1
|
Rosas-Salvans M, Rux CJ, Das M, Dumont S. SKAP binding to microtubules reduces friction at the kinetochore-microtubule interface and increases attachment stability under force. Curr Biol 2025:S0960-9822(25)00288-X. [PMID: 40154475 DOI: 10.1016/j.cub.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/17/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
The kinetochore links chromosomes to spindle microtubules to drive chromosome segregation at cell division. We recently uncovered that the kinetochore complex Astrin-SKAP, which binds microtubules, reduces rather than increases friction at the mammalian kinetochore-microtubule interface. How it does so is not known. Astrin-SKAP could affect how other kinetochore complexes bind microtubules, reducing their friction along microtubules, or it could itself bind microtubules with similar affinity but lower friction than other attachment factors. Using SKAP mutants unable to bind microtubules, live imaging, and laser ablation, we show that SKAP's microtubule binding is essential for sister kinetochore coordination, force dissipation at the interface, and attachment responsiveness to force changes. Further, we show that SKAP's microtubule binding is essential to prevent chromosome detachment under both spindle forces and microneedle-generated forces. Together, our findings indicate that SKAP's microtubule binding reduces kinetochore friction and increases attachment responsiveness and stability under force. We propose that having complexes with both high and low sliding friction on microtubules, making a mechanically heterogeneous interface, is key to maintaining robust attachments under force and thus accurate segregation.
Collapse
Affiliation(s)
- Miquel Rosas-Salvans
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Caleb J Rux
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, UCB, San Francisco, CA 94158, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, UCB, San Francisco, CA 94158, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Demidov VM, Gonchar IV, Tripathy SK, Ataullakhanov FI, Grishchuk EL. Ndc80 complex, a conserved coupler for kinetochore-microtubule motility, is a sliding molecular clutch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643154. [PMID: 40161670 PMCID: PMC11952512 DOI: 10.1101/2025.03.13.643154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chromosome motion at spindle microtubule plus-ends relies on dynamic molecular bonds between kinetochores and proximal microtubule walls. Under opposing forces, kinetochores move bi-directionally along these walls while remaining near the ends, yet how continuous wall-sliding occurs without end-detachment remains unclear. Using ultrafast force-clamp spectroscopy, we show that single Ndc80 complexes, the primary microtubule-binding kinetochore component, exhibit processive, bi-directional sliding. Plus-end-directed forces induce a mobile catch-bond in Ndc80, increasing frictional resistance and restricting sliding toward the tip. Conversely, forces pulling Ndc80 away from the plus-end trigger mobile slip-bond behavior, facilitating sliding. This dual behavior arises from force-dependent modulation of the Nuf2 calponin-homology domain's microtubule binding, identifying this subunit as a friction regulator. We propose that Ndc80c's ability to modulate sliding friction provides the mechanistic basis for the kinetochore's end coupling, enabling its slip-clutch behavior. One Sentence Summary Direction-dependent mobile catch- and slip-bond behavior of the microtubule-binding Ndc80 protein.
Collapse
|
3
|
Vicars H, Mills A, Karg T, Sullivan W. Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces. Genetics 2025; 229:iyae188. [PMID: 39552081 PMCID: PMC11796462 DOI: 10.1093/genetics/iyae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently congress and align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes. Unlike intact chromosomes, the paired sister acentrics oscillate as they move to and reside on the metaphase plate in a plane distinct and significantly further from the main mass of intact chromosomes. Consequently, at anaphase onset, acentrics are oriented either parallel or perpendicular to the spindle. Parallel-oriented sisters separate by sliding while those oriented perpendicularly separate via unzipping. This oscillation, together with the fact that in the presence of spindles with disrupted interpolar microtubules acentrics are rapidly shunted away from the poles, indicates that distributed plus-end-directed forces are primarily responsible for acentric migration. This conclusion is supported by the observation that reduction of EB1 preferentially disrupts acentric alignment. Taken together, these studies suggest that plus-end forces mediated by the outer interpolar microtubules contribute significantly to acentric congression and alignment. Surprisingly, we observe disrupted telomere pairing and alignment of sister acentrics indicating that the kinetochore is required to ensure proper gene-to-gene alignment of sister chromatids. Finally, we demonstrate that like mammalian cells, the Drosophila congressed chromosomes on occasion exhibit a toroid configuration.
Collapse
Affiliation(s)
- Hannah Vicars
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alison Mills
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - Travis Karg
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Rosas-Salvans M, Rux C, Das M, Dumont S. SKAP binding to microtubules reduces friction at the kinetochore-microtubule interface and increases attachment stability under force. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607154. [PMID: 39149232 PMCID: PMC11326240 DOI: 10.1101/2024.08.08.607154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The kinetochore links chromosomes to spindle microtubules to drive chromosome segregation at cell division. We recently uncovered that the kinetochore complex Astrin-SKAP, which binds microtubules, reduces rather than increases friction at the mammalian kinetochore-microtubule interface. How it does so is not known. Astrin-SKAP could affect how other kinetochore complexes bind microtubules, reducing their friction along microtubules, or it could itself bind microtubules with similar affinity but lower friction than other attachment factors. Using SKAP mutants unable to bind microtubules, live imaging and laser ablation, we show that SKAP's microtubule binding is essential for sister kinetochore coordination, force dissipation at the interface and attachment responsiveness to force changes. Further, we show that SKAP's microtubule binding is essential to prevent chromosome detachment under both spindle forces and microneedle-generated forces. Together, our findings indicate that SKAP's microtubule binding reduces kinetochore friction and increases attachment responsiveness and stability under force. We propose that having complexes with both high and low sliding friction on microtubules, making a mechanically heterogeneous interface, is key to maintaining robust attachments under force and thus accurate segregation.
Collapse
Affiliation(s)
| | - Caleb Rux
- Dept of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA
- Bioengineering Graduate Program, UCSF-UCB, San Francisco, CA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, USA
| | - Sophie Dumont
- Dept of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA
- Bioengineering Graduate Program, UCSF-UCB, San Francisco, CA
- Dept of Biochemistry & Biophysics, UCSF, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
5
|
Vicars H, Karg T, Mills A, Sullivan W. Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567057. [PMID: 38798431 PMCID: PMC11118298 DOI: 10.1101/2023.11.14.567057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes. Unlike intact chromosomes, the paired sister acentrics oscillate as they move to and reside on the metaphase plate in a plane distinct and significantly further from the main mass of intact chromosomes. Consequently, at anaphase onset acentrics are oriented either parallel or perpendicular to the spindle. Parallel-oriented sisters separate by sliding while those oriented perpendicularly separate via unzipping. This oscillation, together with the fact that in monopolar spindles acentrics are rapidly shunted away from the poles, indicates that distributed plus-end directed forces are primarily responsible for acentric migration. This conclusion is supported by the observation that reduction of EB1 preferentially disrupts acentric alignment. In addition, reduction of Klp3a activity, a gene required for the establishment of pole-to-pole microtubules, preferentially disrupts acentric alignment. Taken together these studies suggest that plus-end forces mediated by the outer pole-to-pole microtubules are primarily responsible for acentric metaphase alignment. Surprisingly, we find that a small fraction of sister acentrics are anti-parallel aligned indicating that the kinetochore is required to ensure parallel alignment of sister chromatids. Finally, we find induction of acentric chromosome fragments results in a global reorganization of the congressed chromosomes into a torus configuration. Article Summary The kinetochore serves as a site for attaching microtubules and allows for successful alignment, separation, and segregation of replicated sister chromosomes during cell division. However, previous studies have revealed that sister chromosomes without kinetochores (acentrics) often align to the metaphase plate, undergo separation and segregation, and are properly transmitted to daughter cells. In this study, we discuss the forces acting on chromosomes, independent of the kinetochore, underlying their successful alignment in early mitosis.
