followed by vesicle scission, uncoating, and finally, fusion at the target membrane. Three major trafficking pathways operate inside eukaryotic cells: anterograde, retrograde, and endocytic. Each pathway involves a unique set of machinery and coat proteins that pack the transmembrane proteins, along with their associated lipids, into specific carriers. Adaptor and coatomer complexes are major facilitators that function in anterograde transport and in endocytosis. These complexes recognize the transmembrane cargoes destined for transport and recruit the coat proteins that help form the carriers. These complexes use either linear motifs or posttranslational modifications to recognize the cargoes, which are then packaged and delivered along the trafficking pathways. In this review, we focus on the different trafficking complexes that share a common evolutionary branch in Arabidopsis (Arabidopsis thaliana), and we discuss up-to-date knowledge about the cargo recognition motifs they use.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
11
|
Ueda K, Ogawa S, Matsuda K, Hasegawa Y, Nishi E, Yanagi K, Kaname T, Yamamoto T, Okamoto N. Blended phenotype of combination of HERC2 and AP3B2 deficiency and Angelman syndrome caused by paternal isodisomy of chromosome 15. Am J Med Genet A 2021; 185:3092-3098. [PMID: 34042275 DOI: 10.1002/ajmg.a.62371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/11/2021] [Accepted: 04/01/2021] [Indexed: 01/26/2023]
Abstract
Angelman syndrome is a neurodevelopmental disorder characterized by intellectual disability (ID), a distinctive gait pattern, abnormal behaviors, severe impairment in language development, and characteristic facial features. Most cases are caused by the absence of a maternal contribution to the imprinted region on chromosome 15q11-q13. Here, we present the first reported case of a 3-year-old boy with an atypical phenotype of Angelman syndrome due to uniparental isodisomy with two recessive homozygous pathogenic variants: in HERC2 and AP3B2. Known phenotypes related to HERC2 and AP3B2 include ID and early infantile epileptic encephalopathy, respectively. The patient had severe global developmental delay and profound ID and showed a happy demeanor, stereotypic laughter, and hand-flapping movements, but also irritability. Craniofacial dysmorphic features, including brachycephaly, strabismus, wide ala nasi, short philtrum, wide open mouth, and slight hypopigmentation were seen. Progressive microcephaly was noted. Magnetic resonance imaging of the brain showed delayed myelination and cerebral atrophy. Trio whole exome sequencing and CGH-SNP array analysis revealed paternal uniparental isodisomy of chromosome 15 and two coexisting recessive diseases resulting from homozygous HERC2 and AP3B2 pathogenic variants. The pathogenic variant in HERC2 was inherited from his heterozygous-carrier father, and the variant in AP3B2 was de novo. We suppose that these unusual features were the combination of the effect of three concomitant disorders.
Collapse
Affiliation(s)
- Kimiko Ueda
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Satoru Ogawa
- Department of Pediatrics, Saiseikai Suita Hospital, Osaka, Japan
| | - Keiko Matsuda
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| |
Collapse
|
12
|
Song H, Huang Y, Gu B. QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria). PLoS One 2020; 15:e0227663. [PMID: 33170849 PMCID: PMC7654804 DOI: 10.1371/journal.pone.0227663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Heat is a major abiotic stress that seriously affects watermelon (Citrullus lanatus) production. However, its effects may be mitigated through grafting watermelon to heat tolerant bottle gourd (Lagenaria siceraria) rootstocks. Understanding the genetic basis of heat tolerance and development of reliable DNA markers to indirectly select for the trait are necessary in breeding for new varieties with heat tolerance. The objectives of this study were to investigate the inheritance of heat tolerance and identify molecular markers associated with heat tolerance in bottle gourd. A segregating F2 population was developed from a cross between two heat tolerant and sensitive inbred lines. The population was phenotyped for relative electrical conductivity (REC) upon high temperature treatment which was used as an indicator for heat tolerance. QTL-seq was performed to identify regions associated with heat tolerance. We found that REC-based heat tolerance in this population exhibited recessive inheritance. Seven heat-tolerant quantitative trait loci (qHT1.1, qHT2.1, qHT2.2, qHT5.1, qHT6.1, qHT7.1, and qHT8.1) were identified with qHT2.1 being a promising major-effect QTL. In the qHT2.1 region, we identified three non-synonymous SNPs that were potentially associated with heat tolerance. These SNPs were located in the genes that may play roles in pollen sterility, intracellular transport, and signal recognition. Association of the three SNPs with heat tolerance was verified in segregating F2 populations, which could be candidate markers for marker assisted selection for heat tolerance in bottle gourd. The qHT2.1 region is an important finding that may be used for fine mapping and discovery of novel genes associated with heat tolerance in bottle gourd.
Collapse
Affiliation(s)
- Hui Song
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
- * E-mail:
| | - Yunping Huang
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| | - Binquan Gu
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Biallelic mutations in AP3D1 cause Hermansky-Pudlak syndrome type 10 associated with immunodeficiency and seizure disorder. Eur J Med Genet 2018; 62:103583. [PMID: 30472485 DOI: 10.1016/j.ejmg.2018.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/24/2023]
Abstract
Several types of Hermansky-Pudlak syndromes (HPS) represent a group of immunodeficiency syndromes that feature both leukocyte defects with partial albinism of hair, skin, and eyes. These conditions share defects in genes that encode proteins involved in the biogenesis, function, and trafficking of secretory lysosomes. Mutations in AP3D1 which encode the main subunit AP-3(δ) were recently reported on one individual and led to Hermansky-Pudlak Syndrome type 10 (HPS10; OMIM 617050). HPS10 is a severe condition that manifests with symptoms of oculocutaneous albinism, neurodevelopmental delays, platelet dysfunction, and immunodeficiency. Herein we report on three affected individuals who presented with severe seizures, developmental delay, albinism, and immunodeficiency. Whole exome sequencing identified homozygosity for a deleterious sequence variant of high impact in AP3D1, c.1978delG, predicting p.Ala660Argfs*54 (NM_001261826.3). We further demonstrated an abnormal storage pathway in the platelets. The current study represents a second confirmation report and implicates AP3D1 mutations as a cause of Hermansky-Pudlak Syndrome type 10.
