1
|
Goldman C, Kareva T, Sarrafha L, Schuldt BR, Sahasrabudhe A, Ahfeldt T, Blanchard JW. Genetically Encoded and Modular SubCellular Organelle Probes (GEM-SCOPe) reveal lysosomal and mitochondrial dysfunction driven by PRKN knockout. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594886. [PMID: 38979135 PMCID: PMC11230217 DOI: 10.1101/2024.05.21.594886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cellular processes including lysosomal and mitochondrial dysfunction are implicated in the development of many diseases. Quantitative visualization of mitochondria and lysosoesl is crucial to understand how these organelles are dysregulated during disease. To address a gap in live-imaging tools, we developed GEM-SCOPe (Genetically Encoded and Modular SubCellular Organelle Probes), a modular toolbox of fluorescent markers designed to inform on localization, distribution, turnover, and oxidative stress of specific organelles. We expressed GEM-SCOPe in differentiated astrocytes and neurons from a human pluripotent stem cell PRKN-knockout model of Parkinson's disease and identified disease-associated changes in proliferation, lysosomal distribution, mitochondrial transport and turnover, and reactive oxygen species. We demonstrate GEM-SCOPe is a powerful panel that provide critical insight into the subcellular mechanisms underlying Parkinson's disease in human cells. GEM-SCOPe can be expanded upon and applied to a diversity of cellular models to glean an understanding of the mechanisms that promote disease onset and progression.
Collapse
Affiliation(s)
- Camille Goldman
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Tatyana Kareva
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Lily Sarrafha
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Braxton R. Schuldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Abhishek Sahasrabudhe
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Joel W. Blanchard
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Lead Contact
| |
Collapse
|
2
|
Terzioglu M, Veeroja K, Montonen T, Ihalainen TO, Salminen TS, Bénit P, Rustin P, Chang YT, Nagai T, Jacobs HT. Mitochondrial temperature homeostasis resists external metabolic stresses. eLife 2023; 12:RP89232. [PMID: 38079477 PMCID: PMC10712956 DOI: 10.7554/elife.89232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Based on studies with a fluorescent reporter dye, Mito Thermo Yellow (MTY), and the genetically encoded gTEMP ratiometric fluorescent temperature indicator targeted to mitochondria, the temperature of active mitochondria in four mammalian and one insect cell line was estimated to be up to 15°C above that of the external environment to which the cells were exposed. High mitochondrial temperature was maintained in the face of a variety of metabolic stresses, including substrate starvation or modification, decreased ATP demand due to inhibition of cytosolic protein synthesis, inhibition of the mitochondrial adenine nucleotide transporter and, if an auxiliary pathway for electron transfer was available via the alternative oxidase, even respiratory poisons acting downstream of oxidative phosphorylation (OXPHOS) complex I. We propose that the high temperature of active mitochondria is an inescapable consequence of the biochemistry of OXPHOS and is homeostatically maintained as a primary feature of mitochondrial metabolism.
Collapse
Affiliation(s)
- Mügen Terzioglu
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Kristo Veeroja
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies Neurodéveloppementales et NeurovasculairesParisFrance
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies Neurodéveloppementales et NeurovasculairesParisFrance
| | - Young-Tae Chang
- SANKEN (The Institute of Scientific and Industrial Research), Osaka UniversityIbarakiJapan
| | | | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
- Department of Environment and Genetics, La Trobe UniversityMelbourneAustralia
| |
Collapse
|
3
|
Mantovanelli L, Linnik DS, Punter M, Kojakhmetov HJ, Śmigiel WM, Poolman B. Simulation-based Reconstructed Diffusion unveils the effect of aging on protein diffusion in Escherichia coli. PLoS Comput Biol 2023; 19:e1011093. [PMID: 37695774 PMCID: PMC10513214 DOI: 10.1371/journal.pcbi.1011093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/21/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
We have developed Simulation-based Reconstructed Diffusion (SbRD) to determine diffusion coefficients corrected for confinement effects and for the bias introduced by two-dimensional models describing a three-dimensional motion. We validate the method on simulated diffusion data in three-dimensional cell-shaped compartments. We use SbRD, combined with a new cell detection method, to determine the diffusion coefficients of a set of native proteins in Escherichia coli. We observe slower diffusion at the cell poles than in the nucleoid region of exponentially growing cells, which is independent of the presence of polysomes. Furthermore, we show that the newly formed pole of dividing cells exhibits a faster diffusion than the old one. We hypothesize that the observed slowdown at the cell poles is caused by the accumulation of aggregated or damaged proteins, and that the effect is asymmetric due to cell aging.