Collapse
|
6
|
Leeds BK, Kostello KF, Liu YY, Nelson CR, Biggins S, Asbury CL. Mechanical coupling coordinates microtubule growth. eLife 2023; 12:RP89467. [PMID: 38150374 PMCID: PMC10752587 DOI: 10.7554/elife.89467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
During mitosis, kinetochore-attached microtubules form bundles (k-fibers) in which many filaments grow and shorten in near-perfect unison to align and segregate each chromosome. However, individual microtubules grow at intrinsically variable rates, which must be tightly regulated for a k-fiber to behave as a single unit. This exquisite coordination might be achieved biochemically, via selective binding of polymerases and depolymerases, or mechanically, because k-fiber microtubules are coupled through a shared load that influences their growth. Here, we use a novel dual laser trap assay to show that microtubule pairs growing in vitro are coordinated by mechanical coupling. Kinetic analyses show that microtubule growth is interrupted by stochastic, force-dependent pauses and indicate persistent heterogeneity in growth speed during non-pauses. A simple model incorporating both force-dependent pausing and persistent growth speed heterogeneity explains the measured coordination of microtubule pairs without any free fit parameters. Our findings illustrate how microtubule growth may be synchronized during mitosis and provide a basis for modeling k-fiber bundles with three or more microtubules, as found in many eukaryotes.
Collapse
Affiliation(s)
- Bonnibelle K Leeds
- Department of Physiology & Biophysics, University of WashingtonSeattleUnited States
| | - Katelyn F Kostello
- Department of Physiology & Biophysics, University of WashingtonSeattleUnited States
| | - Yuna Y Liu
- Department of Physiology & Biophysics, University of WashingtonSeattleUnited States
| | - Christian R Nelson
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Charles L Asbury
- Department of Physiology & Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
7
|
Leeds BK, Kostello KF, Liu YY, Nelson CR, Biggins S, Asbury CL. Mechanical coupling coordinates microtubule growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547092. [PMID: 37905093 PMCID: PMC10614740 DOI: 10.1101/2023.06.29.547092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
During mitosis, kinetochore-attached microtubules form bundles (k-fibers) in which many filaments grow and shorten in near-perfect unison to align and segregate each chromosome. However, individual microtubules grow at intrinsically variable rates, which must be tightly regulated for a k-fiber to behave as a single unit. This exquisite coordination might be achieved biochemically, via selective binding of polymerases and depolymerases, or mechanically, because k-fiber microtubules are coupled through a shared load that influences their growth. Here, we use a novel dual laser trap assay to show that microtubule pairs growing in vitro are coordinated by mechanical coupling. Kinetic analyses show that microtubule growth is interrupted by stochastic, force-dependent pauses and indicate persistent heterogeneity in growth speed during non-pauses. A simple model incorporating both force-dependent pausing and persistent growth speed heterogeneity explains the measured coordination of microtubule pairs without any free fit parameters. Our findings illustrate how microtubule growth may be synchronized during mitosis and provide a basis for modeling k-fiber bundles with three or more microtubules, as found in many eukaryotes.
Collapse
Affiliation(s)
- Bonnibelle K. Leeds
- Physiology & Biophysics Department, University of Washington School of Medicine, Seattle WA, USA
| | - Katelyn F. Kostello
- Physiology & Biophysics Department, University of Washington School of Medicine, Seattle WA, USA
| | - Yuna Y. Liu
- Physiology & Biophysics Department, University of Washington School of Medicine, Seattle WA, USA
| | | | | | - Charles L. Asbury
- Physiology & Biophysics Department, University of Washington School of Medicine, Seattle WA, USA
| |
Collapse
|
8
|
Rosas-Salvans M, Sutanto R, Suresh P, Dumont S. The Astrin-SKAP complex reduces friction at the kinetochore-microtubule interface. Curr Biol 2022; 32:2621-2631.e3. [PMID: 35580605 PMCID: PMC9295892 DOI: 10.1016/j.cub.2022.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
The kinetochore links chromosomes to spindle microtubules to drive chromosome segregation at cell division. While we know nearly all mammalian kinetochore proteins, how these give rise to the strong yet dynamic microtubule attachments required for function remains poorly understood. Here, we focus on the Astrin-SKAP complex, which localizes to bioriented kinetochores and is essential for chromosome segregation but whose mechanical role is unclear. Live imaging reveals that SKAP depletion dampens the movement and decreases the coordination of metaphase sister kinetochores and increases the tension between them. Using laser ablation to isolate kinetochores bound to polymerizing versus depolymerizing microtubules, we show that without SKAP, kinetochores move slower on both polymerizing and depolymerizing microtubules and that more force is needed to rescue microtubules to polymerize. Thus, in contrast to the previously described kinetochore proteins that increase the grip on microtubules under force, Astrin-SKAP reduces the grip, increasing attachment dynamics and force responsiveness and reducing friction. Together, our findings suggest a model where the Astrin-SKAP complex effectively "lubricates" correct, bioriented attachments to help preserve them.
Collapse
Affiliation(s)
- Miquel Rosas-Salvans
- Department of Bioengineering & Therapeutic Sciences, UCSF, 600 16th Street, San Francisco, CA 94158, USA.
| | - Renaldo Sutanto
- Department of Bioengineering & Therapeutic Sciences, UCSF, 600 16th Street, San Francisco, CA 94158, USA
| | - Pooja Suresh
- Department of Bioengineering & Therapeutic Sciences, UCSF, 600 16th Street, San Francisco, CA 94158, USA; Biophysics Graduate Program, UCSF, 600 16th Street, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, 600 16th Street, San Francisco, CA 94158, USA; Biophysics Graduate Program, UCSF, 600 16th Street, San Francisco, CA 94158, USA; Department of Biochemistry & Biophysics, UCSF, 600 16th Street, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Risteski P, Jagrić M, Pavin N, Tolić IM. Biomechanics of chromosome alignment at the spindle midplane. Curr Biol 2021; 31:R574-R585. [PMID: 34033791 DOI: 10.1016/j.cub.2021.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During metaphase, chromosomes are aligned in a lineup at the equatorial plane of the spindle to ensure synchronous poleward movement of chromatids in anaphase and proper nuclear reformation at the end of mitosis. Chromosome alignment relies on microtubules, several types of motor protein and numerous other microtubule-associated and regulatory proteins. Because of the multitude of players involved, the mechanisms of chromosome alignment are still under debate. Here, we discuss the current models of alignment based on poleward pulling forces exerted onto sister kinetochores by kinetochore microtubules, which show length-dependent dynamics and undergo poleward flux, and polar ejection forces that push the chromosome arms away from the pole. We link these models with the recent ideas based on mechanical coupling between bridging and kinetochore microtubules, where sliding of bridging microtubules promotes overlap length-dependent sliding of kinetochore fibers and thus the alignment of sister kinetochores at the spindle equator. Finally, we discuss theoretical models of forces acting on chromosomes during metaphase.
Collapse
Affiliation(s)
- Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Mihaela Jagrić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Tolic´ IM, Pavin N. Mitotic spindle: lessons from theoretical modeling. Mol Biol Cell 2021; 32:218-222. [PMID: 33507108 PMCID: PMC8098832 DOI: 10.1091/mbc.e20-05-0335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Cell biology is immensely complex. To understand how cells work, we try to find patterns and suggest hypotheses to identify underlying mechanisms. However, it is not always easy to create a coherent picture from a huge amount of experimental data on biological systems, where the main players have multiple interactions or act in redundant pathways. In such situations, when a hypothesis does not lead to a conclusion in a direct way, theoretical modeling is a powerful tool because it allows us to formulate hypotheses in a quantitative manner and understand their consequences. A successful model should not only reproduce the basic features of the system but also provide exciting predictions, motivating new experiments. Much is learned when a model based on generally accepted knowledge cannot explain experiments of interest, as this indicates that the original hypothesis needs to be revised. In this Perspective, we discuss these points using our experiences in combining experiments with theory in the field of mitotic spindle mechanics.