Collapse
|
15
|
Davies AK, Itzhak DN, Edgar JR, Archuleta TL, Hirst J, Jackson LP, Robinson MS, Borner GHH. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun 2018; 9:3958. [PMID: 30262884 PMCID: PMC6160451 DOI: 10.1038/s41467-018-06172-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including 'Dynamic Organellar Maps', to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the "ATG9A reservoir" required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy.
Collapse
Affiliation(s)
- Alexandra K Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Daniel N Itzhak
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Tara L Archuleta
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
16
|
Navarro Negredo P, Edgar JR, Manna PT, Antrobus R, Robinson MS. The WDR11 complex facilitates the tethering of AP-1-derived vesicles. Nat Commun 2018; 9:596. [PMID: 29426865 PMCID: PMC5807400 DOI: 10.1038/s41467-018-02919-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
Abstract
Vesicluar transport of proteins from endosomes to the trans-Golgi network (TGN) is an essential cellular pathway, but much of its machinery is still unknown. A screen for genes involved in endosome-to-TGN trafficking produced two hits, the adaptor protein-1 (AP-1 complex), which facilitates vesicle budding, and WDR11. Here we demonstrate that WDR11 forms a stable complex with two other proteins, which localises to the TGN region and does not appear to be associated with AP-1, suggesting it may act downstream from budding. In a vesicle tethering assay, capture of vesicles by golgin-245 was substantially reduced in WDR11-knockout cells. Moreover, structured illumination microscopy and relocation assays indicate that the WDR11 complex is initially recruited onto vesicles rather than the TGN, where it may in turn recruit the golgin binding partner TBC1D23. We propose that the complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles that were generated using AP-1. Trafficking from endosomes to the trans-Golgi network requires recognition of vesicle tethers during membrane docking. Here, the authors identify a complex localised to AP-1 generated vesicles containing WDR11, C17orf75 and FAM91A, which together with TBC1D23 facilitates vesicle capture on Golgi membranes
Collapse
Affiliation(s)
- Paloma Navarro Negredo
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
17
|
Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval. PLoS Biol 2018; 16:e2004411. [PMID: 29381698 PMCID: PMC5806898 DOI: 10.1371/journal.pbio.2004411] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/09/2018] [Accepted: 01/12/2018] [Indexed: 01/17/2023] Open
Abstract
The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR), GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5–associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders. Eukaryotic cells contain multiple membrane-bound compartments, each with a distinct function and molecular composition. Proteins are transported from one compartment to another by vesicular carriers. Formation of these carriers requires coat proteins, which both shape the membrane into a vesicle and select the proteins that are to be included as cargo. In many cases, cargo selection is facilitated by an adaptor protein (AP) complex, of which 5 have been identified. The most recently identified complex, AP-5, localises to a late endosomal/lysosomal compartment, and patients with mutations in AP-5 have a form of hereditary spastic paraplegia characterised by aberrant lysosomes. However, the precise function of AP-5, including its cargo and its pathway, has until now been unclear. In the present study, we have used unbiased subcellular proteomics to look for changes in the localisation of thousands of different proteins in cells from which AP-5 has been deleted by gene editing. We found that there are defects in the retrieval of several proteins from late endosomes back to the Golgi apparatus. Thus, we propose that AP-5 facilitates a novel late-acting retrieval pathway, which contributes to normal lysosomal homeostasis.
Collapse
|
18
|
Navarro Negredo P, Edgar JR, Wrobel AG, Zaccai NR, Antrobus R, Owen DJ, Robinson MS. Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting. J Cell Biol 2017; 216:2927-2943. [PMID: 28743825 PMCID: PMC5584140 DOI: 10.1083/jcb.201602058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022] Open
Abstract
Acidic clusters act as sorting signals for packaging cargo into clathrin-coated vesicles (CCVs), and also facilitate down-regulation of MHC-I by HIV-1 Nef. To find acidic cluster sorting machinery, we performed a gene-trap screen and identified the medium subunit (µ1) of the clathrin adaptor AP-1 as a top hit. In µ1 knockout cells, intracellular CCVs still form, but acidic cluster proteins are depleted, although several other CCV components were either unaffected or increased, indicating that cells can compensate for long-term loss of AP-1. In vitro experiments showed that the basic patch on µ1 that interacts with the Nef acidic cluster also contributes to the binding of endogenous acidic cluster proteins. Surprisingly, µ1 mutant proteins lacking the basic patch and/or the tyrosine-based motif binding pocket could rescue the µ1 knockout phenotype completely. In contrast, these mutants failed to rescue Nef-induced down-regulation of MHC class I, suggesting a possible mechanism for attacking the virus while sparing the host cell.
Collapse
Affiliation(s)
- Paloma Navarro Negredo
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Antoni G Wrobel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
19
|
Sahu BS, Manna PT, Edgar JR, Antrobus R, Mahata SK, Bartolomucci A, Borner GHH, Robinson MS. Role of clathrin in dense core vesicle biogenesis. Mol Biol Cell 2017; 28:2676-2685. [PMID: 28814506 PMCID: PMC5620375 DOI: 10.1091/mbc.e16-10-0742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 11/11/2022] Open
Abstract
The dense core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible short hairpin RNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were approximately fourfold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced approximately twofold in clathrin-depleted cells as a whole and approximately fivefold in vesicle-enriched fractions. Our combined data sets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sushil K Mahata
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161.,Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
| | - Georg H H Borner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
20
|
Adaptor protein-3: A key player in RBL-2H3 mast cell mediator release. PLoS One 2017; 12:e0173462. [PMID: 28273137 PMCID: PMC5342237 DOI: 10.1371/journal.pone.0173462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/22/2017] [Indexed: 11/30/2022] Open
Abstract
Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of β-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs.