Collapse
Affiliation(s)
- Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Dmitrii S. Linnik
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Michiel Punter
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | | | - Wojciech M. Śmigiel
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Singh G, George G, Raja SO, Kandaswamy P, Kumar M, Thutupalli S, Laxman S, Gulyani A. A molecular rotor FLIM probe reveals dynamic coupling between mitochondrial inner membrane fluidity and cellular respiration. Proc Natl Acad Sci U S A 2023; 120:e2213241120. [PMID: 37276406 PMCID: PMC10268597 DOI: 10.1073/pnas.2213241120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
The inner mitochondrial membrane (IMM), housing components of the electron transport chain (ETC), is the site for respiration. The ETC relies on mobile carriers; therefore, it has long been argued that the fluidity of the densely packed IMM can potentially influence ETC flux and cell physiology. However, it is unclear if cells temporally modulate IMM fluidity upon metabolic or other stimulation. Using a photostable, red-shifted, cell-permeable molecular-rotor, Mitorotor-1, we present a multiplexed approach for quantitatively mapping IMM fluidity in living cells. This reveals IMM fluidity to be linked to cellular-respiration and responsive to stimuli. Multiple approaches combining in vitro experiments and live-cell fluorescence (FLIM) lifetime imaging microscopy (FLIM) show Mitorotor-1 to robustly report IMM 'microviscosity'/fluidity through changes in molecular free volume. Interestingly, external osmotic stimuli cause controlled swelling/compaction of mitochondria, thereby revealing a graded Mitorotor-1 response to IMM microviscosity. Lateral diffusion measurements of IMM correlate with microviscosity reported via Mitorotor-1 FLIM-lifetime, showing convergence of independent approaches for measuring IMM local-order. Mitorotor-1 FLIM reveals mitochondrial heterogeneity in IMM fluidity; between-and-within cells and across single mitochondrion. Multiplexed FLIM lifetime imaging of Mitorotor-1 and NADH autofluorescence reveals that IMM fluidity positively correlates with respiration, across individual cells. Remarkably, we find that stimulating respiration, through nutrient deprivation or chemically, also leads to increase in IMM fluidity. These data suggest that modulating IMM fluidity supports enhanced respiratory flux. Our study presents a robust method for measuring IMM fluidity and suggests a dynamic regulatory paradigm of modulating IMM local order on changing metabolic demand.
Collapse
Affiliation(s)
- Gaurav Singh
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
| | - Geen George
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
| | - Sufi O. Raja
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046Hyderabad, India
| | - Ponnuvel Kandaswamy
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, 560065Bangalore, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, 560065Bangalore, India
- International Centre for Theoretical Sciences, Tata Institute for Fundamental Research, 560089 Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046Hyderabad, India
| |
Collapse
|
5
|
Xiang L, Yan R, Chen K, Li W, Xu K. Single-Molecule Displacement Mapping Unveils Sign-Asymmetric Protein Charge Effects on Intraorganellar Diffusion. NANO LETTERS 2023; 23:1711-1716. [PMID: 36802676 PMCID: PMC10044514 DOI: 10.1021/acs.nanolett.2c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using single-molecule displacement/diffusivity mapping (SMdM), an emerging super-resolution microscopy method, here we quantify, at nanoscale resolution, the diffusion of a typical fluorescent protein (FP) in the endoplasmic reticulum (ER) and mitochondrion of living mammalian cells. We thus show that the diffusion coefficients D in both organelles are ∼40% of that in the cytoplasm, with the latter exhibiting higher spatial inhomogeneities. Moreover, we unveil that diffusions in the ER lumen and the mitochondrial matrix are markedly impeded when the FP is given positive, but not negative, net charges. Calculation shows most intraorganellar proteins as negatively charged, hence a mechanism to impede the diffusion of positively charged proteins. However, we further identify the ER protein PPIB as an exception with a positive net charge and experimentally show that the removal of this positive charge elevates its intra-ER diffusivity. We thus unveil a sign-asymmetric protein charge effect on the nanoscale intraorganellar diffusion.
Collapse
Affiliation(s)
- Limin Xiang
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
- College of Chemistry and Molecular Sciences & TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Rui Yan
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Kun Chen
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Wan Li
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Ke Xu
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| |
Collapse
|
6
|
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MKT, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J 2023; 42:e108533. [PMID: 36825437 PMCID: PMC10068333 DOI: 10.15252/embj.2021108533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.
Collapse
Affiliation(s)
- Elianne P Bulthuis
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Cindy E J Dieteren
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands.,Department of Cell Biology and Electron Microscopy Center, Radboudumc, Nijmegen, The Netherlands
| | - Jesper Bergmans
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Job Berkhout
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Jori A Wagenaars
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Els M A van de Westerlo
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Emina Podhumljak
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Mark A Hink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura F B Hesp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Hannah S Rosa
- Department of Diabetes, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes, King's College London, London, UK
| | - Mariska Kea-Te Lindert
- Department of Cell Biology and Electron Microscopy Center, Radboudumc, Nijmegen, The Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Han J G E Gardeniers
- Mesoscale Chemical Systems, University of Twente, Enschede, The Netherlands.,MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter K den Otter
- MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.,Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Xiang L, Yan R, Chen K, Li W, Xu K. Single-molecule displacement mapping unveils sign-asymmetric protein charge effects on intraorganellar diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525611. [PMID: 36747807 PMCID: PMC9900983 DOI: 10.1101/2023.01.26.525611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using single-molecule displacement/diffusivity mapping (SM d M), an emerging super-resolution microscopy method, here we quantify, at nanoscale resolution, the diffusion of a typical fluorescent protein (FP) in the endoplasmic reticulum (ER) and mitochondrion of living mammalian cells. We thus show that the diffusion coefficients D in both organelles are ~40% of that in the cytoplasm, with the latter exhibiting higher spatial inhomogeneities. Moreover, we unveil that diffusions in the ER lumen and the mitochondrial matrix are markedly impeded when the FP is given positive, but not negative, net charges. Calculation shows most intraorganellar proteins as negatively charged, thus a mechanism to impede the diffusion of positively charged proteins. However, we further identify the ER protein PPIB as an exception with a positive net charge, and experimentally show that the removal of this positive charge elevates its intra-ER diffusivity. We thus unveil a sign-asymmetric protein charge effect on the nanoscale intraorganellar diffusion.