Collapse
Affiliation(s)
- Iva M. Tolic´
- Division of Molecular Biology, Rud¯er Boškovic´ Institute, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Pavin N, Tolić IM. Mechanobiology of the Mitotic Spindle. Dev Cell 2020; 56:192-201. [PMID: 33238148 DOI: 10.1016/j.devcel.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
The mitotic spindle is a microtubule-based assembly that separates the chromosomes during cell division. As the spindle is basically a mechanical micro machine, the understanding of its functioning is constantly motivating the development of experimental approaches based on mechanical perturbations, which are complementary to and work together with the classical genetics and biochemistry methods. Recent data emerging from these approaches in combination with theoretical modeling led to novel ideas and significant revisions of the basic concepts in the field. In this Perspective, we discuss the advances in the understanding of spindle mechanics, focusing on microtubule forces that control chromosome movements.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
13
|
Centrosome as a micro-electronic generator in live cell. Biosystems 2020; 197:104210. [PMID: 32763375 DOI: 10.1016/j.biosystems.2020.104210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Centrosome, composed of two centrioles arranged in an orthogonal configuration, is an indispensable cellular organelle for mitosis. 130 years after its discovery, the structural-functional relationship of centrosome is still obscure. Encouraged by the telltale signs of the "Mouse and Magnet experiment", Paul Schafer pioneered in the research on electromagnetism of centriole with electron microscopy(EM) in the late 1960s. Followed by the decades-long slow progression of the field with sporadic reports indicating the electromagnetisms of mitosis. Piecing together the evidences, we generated a mechanistic model for centrosome function during mitosis, in which centrosome functions as an electronic generator. In particular, the spinal rotations of centrioles transform the cellular chemical energy into cellular electromagnetic energy. The model is strongly supported by multiple experimental evidences. It offers an elegant explanation for the self-organized orthogonal configuration of the two centrioles in a centrosome, that is through the dynamic electromagnetic interactions of both centrioles of the centrosome.
Collapse
|
14
|
Long AF, Suresh P, Dumont S. Individual kinetochore-fibers locally dissipate force to maintain robust mammalian spindle structure. J Cell Biol 2020; 219:e201911090. [PMID: 32435797 PMCID: PMC7401803 DOI: 10.1083/jcb.201911090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 01/16/2023] Open
Abstract
At cell division, the mammalian kinetochore binds many spindle microtubules that make up the kinetochore-fiber. To segregate chromosomes, the kinetochore-fiber must be dynamic and generate and respond to force. Yet, how it remodels under force remains poorly understood. Kinetochore-fibers cannot be reconstituted in vitro, and exerting controlled forces in vivo remains challenging. Here, we use microneedles to pull on mammalian kinetochore-fibers and probe how sustained force regulates their dynamics and structure. We show that force lengthens kinetochore-fibers by persistently favoring plus-end polymerization, not by increasing polymerization rate. We demonstrate that force suppresses depolymerization at both plus and minus ends, rather than sliding microtubules within the kinetochore-fiber. Finally, we observe that kinetochore-fibers break but do not detach from kinetochores or poles. Together, this work suggests an engineering principle for spindle structural homeostasis: different physical mechanisms of local force dissipation by the k-fiber limit force transmission to preserve robust spindle structure. These findings may inform how other dynamic, force-generating cellular machines achieve mechanical robustness.
Collapse
Affiliation(s)
- Alexandra F. Long
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
| | - Pooja Suresh
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
15
|
Warecki B, Sullivan W. Mechanisms driving acentric chromosome transmission. Chromosome Res 2020; 28:229-246. [PMID: 32712740 DOI: 10.1007/s10577-020-09636-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore-microtubule association is a core, conserved event that drives chromosome transmission during mitosis. Failure to establish this association on even a single chromosome results in aneuploidy leading to cell death or the development of cancer. However, although many chromosomes lacking centromeres, termed acentrics, fail to segregate, studies in a number of systems reveal robust alternative mechanisms that can drive segregation and successful poleward transport of acentrics. In contrast to the canonical mechanism that relies on end-on microtubule attachments to kinetochores, mechanisms of acentric transmission largely fall into three categories: direct attachments to other chromosomes, kinetochore-independent lateral attachments to microtubules, and long-range tether-based attachments. Here, we review these "non-canonical" methods of acentric chromosome transmission. Just as the discovery and exploration of cell cycle checkpoints provided insight into both the origins of cancer and new therapies, identifying mechanisms and structures specifically involved in acentric segregation may have a significant impact on basic and applied cancer research.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
16
|
Chatterjee S, Sarkar A, Zhu J, Khodjakov A, Mogilner A, Paul R. Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles. Biophys J 2020; 119:434-447. [PMID: 32610087 DOI: 10.1016/j.bpj.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
To segregate chromosomes in mitosis, cells assemble a mitotic spindle, a molecular machine with centrosomes at two opposing cell poles and chromosomes at the equator. Microtubules and molecular motors connect the poles to kinetochores, specialized protein assemblies on the centromere regions of the chromosomes. Bipolarity of the spindle is crucial for the proper cell division, and two centrosomes in animal cells naturally become two spindle poles. Cancer cells are often multicentrosomal, yet they are able to assemble bipolar spindles by clustering centrosomes into two spindle poles. Mechanisms of this clustering are debated. In this study, we computationally screen effective forces between 1) centrosomes, 2) centrosomes and kinetochores, 3) centrosomes and chromosome arms, and 4) centrosomes and cell cortex to understand mechanics that determines three-dimensional spindle architecture. To do this, we use the stochastic Monte Carlo search for stable mechanical equilibria in the effective energy landscape of the spindle. We find that the following conditions have to be met to robustly assemble the bipolar spindle in a multicentrosomal cell: 1) the strengths of centrosomes' attraction to each other and to the cell cortex have to be proportional to each other and 2) the strengths of centrosomes' attraction to kinetochores and repulsion from the chromosome arms have to be proportional to each other. We also find that three other spindle configurations emerge if these conditions are not met: 1) collapsed, 2) monopolar, and 3) multipolar spindles, and the computational screen reveals mechanical conditions for these abnormal spindles.
Collapse
Affiliation(s)
| | - Apurba Sarkar
- Indian Association for the Cultivation of Science, Kolkata, India
| | - Jie Zhu
- Gerber Technology, Tolland, Connecticut
| | - Alexei Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York; Rensselaer Polytechnic Institute, Troy, New York
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York.
| | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
17
|
Non-random Mis-segregation of Human Chromosomes. Cell Rep 2019; 23:3366-3380. [PMID: 29898405 PMCID: PMC6019738 DOI: 10.1016/j.celrep.2018.05.047] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
A common assumption is that human chromosomes carry equal chances of mis-segregation during compromised cell division. Human chromosomes vary in multiple parameters that might generate bias, but technological limitations have precluded a comprehensive analysis of chromosome-specific aneuploidy. Here, by imaging specific centromeres coupled with high-throughput single-cell analysis as well as single-cell sequencing, we show that aneuploidy occurs non-randomly following common treatments to elevate chromosome mis-segregation. Temporary spindle disruption leads to elevated mis-segregation and aneuploidy of a subset of chromosomes, particularly affecting chromosomes 1 and 2. Unexpectedly, we find that a period of mitotic delay weakens centromeric cohesion and promotes chromosome mis-segregation and that chromosomes 1 and 2 are particularly prone to suffer cohesion fatigue. Our findings demonstrate that inherent properties of individual chromosomes can bias chromosome mis-segregation and aneuploidy rates, with implications for studies on aneuploidy in human disease.