Collapse
|
21
|
Assoum M, Philippe C, Isidor B, Perrin L, Makrythanasis P, Sondheimer N, Paris C, Douglas J, Lesca G, Antonarakis S, Hamamy H, Jouan T, Duffourd Y, Auvin S, Saunier A, Begtrup A, Nowak C, Chatron N, Ville D, Mireskandari K, Milani P, Jonveaux P, Lemeur G, Milh M, Amamoto M, Kato M, Nakashima M, Miyake N, Matsumoto N, Masri A, Thauvin-Robinet C, Rivière JB, Faivre L, Thevenon J. Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy. Am J Hum Genet 2016; 99:1368-1376. [PMID: 27889060 DOI: 10.1016/j.ajhg.2016.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022] Open
Abstract
Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five additional families with eight affected individuals through the Matchmaker Exchange initiative by matching autosomal-recessive mutations in AP3B2. Reverse phenotyping of 12 affected individuals from eight families revealed a homogeneous EOEE phenotype characterized by severe developmental delay, poor visual contact with optic atrophy, and postnatal microcephaly. No spasticity, albinism, or hematological symptoms were reported. AP3B2 encodes the neuron-specific subunit of the AP-3 complex. Autosomal-recessive variations of AP3B1, the ubiquitous isoform, cause Hermansky-Pudlak syndrome type 2. The only isoform for the δ subunit of the AP-3 complex is encoded by AP3D1. Autosomal-recessive mutations in AP3D1 cause a severe disorder cumulating the symptoms of the AP3B1 and AP3B2 defects.
Collapse
Affiliation(s)
- Mirna Assoum
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France
| | - Christophe Philippe
- Laboratoire de Génétique Médicale, INSERM U954 (Nutrition-Genetics-Environmental Risk Exposure), Centre Hospitalier Universaire Hôpitaux de Brabois, 54511 Vandoeuvre les Nancy, France
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universaire de Nantes, 44093 Nantes, France; INSERM UMR_S957, 44093 Nantes, France
| | - Laurence Perrin
- Département de Génétique, Centre Hospitalier Universaire Paris - Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, 75019 Paris, France
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1211 Geneva 4, Switzerland
| | - Neal Sondheimer
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Caroline Paris
- Centre Hospitalier Régional Universitaire, Hôpital Jean Minjoz, 25030 Besançon, France
| | - Jessica Douglas
- Boston Children's Hospital, Feingold Center, Boston, MA 02115, USA
| | - Gaetan Lesca
- Department of Medical Genetics, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France; Université de Lyon, 69100 Villeurbanne, France; Centre Nationnal de la Recherche Scientifique UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon, bâtiment l'Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Stylianos Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva 4, Switzerland
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Thibaud Jouan
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France
| | - Yannis Duffourd
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Stéphane Auvin
- INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France
| | - Aline Saunier
- Laboratoire de Génétique Médicale, INSERM U954 (Nutrition-Genetics-Environmental Risk Exposure), Centre Hospitalier Universaire Hôpitaux de Brabois, 54511 Vandoeuvre les Nancy, France
| | - Amber Begtrup
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Catherine Nowak
- Boston Children's Hospital, Feingold Center, Boston, MA 02115, USA
| | - Nicolas Chatron
- Department of Medical Genetics, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France; Université de Lyon, 69100 Villeurbanne, France; Centre Nationnal de la Recherche Scientifique UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon, bâtiment l'Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Dorothée Ville
- Department of Pediatric Neurology, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Kamiar Mireskandari
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Paolo Milani
- Service de Physiologie Clinique et Explorations Fonctionnelles, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris, 75475 Paris, France
| | - Philippe Jonveaux
- Laboratoire de Génétique Médicale, INSERM U954 (Nutrition-Genetics-Environmental Risk Exposure), Centre Hospitalier Universaire Hôpitaux de Brabois, 54511 Vandoeuvre les Nancy, France
| | - Guylène Lemeur
- Service d'Ophtalmologie, Centre Hospitalo-Universitaire de Nantes, 44093 Nantes, France
| | - Mathieu Milh
- Service de Neurologie Pédiatrique, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France; INSERM UMR_S910, Aix-Marseille Université, 13005 Marseille, France
| | - Masano Amamoto
- Pediatrics Emergency Center, Kitakyushu Municipal Yahata Hospitals, Kitakyushu 803-8501, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Amira Masri
- Department of Paediatrics, Faculty of Medicine, Jordan University, Amman 11942, Jordan
| | - Christel Thauvin-Robinet
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Jean-Baptiste Rivière
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France
| | - Laurence Faivre
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Julien Thevenon
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France.
| |
Collapse
|
22
|
Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. eLife 2016; 5. [PMID: 27657169 PMCID: PMC5033606 DOI: 10.7554/elife.17180] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles that are released when endosomes fuse with the plasma membrane. They have been implicated in various functions in both health and disease, including intercellular communication, antigen presentation, prion transmission, and tumour cell metastasis. Here we show that inactivating the vacuolar ATPase in HeLa cells causes a dramatic increase in the production of exosomes, which display endocytosed tracers, cholesterol, and CD63. The exosomes remain clustered on the cell surface, similar to retroviruses, which are attached to the plasma membrane by tetherin. To determine whether tetherin also attaches exosomes, we knocked it out and found a 4-fold reduction in plasma membrane-associated exosomes, with a concomitant increase in exosomes discharged into the medium. This phenotype could be rescued by wild-type tetherin but not tetherin lacking its GPI anchor. We propose that tetherin may play a key role in exosome fate, determining whether they participate in long-range or short-range interactions.