Collapse
|
18
|
Kuhn J, Dumont S. Mammalian kinetochores count attached microtubules in a sensitive and switch-like manner. J Cell Biol 2019; 218:3583-3596. [PMID: 31492713 PMCID: PMC6829666 DOI: 10.1083/jcb.201902105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/10/2019] [Accepted: 08/08/2019] [Indexed: 01/09/2023] Open
Abstract
Kinetochores monitor their attachment to spindle microtubules to control spindle assembly checkpoint (SAC) signaling and cell cycle progression. Kuhn and Dumont show that individual mammalian kinetochores monitor the number of attached microtubules as a single unit in a sensitive and switch-like manner. The spindle assembly checkpoint (SAC) prevents anaphase until all kinetochores attach to the spindle. Each mammalian kinetochore binds many microtubules, but how many attached microtubules are required to turn off the checkpoint, and how the kinetochore monitors microtubule numbers, are not known and are central to understanding SAC mechanisms and function. To address these questions, here we systematically tune and fix the fraction of Hec1 molecules capable of microtubule binding. We show that Hec1 molecules independently bind microtubules within single kinetochores, but that the kinetochore does not independently process attachment information from different molecules. Few attached microtubules (20% occupancy) can trigger complete Mad1 loss, and Mad1 loss is slower in this case. Finally, we show using laser ablation that individual kinetochores detect changes in microtubule binding, not in spindle forces that accompany attachment. Thus, the mammalian kinetochore responds specifically to the binding of each microtubule and counts microtubules as a single unit in a sensitive and switch-like manner. This may allow kinetochores to rapidly react to early attachments and maintain a robust SAC response despite dynamic microtubule numbers.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA .,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA .,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA.,Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
19
|
Abstract
At metaphase in mitotic cells, pulling forces at the kinetochore-microtubule interface create tension by stretching the centromeric chromatin between oppositely oriented sister kinetochores. This tension is important for stabilizing the end-on kinetochore microtubule attachment required for proper bi-orientation of sister chromosomes as well as for satisfaction of the Spindle Assembly Checkpoint and entry into anaphase. How force is coupled by proteins to kinetochore microtubules and resisted by centromere stretch is becoming better understood as many of the proteins involved have been identified. Recent application of genetically encoded fluorescent tension sensors within the mechanical linkage between the centromere and kinetochore microtubules are beginning to reveal - from live cell assays - protein specific contributions that are functionally important.
Collapse
Affiliation(s)
- Edward D Salmon
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Auckland P, Clarke NI, Royle SJ, McAinsh AD. Congressing kinetochores progressively load Ska complexes to prevent force-dependent detachment. J Cell Biol 2017; 216:1623-1639. [PMID: 28495837 PMCID: PMC5461014 DOI: 10.1083/jcb.201607096] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/09/2016] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Kinetochores mediate chromosome congression by either sliding along the lattice of spindle microtubules or forming end-on attachments to their depolymerizing plus-ends. By following the fates of individual kinetochores as they congress in live cells, we reveal that the Ska complex is required for a distinct substep of the depolymerization-coupled pulling mechanism. Ska depletion increases the frequency of naturally occurring, force-dependent P kinetochore detachment events, while being dispensable for the initial biorientation and movement of chromosomes. In unperturbed cells, these release events are followed by reattachment and successful congression, whereas in Ska-depleted cells, detached kinetochores remain in a futile reattachment/detachment cycle that prevents congression. We further find that Ska is progressively loaded onto bioriented kinetochore pairs as they congress. We thus propose a model in which kinetochores mature through Ska complex recruitment and that this is required for improved load-bearing capacity and silencing of the spindle assembly checkpoint.
Collapse
Affiliation(s)
- Philip Auckland
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, England, UK
| | - Nicholas I Clarke
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, England, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, England, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, England, UK
| |
Collapse
|
21
|
Long AF, Udy DB, Dumont S. Hec1 Tail Phosphorylation Differentially Regulates Mammalian Kinetochore Coupling to Polymerizing and Depolymerizing Microtubules. Curr Biol 2017; 27:1692-1699.e3. [PMID: 28552353 DOI: 10.1016/j.cub.2017.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/02/2023]
Abstract
The kinetochore links chromosomes to dynamic spindle microtubules and drives both chromosome congression and segregation. To do so, the kinetochore must hold on to depolymerizing and polymerizing microtubules. At metaphase, one sister kinetochore couples to depolymerizing microtubules, pulling its sister along polymerizing microtubules [1, 2]. Distinct kinetochore-microtubule interfaces mediate these behaviors: active interfaces transduce microtubule depolymerization into mechanical work, and passive interfaces generate friction as the kinetochore moves along microtubules [3, 4]. Despite a growing understanding of the molecular components that mediate kinetochore binding [5-7], we do not know how kinetochores physically interact with polymerizing versus depolymerizing microtubule bundles, and whether they use the same mechanisms and regulation to do so. To address this question, we focus on the mechanical role of the essential load-bearing protein Hec1 [8-11] in mammalian cells. Hec1's affinity for microtubules is regulated by Aurora B phosphorylation on its N-terminal tail [12-15], but its role at the interface with polymerizing versus depolymerizing microtubules remains unclear. Here we use laser ablation to trigger cellular pulling on mutant kinetochores and decouple sisters in vivo, and thereby separately probe Hec1's role on polymerizing versus depolymerizing microtubules. We show that Hec1 tail phosphorylation tunes friction along polymerizing microtubules and yet does not compromise the kinetochore's ability to grip depolymerizing microtubules. Together, the data suggest that kinetochore regulation has differential effects on engagement with growing and shrinking microtubules. Through this mechanism, the kinetochore can modulate its grip on microtubules over mitosis and yet retain its ability to couple to microtubules powering chromosome movement.
Collapse
Affiliation(s)
- Alexandra F Long
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dylan B Udy
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; MCB Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
23
|
Asbury CL. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles. BIOLOGY 2017; 6:E15. [PMID: 28218660 PMCID: PMC5372008 DOI: 10.3390/biology6010015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through 'flux', where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed.
Collapse
Affiliation(s)
- Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Grishchuk EL. Biophysics of Microtubule End Coupling at the Kinetochore. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:397-428. [PMID: 28840247 DOI: 10.1007/978-3-319-58592-5_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main physiological function of mitotic kinetochores is to provide durable attachment to spindle microtubules, which segregate chromosomes in order to partition them equally between the two daughter cells. Numerous kinetochore components that can bind directly to microtubules have been identified, including ATP-dependent motors and various microtubule-associated proteins with no motor activity. A major challenge facing the field is to explain chromosome motions based on the biochemical and structural properties of these individual kinetochore components and their assemblies. This chapter reviews the molecular mechanisms responsible for the motions associated with dynamic microtubule tips at the single-molecule level, as well as the activities of multimolecular ensembles called couplers. These couplers enable persistent kinetochore motion even under load, but their exact composition and structure remain unknown. Because no natural or artificial macro-machines function in an analogous manner to these molecular nano-devices, understanding their underlying biophysical mechanisms will require conceptual advances.