Collapse
Affiliation(s)
- James R Edgar
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Paul T Manna
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Shinichi Nishimura
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - George Banting
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Margaret S Robinson
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|
23
|
Frazier MN, Davies AK, Voehler M, Kendall AK, Borner GHH, Chazin WJ, Robinson MS, Jackson LP. Molecular Basis for the Interaction Between AP4 β4 and its Accessory Protein, Tepsin. Traffic 2016; 17:400-15. [PMID: 26756312 PMCID: PMC4805503 DOI: 10.1111/tra.12375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
The adaptor protein 4 (AP4) complex (ϵ/β4/μ4/σ4 subunits) forms a non-clathrin coat on vesicles departing the trans-Golgi network. AP4 biology remains poorly understood, in stark contrast to the wealth of molecular data available for the related clathrin adaptors AP1 and AP2. AP4 is important for human health because mutations in any AP4 subunit cause severe neurological problems, including intellectual disability and progressive spastic para- or tetraplegias. We have used a range of structural, biochemical and biophysical approaches to determine the molecular basis for how the AP4 β4 C-terminal appendage domain interacts with tepsin, the only known AP4 accessory protein. We show that tepsin harbors a hydrophobic sequence, LFxG[M/L]x[L/V], in its unstructured C-terminus, which binds directly and specifically to the C-terminal β4 appendage domain. Using nuclear magnetic resonance chemical shift mapping, we define the binding site on the β4 appendage by identifying residues on the surface whose signals are perturbed upon titration with tepsin. Point mutations in either the tepsin LFxG[M/L]x[L/V] sequence or in its cognate binding site on β4 abolish in vitro binding. In cells, the same point mutations greatly reduce the amount of tepsin that interacts with AP4. However, they do not abolish the binding between tepsin and AP4 completely, suggesting the existence of additional interaction sites between AP4 and tepsin. These data provide one of the first detailed mechanistic glimpses at AP4 coat assembly and should provide an entry point for probing the role of AP4-coated vesicles in cell biology, and especially in neuronal function.
Collapse
Affiliation(s)
- Meredith N Frazier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Alexandra K Davies
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, UK
| | - Markus Voehler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Margaret S Robinson
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, UK
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
24
|
Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 2016; 127:997-1006. [PMID: 26744459 DOI: 10.1182/blood-2015-09-671636] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/26/2015] [Indexed: 01/07/2023] Open
Abstract
Genetic disorders affecting biogenesis and transport of lysosome-related organelles are heterogeneous diseases frequently associated with albinism. We studied a patient with albinism, neutropenia, immunodeficiency, neurodevelopmental delay, generalized seizures, and impaired hearing but with no mutation in genes so far associated with albinism and immunodeficiency. Whole exome sequencing identified a homozygous mutation in AP3D1 that leads to destabilization of the adaptor protein 3 (AP3) complex. AP3 complex formation and the degranulation defect in patient T cells were restored by retroviral reconstitution. A previously described hypopigmented mouse mutant with an Ap3d1 null mutation (mocha strain) shares the neurologic phenotype with our patient and shows a platelet storage pool deficiency characteristic of Hermansky-Pudlak syndrome (HPS) that was not studied in our patient because of a lack of bleeding. HPS2 caused by mutations in AP3B1A leads to a highly overlapping phenotype without the neurologic symptoms. The AP3 complex exists in a ubiquitous and a neuronal form. AP3D1 codes for the AP3δ subunit of the complex, which is essential for both forms. In contrast, the AP3β3A subunit, affected in HPS2 patients, is substituted by AP3β3B in the neuron-specific heterotetramer. AP3δ deficiency thus causes a severe neurologic disorder with immunodeficiency and albinism that we propose to classify as HPS10.
Collapse
|
25
|
Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic 2015; 16:1210-38. [PMID: 26403691 DOI: 10.1111/tra.12335] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.
Collapse
Affiliation(s)
- Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Hirst J, Edgar JR, Borner GHH, Li S, Sahlender DA, Antrobus R, Robinson MS. Contributions of epsinR and gadkin to clathrin-mediated intracellular trafficking. Mol Biol Cell 2015; 26:3085-103. [PMID: 26179914 PMCID: PMC4551321 DOI: 10.1091/mbc.e15-04-0245] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/06/2015] [Indexed: 01/14/2023] Open
Abstract
EpsinR and gadkin are two components of intracellular clathrin-coated vesicles whose precise functions are unclear. Rapid depletion of each protein from the available pool using the knocksideways method strongly inhibited the production of intracellular clathrin-coated vesicles, providing new insights into the functions of both proteins. The precise functions of most of the proteins that participate in clathrin-mediated intracellular trafficking are unknown. We investigated two such proteins, epsinR and gadkin, using the knocksideways method, which rapidly depletes proteins from the available pool by trapping them onto mitochondria. Although epsinR is known to be an N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE)-specific adaptor, the epsinR knocksideways blocked the production of the entire population of intracellular clathrin-coated vesicles (CCVs), suggesting a more global function. Using the epsinR knocksideways data, we were able to estimate the copy number of all major intracellular CCV proteins. Both sides of the vesicle are densely covered, indicating that CCVs sort their cargo by molecular crowding. Trapping of gadkin onto mitochondria also blocked the production of intracellular CCVs but by a different mechanism: vesicles became cross-linked to mitochondria and pulled out toward the cell periphery. Both phenotypes provide new insights into the regulation of intracellular CCV formation, which could not have been found using more conventional approaches.
Collapse
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Georg H H Borner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sam Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Daniela A Sahlender
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
27
|
Yap CC, Winckler B. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 2015; 9:119. [PMID: 25904845 PMCID: PMC4389405 DOI: 10.3389/fncel.2015.00119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
28
|
Dannhauser PN, Platen M, Böning H, Ungewickell H, Schaap IA, Ungewickell EJ. Effect of Clathrin Light Chains on the Stiffness of Clathrin Lattices and Membrane Budding. Traffic 2015; 16:519-33. [DOI: 10.1111/tra.12263] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Philip N. Dannhauser
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Mitja Platen
- IIIrd Institute of Physics; Georg August University; Göttingen Germany
| | - Heike Böning
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Huberta Ungewickell
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Iwan A.T. Schaap
- IIIrd Institute of Physics; Georg August University; Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Göttingen Germany
| | - Ernst J. Ungewickell
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| |
Collapse
|
29
|
Toshima JY, Nishinoaki S, Sato Y, Yamamoto W, Furukawa D, Siekhaus DE, Sawaguchi A, Toshima J. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole. Nat Commun 2014; 5:3498. [PMID: 24667230 DOI: 10.1038/ncomms4498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/24/2014] [Indexed: 12/27/2022] Open
Abstract
The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the endocytic pathway from the plasma membrane to the vacuole. However, the intracellular location at which these two pathways converge remains unclear. In addition, the endocytic pathway is not completely blocked in yeast cells lacking all Rab5 genes, suggesting the existence of an unidentified route that bypasses the Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. We also identify a previously unidentified endocytic pathway mediated by the AP-3 complex. Importantly, the AP-3-mediated pathway appears mostly intact in Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. We propose that the endocytic traffic branches into two routes to reach the vacuole: a Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway.