Collapse
Affiliation(s)
- Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore. Nat Commun 2016; 7:13221. [PMID: 27762268 PMCID: PMC5080440 DOI: 10.1038/ncomms13221] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/13/2016] [Indexed: 11/21/2022] Open
Abstract
High-fidelity transmission of the genome through cell division requires that all sister kinetochores bind to dynamic microtubules (MTs) from opposite spindle poles. The application of opposing forces to this bioriented configuration produces tension that stabilizes kinetochore–microtubule (kt–MT) attachments. Defining the magnitude of force that is applied to kinetochores is central to understanding the mechano-molecular underpinnings of chromosome segregation; however, existing kinetochore force measurements span orders of magnitude. Here we measure kinetochore forces by engineering two calibrated force sensors into the Drosophila kinetochore protein centromere protein (CENP)-C. Measurements of both reporters indicate that they are, on average, under ∼1–2 piconewtons (pNs) of force at metaphase. Based on estimates of the number of CENP-C molecules and MTs per Drosophila kinetochore and envisioning kinetochore linkages arranged such that they distribute forces across them, we propose that kinetochore fibres (k-fibres) exert hundreds of pNs of poleward-directed force to bioriented kinetochores. Chromosomes bind microtubules (MT) from opposite spindle poles and the generated tension stabilizes kinetochore-MT attachments. Here the authors measure kinetochore forces by engineering two force sensors and propose that kinetochore fibers exert hundreds of pNs of force to bioriented kinetochores.
Collapse
|
26
|
Armond JW, Harry EF, McAinsh AD, Burroughs NJ. Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics. PLoS Comput Biol 2015; 11:e1004607. [PMID: 26618929 PMCID: PMC4664287 DOI: 10.1371/journal.pcbi.1004607] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Kinetochores are multi-protein complexes that mediate the physical coupling of sister chromatids to spindle microtubule bundles (called kinetochore (K)-fibres) from respective poles. These kinetochore-attached K-fibres generate pushing and pulling forces, which combine with polar ejection forces (PEF) and elastic inter-sister chromatin to govern chromosome movements. Classic experiments in meiotic cells using calibrated micro-needles measured an approximate stall force for a chromosome, but methods that allow the systematic determination of forces acting on a kinetochore in living cells are lacking. Here we report the development of mathematical models that can be fitted (reverse engineered) to high-resolution kinetochore tracking data, thereby estimating the model parameters and allowing us to indirectly compute the (relative) force components (K-fibre, spring force and PEF) acting on individual sister kinetochores in vivo. We applied our methodology to thousands of human kinetochore pair trajectories and report distinct signatures in temporal force profiles during directional switches. We found the K-fibre force to be the dominant force throughout oscillations, and the centromeric spring the smallest although it has the strongest directional switching signature. There is also structure throughout the metaphase plate, with a steeper PEF potential well towards the periphery and a concomitant reduction in plate thickness and oscillation amplitude. This data driven reverse engineering approach is sufficiently flexible to allow fitting of more complex mechanistic models; mathematical models of kinetochore dynamics can therefore be thoroughly tested on experimental data for the first time. Future work will now be able to map out how individual proteins contribute to kinetochore-based force generation and sensing. To achieve proper cell division, newly duplicated chromosomes must be segregated into daughter cells with high fidelity. This occurs in mitosis where during the crucial metaphase stage chromosomes are aligned on an imaginary plate, called the metaphase plate. Chromosomes are attached to a structural scaffold—the mitotic spindle, which is composed of dynamic fibres called microtubules—by protein machines called kinetochores. Observation of kinetochores during metaphase reveals they undergo a series of forward and backward movements. The mechanical system generating this oscillatory motion is not well understood. By tracking kinetochores in live cell 3D confocal microscopy and reverse engineering their trajectories we decompose the forces acting on kinetochores into the three main force generating components. Kinetochore dynamics are dominated by K-fibre forces, although changes in the minor spring force over time suggests an important role in controlling directional switching. In addition, we show that the strength of forces can vary both spatially within cells throughout the plate and between cells.
Collapse
Affiliation(s)
- Jonathan W. Armond
- Warwick Systems Biology Centre and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Edward F. Harry
- Molecular Organisation and Assembly in Cells (MOAC) Doctoral Training Centre, University of Warwick, Coventry, United Kingdom
| | - Andrew D. McAinsh
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Nigel J. Burroughs
- Warwick Systems Biology Centre and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Abstract
Chromosome segregation during cell division depends on interactions of kinetochores with dynamic microtubules (MTs). In many eukaryotes, each kinetochore binds multiple MTs, but the collective behavior of these coupled MTs is not well understood. We present a minimal model for collective kinetochore-MT dynamics, based on in vitro measurements of individual MTs and their dependence on force and kinetochore phosphorylation by Aurora B kinase. For a system of multiple MTs connected to the same kinetochore, the force-velocity relation has a bistable regime with two possible steady-state velocities: rapid shortening or slow growth. Bistability, combined with the difference between the growing and shrinking speeds, leads to center-of-mass and breathing oscillations in bioriented sister kinetochore pairs. Kinetochore phosphorylation shifts the bistable region to higher tensions, so that only the rapidly shortening state is stable at low tension. Thus, phosphorylation leads to error correction for kinetochores that are not under tension. We challenged the model with new experiments, using chemically induced dimerization to enhance Aurora B activity at metaphase kinetochores. The model suggests that the experimentally observed disordering of the metaphase plate occurs because phosphorylation increases kinetochore speeds by biasing MTs to shrink. Our minimal model qualitatively captures certain characteristic features of kinetochore dynamics, illustrates how biochemical signals such as phosphorylation may regulate the dynamics, and provides a theoretical framework for understanding other factors that control the dynamics in vivo.
Collapse
|
28
|
Abstract
A universal feature of mitosis is that all chromosomes become aligned at the spindle equator--the halfway point between the two spindle poles--prior to anaphase onset. This migratory event is called congression, and is powered by centromere-bound protein machines called kinetochores. This Commentary aims to document recent advances concerning the two kinetochore-based force-generating mechanisms that drive mitotic chromosome congression in vertebrate cells: depolymerisation-coupled pulling (DCP) and lateral sliding. We aim to explore how kinetochores can 'read-out' their spatial position within the spindle, and adjust these force-generating mechanisms to ensure chromosomes reach, and then remain, at the equator. Finally, we will describe the 'life history' of a chromosome, and provide a working model for how individual mechanisms are integrated to ensure efficient and successful congression.
Collapse
Affiliation(s)
- Philip Auckland
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D McAinsh
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
29
|
Abstract
The kinetochore mediates chromosome segregation at cell division. It is the macromolecular machine that links chromosomes to spindle microtubules, and is made of more than 100 protein species in mammalian cells. Molecular tools are presently revealing the biochemical interactions and regulatory mechanisms that ensure proper kinetochore function. Here, we discuss two approaches for imaging and physically probing kinetochores despite mitotic cell rounding and rapid kinetochore dynamics. First, we describe how mild spindle compression can improve kinetochore imaging and how stronger compression can mechanically perturb the spindle and kinetochores. Second, we describe how simultaneously imaging two-colored kinetochore reporter probes at subpixel resolution can report on kinetochore structural dynamics under cellular forces. We hope that the experimental details we provide here will make these two approaches broadly accessible and help move forward our understanding of kinetochore function--and make these approaches adaptable to the study of other cellular structures.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA; Tetrad Graduate Program, University of California, San Francisco, California, USA
| | - Sophie Dumont
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA; Tetrad Graduate Program, University of California, San Francisco, California, USA; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California, USA
| |
Collapse
|
30
|
Häfner J, Mayr MI, Möckel MM, Mayer TU. Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1 and PP1 on Kif18A. Nat Commun 2014; 5:4397. [PMID: 25048371 DOI: 10.1038/ncomms5397] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 06/13/2014] [Indexed: 12/16/2022] Open
Abstract
Upon congression at the spindle equator, vertebrate chromosomes display oscillatory movements which typically decline as cells progress towards anaphase. Kinesin-8 Kif18A has been identified as a suppressor of chromosome movements, but how its activity is temporally regulated to dampen chromosome oscillations before anaphase onset remained mysterious. Here, we identify a regulatory network composed of cyclin-dependent kinase-1 (Cdk1) and protein phosphatase-1 (PP1) that antagonistically regulate Kif18A. Cdk1-mediated inhibitory phosphorylation of Kif18A promotes chromosome oscillations in early metaphase. PP1 induces metaphase plate thinning by directly dephosphorylating Kif18A. Chromosome attachment induces Cdk1 inactivation and kinetochore recruitment of PP1α/γ. Thus, we propose that chromosome biorientation mediates the alignment of chromosomes at the metaphase plate by tipping the balance in favour of dephosphorylated Kif18A capable of suppressing the oscillatory movements of chromosomes. Notably, interfering with chromosome oscillations severely impairs the fidelity of sister chromatid segregation demonstrating the importance of timely controlled chromosome dynamics for the maintenance of genome integrity.