Collapse
Affiliation(s)
- Junko Y Toshima
- 1] Faculty of Science and Engineering, Waseda University, Wakamatsu-cho, 2-2, Shinjuku-ku, Tokyo 162-8480, Japan [2] Research Center for RNA Science, RIST, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Show Nishinoaki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yoshifumi Sato
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Wataru Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Daiki Furukawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Akira Sawaguchi
- Department of Anatomy, University of Miyazaki Faculty of Medicine, Miyazaki 889-1692, Japan
| | - Jiro Toshima
- 1] Research Center for RNA Science, RIST, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan [2] Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
30
|
Barlow LD, Dacks JB, Wideman JG. From all to (nearly) none: Tracing adaptin evolution in Fungi. CELLULAR LOGISTICS 2014; 4:e28114. [PMID: 24843829 PMCID: PMC4022609 DOI: 10.4161/cl.28114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
Abstract
The five adaptor protein (AP) complexes function in cargo-selection and coat-recruitment stages of vesicular transport in eukaryotic cells. Much of what we know about AP complex function has come from experimental work using Saccharomyces cerevisiae as a model. Here, using a combination of comparative genomic and phylogenetic approaches we provide evolutionary context for the knowledge gained from this model system by searching the genomes of diverse fungi as well as a member of the sister group to all fungi, Fonticula alba, for presence of AP subunits. First, we demonstrate that F. alba contains all five AP complexes; whereas, similar to S. cerevisiae, most fungi retain only AP-1 to 3. As exceptions, the glomeromycete Rhizophagus irregularis maintains a complete AP-4 and chytrid fungi Spizellomyces punctatus and Batrachochytrium dendrobatidis retain partial AP-4 complexes. The presence of AP-4 subunits in diverse fungi suggests that AP-4 has been independently lost up to seven times in the fungal lineage. In addition to the trend of loss in fungi, we demonstrate that the duplication that gave rise to the β subunits of the AP-1 and AP-2 complexes in S. cerevisiae occurred before the divergence of F. alba and Fungi. Finally, our investigation into the AP complement of basal fungi (Microsporidia and Cryptomycota) demonstrates that while the cryptomycete Rozella allomyces contains an adaptin complement similar to other fungi, the extremely reduced Microsporidia retain, at most, a single cryptic AP complex in the absence of clathrin or any other putative AP-associated coat protein.
Collapse
Affiliation(s)
- Lael D Barlow
- Department of Cell Biology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton, Alberta, Canada
| | - Joel B Dacks
- Department of Cell Biology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton, Alberta, Canada
| | - Jeremy G Wideman
- Department of Cell Biology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Hirst J, Borner GHH, Edgar J, Hein MY, Mann M, Buchholz F, Antrobus R, Robinson MS. Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell 2013; 24:2558-69. [PMID: 23825025 PMCID: PMC3744948 DOI: 10.1091/mbc.e13-03-0170] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The AP-5 complex is a recently identified but evolutionarily ancient member of the family of heterotetrameric adaptor proteins (AP complexes). It is associated with two proteins that are mutated in patients with hereditary spastic paraplegia, SPG11 and SPG15. Here we show that the four AP-5 subunits can be coimmunoprecipitated with SPG11 and SPG15, both from cytosol and from detergent-extracted membranes, with a stoichiometry of ∼1:1:1:1:1:1. Knockdowns of SPG11 or SPG15 phenocopy knockdowns of AP-5 subunits: all six knockdowns cause the cation-independent mannose 6-phosphate receptor to become trapped in clusters of early endosomes. In addition, AP-5, SPG11, and SPG15 colocalize on a late endosomal/lysosomal compartment. Both SPG11 and SPG15 have predicted secondary structures containing α-solenoids related to those of clathrin heavy chain and COPI subunits. SPG11 also has an N-terminal, β-propeller-like domain, which interacts in vitro with AP-5. We propose that AP-5, SPG15, and SPG11 form a coat-like complex, with AP-5 involved in protein sorting, SPG15 facilitating the docking of the coat onto membranes by interacting with PI3P via its FYVE domain, and SPG11 (possibly together with SPG15) forming a scaffold.
Collapse
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sahlender DA, Kozik P, Miller SE, Peden AA, Robinson MS. Uncoupling the functions of CALM in VAMP sorting and clathrin-coated pit formation. PLoS One 2013; 8:e64514. [PMID: 23741335 PMCID: PMC3669311 DOI: 10.1371/journal.pone.0064514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
CALM (clathrin assembly lymphoid myeloid leukemia protein) is a cargo-selective adaptor for the post-Golgi R-SNAREs VAMPs 2, 3, and 8, and it also regulates the size of clathrin-coated pits and vesicles at the plasma membrane. The present study has two objectives: to determine whether CALM can sort additional VAMPs, and to investigate whether VAMP sorting contributes to CALM-dependent vesicle size regulation. Using a flow cytometry-based endocytosis efficiency assay, we demonstrate that CALM is also able to sort VAMPs 4 and 7, even though they have sorting signals for other clathrin adaptors. CALM homologues are present in nearly every eukaryote, suggesting that the CALM family may have evolved as adaptors for retrieving all post-Golgi VAMPs from the plasma membrane. Using a knockdown/rescue system, we show that wild-type CALM restores normal VAMP sorting in CALM-depleted cells, but that two non-VAMP-binding mutants do not. However, when we assayed the effect of CALM depletion on coated pit morphology, using a fluorescence microscopy-based assay, we found that the two mutants were as effective as wild-type CALM. Thus, we can uncouple the sorting function of CALM from its structural role.