Collapse
Affiliation(s)
- Julia Häfner
- Department of Molecular Genetics, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Monika I Mayr
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | - Martin M Möckel
- Department of Molecular Genetics, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Thomas U Mayer
- Department of Molecular Genetics, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
31
|
Ferraro-Gideon J, Hoang C, Forer A. Meiosis-I in Mesostoma ehrenbergii spermatocytes includes distance segregation and inter-polar movements of univalents, and vigorous oscillations of bivalents. PROTOPLASMA 2014; 251:127-143. [PMID: 23921676 DOI: 10.1007/s00709-013-0532-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
In this article, we describe meiosis-I in spermatocytes of the free-living freshwater flatworm Mesostoma ehrenbergii. The original observations of Oakley (1983, 1985) and Fuge (Eur J Cell Biol 44:294-298, 1987, Cell Motil Cytoskeleton 13:212-220, 1989, Protoplasma 160:39-48, 1991), the first to describe these cells, challenge our understanding of cell division, and we have expanded on these descriptions with the aim of laying the framework for further experimental work. These cells contain three bivalents and four univalent chromosomes (two pairs). Bivalent kinetochores oscillate vigorously and regularly throughout prometaphase, for up to several hours, until anaphase. Anaphase onset usually begins in the middle of the kinetochore oscillation cycle. Precocious cleavage furrows form at the start of prometaphase, ingress and then remain arrested until the end of anaphase. The four univalents do not pair, yet by anaphase there is one of each kind at each pole, an example of "distance segregation" (Hughes-Schrader in Chromosoma 27:109-129, 1969). Until proper segregation is achieved, univalents move between spindle poles up to seven times in an individual cell; they move with velocities averaging 9 μm/min, which is faster than the oscillatory motions of the bivalent kinetochores (5-6 μm/min), and much faster than the anaphase movements of the segregating half-bivalents (1 μm/min). Bipolar bivalents periodically reorient, most often resulting in the partner kinetochores exchanging poles. We suggest that the large numbers of inter-polar movements of univalents, and the reorientations of bivalents that lead to partners exchanging poles, might be because there is non-random segregation of chromosomes, as in some other cell types.
Collapse
|
32
|
Sutradhar S, Paul R. Tug-of-war between opposing molecular motors explains chromosomal oscillation during mitosis. J Theor Biol 2013; 344:56-69. [PMID: 24333041 DOI: 10.1016/j.jtbi.2013.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/03/2013] [Accepted: 11/26/2013] [Indexed: 01/01/2023]
Abstract
Chromosomes move towards and away from the centrosomes during the mitosis. This oscillation is observed when the kinetochore, a specific protein structure on the chromosome is captured by centrosome-nucleated polymer called microtubules. We present a computational model, incorporating activities of various molecular motors and microtubule dynamics, to demonstrate the observed oscillation. The model is robust and is not restricted to any particular cell type. Quantifying the average velocity, amplitude and periodicity of the chromosomal oscillation, we compare numerical results with the available experimental data. Our analysis supports a tug-of-war like mechanism between opposing motors that changes the course of chromosomal oscillation. It turns out that, various modes of oscillation can be fully understood by assembling the dynamics of molecular motors. Near the stall regime, when opposing motors are engaged in a tug-of-war, sufficiently large kinetochore-microtubule generated force may prolong the stall durations.
Collapse
Affiliation(s)
- S Sutradhar
- Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, West Bengal, India.
| | - R Paul
- Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, West Bengal, India.
| |
Collapse
|
33
|
Cane S, McGilvray PT, Maresca TJ. Insights from an erroneous kinetochore-microtubule attachment state. BIOARCHITECTURE 2013; 3:69-76. [PMID: 23887229 PMCID: PMC3782542 DOI: 10.4161/bioa.25734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Faithful distribution of the genome requires that sister kinetochores, which assemble on each chromatid during cell division, interact with dynamic microtubules from opposite spindle poles in a configuration called chromosome biorientation. Biorientation produces tension that increases the affinity of kinetochores for microtubules via ill-defined mechanisms. Non-bioriented kinetochore-microtubule (kt-MT) interactions are prevalent but short-lived due to an error correction pathway that reduces the affinity of kinetochores for microtubules. Interestingly, incorrect kt-MT interactions can be stabilized by experimentally applying force to misoriented chromosomes. Here, a live-cell force assay is utilized to characterize the molecular composition of a common type of improper kt-MT attachment. Our force-related studies are also discussed in the context of current models for tension-dependent stabilization of kt-MT interactions.
Collapse
Affiliation(s)
- Stuart Cane
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | | | | |
Collapse
|
34
|
Ferraro-Gideon J, Hoang C, Forer A. Mesostoma ehrenbergii spermatocytes--a unique and advantageous cell for studying meiosis. Cell Biol Int 2013; 37:892-8. [PMID: 23686688 DOI: 10.1002/cbin.10130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/21/2013] [Indexed: 01/06/2023]
Abstract
Mesostoma ehrenbergii have a unique male meiosis: their spermatocytes have three large bivalents that oscillate for 1-2 h before entering into anaphase without having formed a metaphase plate, have a precocious ('pre-anaphase') cleavage furrow, and have four univalents that segregate between spindle poles without physical interaction between them, that is via 'distance segregation'. These unique and unconventional features make Mesostoma spermatocytes an ideal organism for studying the force produced by the spindle to move chromosomes, and to study cleavage furrow control and 'distance segregation'. We review the literature on meiosis in Mesostoma spermatocytes and describe our current research with Mesostoma spermatocytes, rearing the animals in the laboratory using methods that described in our companion article [Hoang et al. (2013); Cell Biol Int].
Collapse
|
35
|
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
36
|
Cane S, Ye AA, Luks-Morgan SJ, Maresca TJ. Elevated polar ejection forces stabilize kinetochore-microtubule attachments. ACTA ACUST UNITED AC 2013; 200:203-18. [PMID: 23337118 PMCID: PMC3549975 DOI: 10.1083/jcb.201211119] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polar ejection forces, which push chromosomes away from spindle poles, modulate kinetochore–microtubule attachment stability. Chromosome biorientation promotes congression and generates tension that stabilizes kinetochore–microtubule (kt-MT) interactions. Forces produced by molecular motors also contribute to chromosome alignment, but their impact on kt-MT attachment stability is unclear. A critical force that acts on chromosomes is the kinesin-10–dependent polar ejection force (PEF). PEFs are proposed to facilitate congression by pushing chromosomes away from spindle poles, although knowledge of the molecular mechanisms underpinning PEF generation is incomplete. Here, we describe a live-cell PEF assay in which tension was applied to chromosomes by manipulating levels of the chromokinesin NOD (no distributive disjunction; Drosophila melanogaster kinesin-10). NOD stabilized syntelic kt-MT attachments in a dose- and motor-dependent manner by overwhelming the ability of Aurora B to mediate error correction. NOD-coated chromatin stretched away from the pole via lateral and end-on interactions with microtubules, and NOD chimeras with either plus end–directed motility or tip-tracking activity produced PEFs. Thus, kt-MT attachment stability is modulated by PEFs, which can be generated by distinct force-producing interactions between chromosomes and dynamic spindle microtubules.