Collapse
Affiliation(s)
- Daniela A. Sahlender
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Patrycja Kozik
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sharon E. Miller
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew A. Peden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Margaret S. Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE, Paine ML. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res 2013; 28:672-87. [PMID: 23044750 PMCID: PMC3562759 DOI: 10.1002/jbmr.1779] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bultema JJ, Di Pietro SM. Cell type-specific Rab32 and Rab38 cooperate with the ubiquitous lysosome biogenesis machinery to synthesize specialized lysosome-related organelles. Small GTPases 2012; 4:16-21. [PMID: 23247405 PMCID: PMC3620096 DOI: 10.4161/sgtp.22349] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysosome-related organelles (LROs) exist in specialized cells to serve specific functions and typically co-exist with conventional lysosomes. The biogenesis of LROs is known to utilize much of the common protein machinery used in the transport of integral membrane proteins to lysosomes. Consequently, an outstanding question in the field has been how specific cargoes are trafficked to LROs instead of lysosomes, particularly in cells that simultaneously produce both organelles. One LRO, the melanosome, is responsible for the production of the pigment melanin and has long been used as a model system to study the formation of specialized LROs. Importantly, melanocytes, where melanosomes are synthesized, are a cell type that also produces lysosomes and must therefore segregate traffic to each organelle. Two small GTPases, Rab32 and Rab38, are key proteins in the biogenesis of melanosomes and were recently shown to redirect the ubiquitous machinery—BLOC-2, AP-1 and AP-3—to traffic specialized cargoes to melanosomes in melanocytes. In addition, the study revealed Rab32 and Rab38 have both redundant and unique roles in the trafficking of melanin-producing enzymes and overall melanosome biogenesis. Here we review these findings, integrate them with previous knowledge on melanosome biogenesis and discuss their implications for biogenesis of other LROs.
Collapse
Affiliation(s)
- Jarred J Bultema
- Department of Biochemistry and Molecular Biology; Colorado State University; Fort Collins, CO USA
| | | |
Collapse
|
35
|
Hirst J, Irving C, Borner GH. Adaptor Protein Complexes AP-4 and AP-5: New Players in Endosomal Trafficking and Progressive Spastic Paraplegia. Traffic 2012; 14:153-64. [DOI: 10.1111/tra.12028] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research; University of Cambridge; Wellcome Trust/MRC Building; Cambridge; CB2 0XY; UK
| | - Carol Irving
- MRC Centre for Developmental Neurobiology; King's College; London; SE1 1UL; UK
| | - Georg H.H. Borner
- Cambridge Institute for Medical Research; University of Cambridge; Wellcome Trust/MRC Building; Cambridge; CB2 0XY; UK
| |
Collapse
|
36
|
Marks MS, Ohno H, Kirchnausen T, Bonracino JS. Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 2012; 7:124-8. [PMID: 17708922 DOI: 10.1016/s0962-8924(96)10057-x] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endocytic and secretory pathways of eukaryotic cells consist of an array of membrane-bound compartments, each of which contains a characteristic cohort of transmembrane proteins. Understanding how these proteins are targeted to and maintained within their appropriate compartments will be crucial for unravelling the mysteries of organelle biogenesis and function. A common event in the sorting of many transmembrane proteins is the interaction between a sorting signal in the cytosolic domain of the targeted protein and a component of an organellar protein coat. Here, we summarize recent findings on the mechanism of sorting by one type of signal, characterized by the presence of a critical tyrosine (Y) residue, and attempt to integrate these findings into a hypothetical model for protein sorting in the endocytic and late (post-Golgi) secretory pathways.
Collapse
|
37
|
Defective HIV-1 particle assembly in AP-3-deficient cells derived from patients with Hermansky-Pudlak syndrome type 2. J Virol 2012; 86:11242-53. [PMID: 22875976 DOI: 10.1128/jvi.00544-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adaptor protein complex 3 (AP-3) is a heterotetramer that is involved in signal-mediated protein sorting to endosomal-lysosomal organelles. AP-3 deficiency in humans, induced by mutations in the AP3B1 gene, which encodes the β3A subunit of the AP-3 complex, results in Hermansky-Pudlak syndrome 2 (HPS2), which is a rare genetic disorder with defective lysosome-related organelles. In a previous study, we identified the AP-3 complex as an important contributor to HIV-1 assembly and release. We hypothesized that cells from patients affected by HPS2 should demonstrate abnormalities of HIV-1 assembly. Here we report that HIV-1 particle assembly and release are indeed diminished in HPS2 fibroblast cultures. Transient or stable expression of the full-length wild-type β3A subunit in HPS2 fibroblasts restored the impaired virus assembly and release. In contrast, virus-like particle release mediated by MA-deficient Gag mutants lacking the AP-3 binding site was not altered in HPS2 cells, indicating that the MA domain serves as the major viral determinant required for the recruitment of the AP-3 complex. AP-3 deficiency decreased HIV-1 Gag localization at the plasma membrane and late endosomes and increased the accumulation of HIV-1 Gag at an intermediate step between early and late endosomes. Blockage of the clathrin-mediated endocytic pathway in HPS2 cells did not reverse the inhibited virus assembly and release imposed by the AP-3 deficiency. These results demonstrate that the intact and stable AP-3 complex is required for HIV-1 assembly and release, and the involvement of the AP-3 complex in late stages of the HIV-1 replication cycle is independent of clathrin-mediated endocytosis.
Collapse
|
38
|
Borner GHH, Antrobus R, Hirst J, Bhumbra GS, Kozik P, Jackson LP, Sahlender DA, Robinson MS. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. ACTA ACUST UNITED AC 2012; 197:141-60. [PMID: 22472443 PMCID: PMC3317806 DOI: 10.1083/jcb.201111049] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A multivariate proteomics approach identified numerous new clathrin-coated vesicle proteins as well as the first AP-4 accessory protein, and also revealed how auxilin depletion causes mitotic arrest through sequestration of spindle proteins in clathrin cages. Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions.