Collapse
Affiliation(s)
- Stuart Cane
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
37
|
Guo Y, Kim C, Mao Y. New insights into the mechanism for chromosome alignment in metaphase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:237-62. [PMID: 23445812 DOI: 10.1016/b978-0-12-407697-6.00006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis, duplicated sister chromatids are properly aligned at the metaphase plate of the mitotic spindle before being segregated into two daughter cells. This requires a complex process to ensure proper interactions between chromosomes and spindle microtubules. The kinetochore, the proteinaceous complex assembled at the centromere region on each chromosome, serves as the microtubule attachment site and powers chromosome movement in mitosis. Numerous proteins/protein complexes have been implicated in the connection between kinetochores and dynamic microtubules. Recent studies have advanced our understanding on the nature of the interface between kinetochores and microtubule plus ends in promoting and maintaining their stable attachment. These efforts have demonstrated the importance of this process to ensure accurate chromosome segregation, an issue which has great significance for understanding and controlling abnormal chromosome segregation (aneuploidy) in human genetic diseases and in cancer progression.
Collapse
Affiliation(s)
- Yige Guo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, NY, USA
| | | | | |
Collapse
|
38
|
Pereira AJ, Maiato H. Maturation of the kinetochore-microtubule interface and the meaning of metaphase. Chromosome Res 2012; 20:563-77. [PMID: 22801775 DOI: 10.1007/s10577-012-9298-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromosome positioning at the equator of the mitotic spindle emerges out of a relatively entropic background. At this moment, termed metaphase, all kinetochores have typically captured microtubules leading to satisfaction of the spindle-assembly checkpoint, but the cell does not enter anaphase immediately. The waiting time in metaphase is related to the kinetics of securin and cyclin B1 degradation, which trigger sister-chromatid separation and promote anaphase processivity, respectively. Yet, as judged by metaphase duration, such kinetics vary widely between cell types and organisms, with no evident correlation to ploidy or cell size. During metaphase, many animal and plant spindles are also characterized by a conspicuous "flux" activity characterized by continuous poleward translocation of spindle microtubules, which maintain steady-state length and position. Whether spindle microtubule flux plays a specific role during metaphase remains arguable. Based on known experimental parameters, we have performed a comparative analysis amongst different cell types from different organisms and show that spindle length, metaphase duration and flux velocity combine within each system to obey a quasi-universal rule. As so, knowledge of two of these parameters is enough to estimate the third. This trend indicates that metaphase duration is tuned to allow approximately one kinetochore-to-pole round of microtubule flux. We propose that the time cells spend in metaphase evolved as a quality enhancement step that allows for the uniform stabilization/correction of kinetochore-microtubule attachments, thereby promoting mitotic fidelity.
Collapse
Affiliation(s)
- António J Pereira
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | |
Collapse
|
39
|
Akiyoshi B, Biggins S. Reconstituting the kinetochore–microtubule interface: what, why, and how. Chromosoma 2012; 121:235-50. [PMID: 22289864 DOI: 10.1007/s00412-012-0362-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The kinetochore is the proteinaceous complex that governs the movement of duplicated chromosomes by interacting with spindle microtubules during mitosis and meiosis. Faithful chromosome segregation requires that kinetochores form robust load-bearing attachments to the tips of dynamic spindle microtubules, correct microtubule attachment errors, and delay the onset of anaphase until all chromosomes have made proper attachments. To understand how this macromolecular machine operates to segregate duplicated chromosomes with exquisite accuracy, it is critical to reconstitute and study kinetochore–microtubule interactions in vitro using defined components. Here, we review the current status of reconstitution as well as recent progress in understanding the microtubule-binding functions of kinetochores in vivo.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | |
Collapse
|
40
|
Stumpff J, Wagenbach M, Franck A, Asbury CL, Wordeman L. Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev Cell 2012; 22:1017-29. [PMID: 22595673 DOI: 10.1016/j.devcel.2012.02.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/08/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Alignment of chromosomes at the metaphase plate is a signature of cell division in metazoan cells, yet the mechanisms controlling this process remain ambiguous. Here we use a combination of quantitative live-cell imaging and reconstituted dynamic microtubule assays to investigate the molecular control of mitotic centromere movements. We establish that Kif18A (kinesin-8) attenuates centromere movement by directly promoting microtubule pausing in a concentration-dependent manner. This activity provides the dominant mechanism for restricting centromere movement to the spindle midzone. Furthermore, polar ejection forces spatially confine chromosomes via position-dependent regulation of kinetochore tension and centromere switch rates. We demonstrate that polar ejection forces are antagonistically modulated by chromokinesins. These pushing forces depend on Kid (kinesin-10) activity and are antagonized by Kif4A (kinesin-4), which functions to directly suppress microtubule growth. These data support a model in which Kif18A and polar ejection forces synergistically promote centromere alignment via spatial control of kinetochore-microtubule dynamics.
Collapse
Affiliation(s)
- Jason Stumpff
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
41
|
Zhao Y, Zhan Q. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Theor Biol Med Model 2012; 9:26. [PMID: 22748065 PMCID: PMC3503562 DOI: 10.1186/1742-4682-9-26] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/26/2012] [Indexed: 12/23/2022] Open
Abstract
Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.
Collapse
Affiliation(s)
- Yue Zhao
- State key laboratory of molecular oncology, Cancer Institute & Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Room 6107, No,17 Pan Jia Yuan Nan Li, Chao Yang District, Bei Jing, 100021, China.
| | | |
Collapse
|
42
|
LaFountain JR, Cohan CS, Oldenbourg R. Pac-man motility of kinetochores unleashed by laser microsurgery. Mol Biol Cell 2012; 23:3133-42. [PMID: 22740625 PMCID: PMC3418308 DOI: 10.1091/mbc.e12-04-0314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Experiments reveal pac-man motility in kinetochores of X-Y chromosomes, even though their normal behavior is dominated by traction fiber mechanics. A laser microbeam is used to release kinetochores in anaphase from tension. There is a poleward motion of released kinetochores twice as fast as normal and faster than tubulin flux. We report on experiments directly in living cells that reveal the regulation of kinetochore function by tension. X and Y sex chromosomes in crane fly (Nephrotoma suturalis) spermatocytes exhibit an atypical segregation mechanism in which each univalent maintains K-fibers to both poles. During anaphase, each maintains a leading fiber (which shortens) to one pole and a trailing fiber (which elongates) to the other. We used this intriguing behavior to study the motile states that X-Y kinetochores are able to support during anaphase. We used a laser microbeam to either sever a univalent along the plane of sister chromatid cohesion or knock out one of a univalent's two kinetochores to release one or both from the resistive influence of its sister's K-fiber. Released kinetochores with attached chromosome arms moved poleward at rates at least two times faster than normal. Furthermore, fluorescent speckle microscopy revealed that detached kinetochores converted their functional state from reverse pac-man to pac-man motility as a consequence of their release from mechanical tension. We conclude that kinetochores can exhibit pac-man motility, even though their normal behavior is dominated by traction fiber mechanics. Unleashing of kinetochore motility through loss of resistive force is further evidence for the emerging model that kinetochores are subject to tension-sensitive regulation.
Collapse
Affiliation(s)
- James R LaFountain
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
43
|
Dumont S, Salmon ED, Mitchison TJ. Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 2012; 337:355-8. [PMID: 22722252 DOI: 10.1126/science.1221886] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Kinetochores mediate chromosome segregation at mitosis. They are thought to contain both active, force-producing and passive, frictional interfaces with microtubules whose relative locations have been unclear. We inferred mechanical deformation within single kinetochores during metaphase oscillations by measuring average separations between fluorescently labeled kinetochore subunits in living cells undergoing mitosis. Inter-subunit distances were shorter in kinetochores moving toward poles than in those moving away. Inter-subunit separation decreased abruptly when kinetochores switched to poleward movement and decreased further when pulling force increased, suggesting that active force generation during poleward movement compresses kinetochores. The data revealed an active force-generating interface within kinetochores and a separate passive frictional interface located at least 20 nanometers away poleward. Together, these interfaces allow persistent attachment with intermittent active force generation.
Collapse
Affiliation(s)
- Sophie Dumont
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
44
|
Abstract
Mitosis is the process by which eukaryotic cells organize and segregate their chromosomes in preparation for cell division. It is accomplished by a cellular machine composed largely of microtubules (MTs) and their associated proteins. This article reviews literature on mitosis from a biophysical point of view, drawing attention to the assembly and motility processes required to do this complex job with precision. Work from both the recent and the older literature is integrated into a description of relevant biological events and the experiments that probe their mechanisms. Theoretical work on specific subprocesses is also reviewed. Our goal is to provide a document that will expose biophysicists to the fascination of this quite amazing process and provide them with a good background from which they can pursue their own research interests in the subject.
Collapse
|
45
|
Wan X, Cimini D, Cameron LA, Salmon ED. The coupling between sister kinetochore directional instability and oscillations in centromere stretch in metaphase PtK1 cells. Mol Biol Cell 2012; 23:1035-46. [PMID: 22298429 PMCID: PMC3302731 DOI: 10.1091/mbc.e11-09-0767] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-resolution kinetochore tracking reveals that oscillations in centromere stretch occur at twice the frequency of kinetochore oscillations because of the nonlinear kinetics of kinetochore directional instability, which produce poleward and away-from-the-pole kinetochore oscillations. Kinetochores bound to kinetochore microtubules (kMTs) exhibit directional instability in mammalian and other mitotic vertebrate cells, oscillating between poleward (P) and away-from-the-pole (AP) movements. These oscillations are coupled to changes in length of kMTs in a way that maintains a net stretch of the centromere. To understand how sister kinetochore directional instability and kMT plus-end dynamic instability are coupled to oscillations in centromere stretch, we tracked at high resolution the positions of fluorescent kinetochores and their poles for oscillating chromosomes within spindles of metaphase PtK1 cells. We found that the kinetics of P and AP movement are nonlinear and different. By subtracting contributions from the poleward flux of kMTs, we found that maximum centromere stretch occurred when the leading kinetochore switched from depolymerization to polymerization, whereas minimum centromere stretch occurred on average 7 s after the initially trailing kinetochore switched from polymerization to depolymerization. These differences produce oscillations in centromere stretch at about twice the frequency of kinetochore directional instability and at about twice the frequency of centromere oscillations back and forth across the spindle equator.
Collapse
Affiliation(s)
- Xiaohu Wan
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
46
|
McAinsh AD, Meraldi P. The CCAN complex: Linking centromere specification to control of kinetochore–microtubule dynamics. Semin Cell Dev Biol 2011; 22:946-52. [DOI: 10.1016/j.semcdb.2011.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 09/29/2011] [Indexed: 12/20/2022]
|
47
|
FORMIN a link between kinetochores and microtubule ends. Trends Cell Biol 2011; 21:625-9. [PMID: 21920754 DOI: 10.1016/j.tcb.2011.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 11/23/2022]
Abstract
The mammalian diaphanous-related (mDia) formin proteins are well known for their actin-nucleation and filament-elongation activities in mediating actin dynamics. They also directly bind to microtubules and regulate microtubule stabilization at the leading edge of the cell during cell migration. Recently, the formin mDia3 was shown to associate with the kinetochore and to contribute to metaphase chromosome alignment, a process in which kinetochores form stable attachments with growing and shrinking microtubules. We suggest that the formin mDia3 could contribute to the regulation of kinetochore-bound microtubule dynamics, in coordination with attachment via its own microtubule-binding activity, as well as via its interaction with the tip-tracker EB1 (end-binding protein 1).
Collapse
|
48
|
Vladimirou E, Harry E, Burroughs N, McAinsh AD. Springs, clutches and motors: driving forward kinetochore mechanism by modelling. Chromosome Res 2011; 19:409-21. [PMID: 21331796 PMCID: PMC3078324 DOI: 10.1007/s10577-011-9191-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
As a mechanical system, the kinetochore can be viewed as a set of interacting springs, clutches and motors; the problem of kinetochore mechanism is now one of understanding how these functional modules assemble, disassemble and interact with one another to give rise to the emergent properties of the system. The sheer complexity of the kinetochore system points to a future requirement for data-driven mathematical modelling and statistical analysis based on quantitative empirical measurement of sister kinetochore trajectories. Here, we review existing models of chromosome motion in the context of recent advances in our understanding of kinetochore molecular biology.
Collapse
Affiliation(s)
- Elina Vladimirou
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ed Harry
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
- Molecular Organisation and Assembly in Cells (MOAC) Doctoral Training Centre, University of Warwick, Coventry, UK
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Nigel Burroughs
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
49
|
Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen C, Murata M, Chan SWL. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet 2011; 7:e1002121. [PMID: 21695238 PMCID: PMC3111537 DOI: 10.1371/journal.pgen.1002121] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/21/2011] [Indexed: 01/12/2023] Open
Abstract
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior. There are two types of cell division in eukaryotes. Mitosis produces cells with identical copies of the genome, while meiosis produces gametes with half the number of chromosomes found in the parent cell. Faithful genome inheritance is controlled by centromeres, chromosomal structures that allow duplicated chromosomes to be pulled apart correctly during cell division. Centromeres are differentially configured during meiosis (relative to mitosis) so chromosome number can be reduced by half. Centromeres are built upon a specialized DNA packing protein, CENH3. Here we describe altered forms of CENH3 that are loaded correctly during mitosis but are severely depleted from centromeres in meiotic cells. As CENH3 is essential for chromosome inheritance, plants expressing these versions of the protein are sterile because they produce very few viable gametes. Differential loading of CENH3 during meiosis may play a role in modulating chromosome inheritance to form haploid gametes.
Collapse
Affiliation(s)
- Maruthachalam Ravi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Fukashi Shibata
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Joseph S. Ramahi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Minoru Murata
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Simon W. L. Chan
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Tanenbaum ME, Medema RH. Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 2011; 19:797-806. [PMID: 21145497 DOI: 10.1016/j.devcel.2010.11.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
Abstract
Accurate segregation of chromosomes during cell division is accomplished through the assembly of a bipolar microtubule-based structure called the mitotic spindle. Work over the past two decades has identified a core regulator of spindle bipolarity, the microtubule motor protein kinesin-5. However, an increasing body of evidence has emerged demonstrating that kinesin-5-independent mechanisms driving bipolar spindle assembly exist as well. Here, we discuss different pathways that promote initial centrosome separation and bipolar spindle assembly.
Collapse
Affiliation(s)
- Marvin E Tanenbaum
- Department of Medical Oncology, University Medical Center, CG Utrecht, the Netherlands
| | | |
Collapse
|