Collapse
Affiliation(s)
- Georg H H Borner
- Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, University of Cambridge, Cambridge CB2 0XY, England, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kent HM, Evans PR, Schäfer IB, Gray SR, Sanderson CM, Luzio JP, Peden AA, Owen DJ. Structural basis of the intracellular sorting of the SNARE VAMP7 by the AP3 adaptor complex. Dev Cell 2012; 22:979-88. [PMID: 22521722 PMCID: PMC3549491 DOI: 10.1016/j.devcel.2012.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 12/14/2011] [Accepted: 01/26/2012] [Indexed: 11/15/2022]
Abstract
VAMP7 is involved in the fusion of late endocytic compartments with other membranes. One possible mechanism of VAMP7 delivery to these late compartments is via the AP3 trafficking adaptor. We show that the linker of the δ-adaptin subunit of AP3 binds the VAMP7 longin domain and determines the structure of their complex. Mutation of residues on both partners abolishes the interaction in vitro and in vivo. The binding of VAMP7 to δ-adaptin requires the VAMP7 SNARE motif to be engaged in SNARE complex formation and hence AP3 must transport VAMP7 when VAMP7 is part of a cis-SNARE complex. The absence of δ-adaptin causes destabilization of the AP3 complex in mouse mocha fibroblasts and mislocalization of VAMP7. The mislocalization can be rescued by transfection with wild-type δ-adaptin but not by δ-adaptin containing mutations that abolish VAMP7 binding, despite in all cases intact AP3 being present and LAMP1 trafficking being rescued.
Collapse
Affiliation(s)
- Helen M Kent
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Abstract
Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated. Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex. pat4 and pat2, a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β, as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development, but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures. All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs. Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits. Furthermore, both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries. Taken together, these results demonstrate that AP complexes, similar to those in other eukaryotes, exist in plants, and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.
Collapse
|
42
|
Ebrahim R, Thilo L. Kinetic evidence that newly-synthesized endogenous lysosome-associated membrane protein-1 (LAMP-1) first transits early endosomes before it is delivered to lysosomes. Mol Membr Biol 2011; 28:227-42. [PMID: 21457058 DOI: 10.3109/09687688.2011.572567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
After de novo synthesis of lysosome-associated membrane proteins (LAMPs), they are sorted in the trans-Golgi network (TGN) for delivery to lysosomes. Opposing views prevail on whether LAMPs are targeted to lysosomes directly, or indirectly via prelysosomal stages of the endocytic pathway, in particular early endosomes. Conflicting evidence is based on kinetic measurements with too limited quantitative data for sufficient temporal and organellar resolution. Using cells of the mouse macrophage cell line, P338D(1), this study presents detailed kinetic data that describe the extent of, and time course for, the appearance of newly-synthesized LAMP-1 in organelles of the endocytic pathway, which had been loaded selectively with horse-radish peroxidase (HRP) by appropriate periods of endocytosis. After a 5-min pulse of metabolic labelling, LAMP-1 was trapped in the respective organelles by HRP-catalyzed crosslinking with membrane-permeable diaminobenzidine (DAB). These kinetic observations provide sufficient quantitative evidence that in P338D(1) cells the bulk of newly-synthesized endogenous LAMP-1 first appeared in early endosomes, before it was delivered to late endosomes and lysosomes about 25 min later.
Collapse
Affiliation(s)
- Roshan Ebrahim
- Department of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, South Africa.
| | | |
Collapse
|
43
|
Abstract
Sorting signals for cargo selection into coated vesicles are usually in the form of short linear motifs. Three motifs for clathrin-mediated endocytosis have been identified: YXXPhi, [D/E]XXXL[L/I] and FXNPXY. To search for new endocytic motifs, we made a library of CD8 chimeras with random sequences in their cytoplasmic tails, and used a novel fluorescence-activated cell sorting (FACS)-based assay to select for endocytosed constructs. Out of the five tails that were most efficiently internalized, only one was found to contain a conventional motif. Two contain dileucine-like sequences that appear to be variations on the [D/E]XXXL[L/I] motif. Another contains a novel internalization signal, YXXXPhiN, which is able to function in cells expressing a mutant mu2 that cannot bind YXXPhi, indicating that it is not a variation on the YXXPhi motif. Similar sequences are present in endogenous proteins, including a functional YXXXPhiN (in addition to a classical YXXPhi) in cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Thus, the repertoire of endocytic motifs is more extensive than the three well-characterized sorting signals.
Collapse
Affiliation(s)
- Patrycja Kozik
- University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | |
Collapse
|
44
|
Wenham M, Grieve S, Cummins M, Jones ML, Booth S, Kilner R, Ancliff PJ, Griffiths GM, Mumford AD. Two patients with Hermansky Pudlak syndrome type 2 and novel mutations in AP3B1. Haematologica 2009; 95:333-7. [PMID: 19679886 DOI: 10.3324/haematol.2009.012286] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hermansky Pudlak syndrome type 2 (HPS2) is a rare disorder associated with mutations in the Adaptor Protein 3 (AP-3) complex, which is involved in sorting transmembrane proteins to lysosomes and related organelles. We now report 2 unrelated subjects with HPS2 who show a characteristic clinical phenotype of oculocutaneous albinism, platelet and T-lymphocyte dysfunction and neutropenia. The subjects were homozygous for different deletions within AP3B1 (g.del180242-180866, c.del153-156), which encodes the AP-3beta3A subunit, resulting in frame shifts and introduction of nonsense substitutions (p.E693fsX13, p.E52fsX11). In the subject with p.E693fsX13, this resulted in expression of a truncated variant beta3A protein. Cytotoxic T-lymphocyte (CTL) clones from both study subjects showed increased cell-surface expression of CD63 and reduced cytotoxicity. Platelets showed impaired aggregation and reduced uptake of (3)H-serotonin. These findings are consistent with CTL granule and platelet dense granule defects, respectively. This report extends the clinical and laboratory description of HPS2.
Collapse
Affiliation(s)
- Matt Wenham
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baguma‐Nibasheka M, Kablar B. Altered retinal cell differentiation in the AP‐3 delta mutant (Mocha) mouse. Int J Dev Neurosci 2009; 27:701-8. [DOI: 10.1016/j.ijdevneu.2009.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/29/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022] Open
Affiliation(s)
- Mark Baguma‐Nibasheka
- Department of Anatomy and NeurobiologyDalhousie University Faculty of Medicine5850 College StreetHalifaxNSCanadaB3H 1X5
| | - Boris Kablar
- Department of Anatomy and NeurobiologyDalhousie University Faculty of Medicine5850 College StreetHalifaxNSCanadaB3H 1X5
| |
Collapse
|
46
|
Human immunodeficiency virus type-1 gag and host vesicular trafficking pathways. Curr Top Microbiol Immunol 2009; 339:67-84. [PMID: 20012524 DOI: 10.1007/978-3-642-02175-6_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Gag protein of HIV-1 directs the particle assembly process. Gag recruits components of the cellular vesicular trafficking machinery in order to traverse the cytoplasm of the cell and reach the particle assembly site. The plasma membrane is the primary site of particle assembly in most cell types, while in macrophages an unusual intracellular membrane-bound compartment bearing markers of late endosomes and the plasma membrane is the predominant assembly site. Plasma membrane specificity of assembly may be directed by components of lipid rafts and the cytoplasmic leaflet component PI(4,5)P(2). Recent work has highlighted the role of adaptor protein complexes, protein sorting and recycling pathways, components of the multivesicular body, and cellular motor proteins in facilitating HIV assembly and budding. This review presents an overview of the relevant vesicular trafficking pathways and describes the individual components implicated in interactions with Gag.
Collapse
|
47
|
Barr DJ, Ostermeyer-Fay AG, Matundan RA, Brown DA. Clathrin-independent endocytosis of ErbB2 in geldanamycin-treated human breast cancer cells. J Cell Sci 2008; 121:3155-66. [PMID: 18765569 DOI: 10.1242/jcs.020404] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epidermal growth factor (EGF)-receptor family member ErbB2 is commonly overexpressed in human breast cancer cells and correlates with poor prognosis. Geldanamycin (GA) induces the ubiquitylation, intracellular accumulation and degradation of ErbB2. Whether GA stimulates ErbB2 internalization is controversial. We found that ErbB2 was internalized constitutively at a rate that was not affected by GA in SK-BR-3 breast cancer cells. Instead, GA treatment altered endosomal sorting, causing the transport of ErbB2 to lysosomes for degradation. In contrast to earlier work, we found that ErbB2 internalization occurred by a clathrin- and tyrosine-kinase-independent pathway that was not caveolar, because SK-BR-3 cells lack caveolae. Similar to cargo of the glycosylphosphatidylinositol (GPI)-anchored protein-enriched early endosomal compartment (GEEC) pathway, internalized ErbB2 colocalized with cholera toxin B subunit, GPI-anchored proteins and fluid, and was often seen in short tubules or large vesicles. However, in contrast to the GEEC pathway in other cells, internalization of ErbB2 and fluid in SK-BR-3 cells did not require Rho-family GTPase activity. Accumulation of ErbB2 in vesicles containing constitutively active Arf6-Q67L occurred only without GA treatment; Arf6-Q67L did not slow transport to lysosomes in GA-treated cells. Further characterization of this novel clathrin-, caveolae- and Rho-family-independent endocytic pathway might reveal new strategies for the downregulation of ErbB2 in breast cancer.
Collapse
Affiliation(s)
- Daniel J Barr
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
48
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Borner GHH, Rana AA, Forster R, Harbour M, Smith JC, Robinson MS. CVAK104 is a novel regulator of clathrin-mediated SNARE sorting. Traffic 2007; 8:893-903. [PMID: 17587408 PMCID: PMC2239300 DOI: 10.1111/j.1600-0854.2007.00576.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clathrin-coated vesicles (CCVs) mediate transport between the plasma membrane, endosomes and the trans Golgi network. Using comparative proteomics, we have identified coated-vesicle-associated kinase of 104 kDa (CVAK104) as a candidate accessory protein for CCV-mediated trafficking. Here, we demonstrate that the protein colocalizes with clathrin and adaptor protein-1 (AP-1), and that it is associated with a transferrin-positive endosomal compartment. Consistent with these observations, clathrin as well as the cargo adaptors AP-1 and epsinR can be coimmunoprecipitated with CVAK104. Small interfering RNA (siRNA) knockdown of CVAK104 in HeLa cells results in selective loss of the SNARE proteins syntaxin 8 and vti1b from CCVs. Morpholino-mediated knockdown of CVAK104 in Xenopus tropicalis causes severe developmental defects, including a bent body axis and ventral oedema. Thus, CVAK104 is an evolutionarily conserved protein involved in SNARE sorting that is essential for normal embryonic development.
Collapse
Affiliation(s)
| | - Amer A Rana
- Gurdon Institute, University of CambridgeCambridge CB2 1QN, UK
| | | | | | - James C Smith
- Gurdon Institute, University of CambridgeCambridge CB2 1QN, UK
| | - Margaret S Robinson
- CIMR, University of CambridgeCambridge CB2 0XY, UK
- Corresponding author: Margaret S. Robinson,
| |
Collapse
|
50
|
Abstract
Neurotransmission requires the proper organization and rapid recycling of synaptic vesicles. Rapid retrieval has been suggested to occur either by kiss-and-stay or kiss-and-run mechanisms, whereas classical recycling is mediated by clathrin-dependent endocytosis. Molecular coats are key components in the selection of cargos, AP-2 (adaptor protein 2) playing a prominent role in synaptic vesicle endocytosis. Another coat protein, AP-3, has been implicated in synaptic vesicle biogenesis and in the generation of secretory and lysosomal-related organelles. In the present review, we will particularly focus on the recent data concerning the recycling of synaptic vesicles and the function of AP-3 and the v-SNARE (vesicular soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) TI-VAMP (tetanus neurotoxin-insensitive vesicle-associated membrane protein) in these processes. We propose that AP-3 plays an important regulatory role in neurons which contributes to the basal and stimulated exocytosis of synaptic vesicles.
Collapse
Affiliation(s)
- Lydia Danglot
- Membrane Traffic in Neuronal and Epithelial Morphogenesis, INSERM Avenir Team, Paris, France
| | | |
Collapse
|