Collapse
|
8
|
Cai N, Lai ACK, Liao K, Corridon PR, Graves DJ, Chan V. Recent Advances in Fluorescence Recovery after Photobleaching for Decoupling Transport and Kinetics of Biomacromolecules in Cellular Physiology. Polymers (Basel) 2022; 14:1913. [PMID: 35567083 PMCID: PMC9105003 DOI: 10.3390/polym14091913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Among the new molecular tools available to scientists and engineers, some of the most useful include fluorescently tagged biomolecules. Tools, such as green fluorescence protein (GFP), have been applied to perform semi-quantitative studies on biological signal transduction and cellular structural dynamics involved in the physiology of healthy and disease states. Such studies focus on drug pharmacokinetics, receptor-mediated endocytosis, nuclear mechanobiology, viral infections, and cancer metastasis. In 1976, fluorescence recovery after photobleaching (FRAP), which involves the monitoring of fluorescence emission recovery within a photobleached spot, was developed. FRAP allowed investigators to probe two-dimensional (2D) diffusion of fluorescently-labelled biomolecules. Since then, FRAP has been refined through the advancements of optics, charged-coupled-device (CCD) cameras, confocal microscopes, and molecular probes. FRAP is now a highly quantitative tool used for transport and kinetic studies in the cytosol, organelles, and membrane of a cell. In this work, the authors intend to provide a review of recent advances in FRAP. The authors include epifluorescence spot FRAP, total internal reflection (TIR)/FRAP, and confocal microscope-based FRAP. The underlying mathematical models are also described. Finally, our understanding of coupled transport and kinetics as determined by FRAP will be discussed and the potential for future advances suggested.
Collapse
Affiliation(s)
- Ning Cai
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Wuhan 430073, China;
| | - Alvin Chi-Keung Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China;
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Peter R. Corridon
- Department of Physiology and Immunology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - David J. Graves
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
9
|
Bian J, Zhang D, Wang Y, Qin H, Yang W, Cui R, Sheng J. Mitochondrial Quality Control in Hepatocellular Carcinoma. Front Oncol 2021; 11:713721. [PMID: 34589426 PMCID: PMC8473831 DOI: 10.3389/fonc.2021.713721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria participate in the progression of hepatocellular carcinoma (HCC) by modifying processes including but not limited to redox homeostasis, metabolism, and the cell death pathway. These processes depend on the health status of the mitochondria. Quality control processes in mitochondria can repair or eliminate “unhealthy mitochondria” at the molecular, organelle, or cellular level and form an efficient integrated network that plays an important role in HCC tumorigenesis, patient survival, and tumor progression. Here, we review the influence of mitochondria on the biological behavior of HCC. Based on this information, we further highlight the need for determining the role and mechanism of interaction between different levels of mitochondrial quality control in regulating HCC occurrence and progression as well as resistance development. This information may lead to the development of precision medicine approaches against targets involved in various mitochondrial quality control-related pathways.
Collapse
Affiliation(s)
- Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Mitochondrial Protein Abundance Gradients Require the Distribution of Separated Mitochondria. BIOLOGY 2021; 10:biology10070572. [PMID: 34201436 PMCID: PMC8301041 DOI: 10.3390/biology10070572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/06/2023]
Abstract
Mitochondria are highly dynamic organelles that interchange their contents mediated by fission and fusion. However, it has previously been shown that the mitochondria of cultured human epithelial cells exhibit a gradient in the relative abundance of several proteins, with the perinuclear mitochondria generally exhibiting a higher protein abundance than the peripheral mitochondria. The molecular mechanisms that are required for the establishment and the maintenance of such inner-cellular mitochondrial protein abundance gradients are unknown. We verified the existence of inner-cellular gradients in the abundance of clusters of the mitochondrial outer membrane protein Tom20 in the mitochondria of kidney epithelial cells from an African green monkey (Vero cells) using STED nanoscopy and confocal microscopy. We found that the Tom20 gradients are established immediately after cell division and require the presence of microtubules. Furthermore, the gradients are abrogated in hyperfused mitochondrial networks. Our results suggest that inner-cellular protein abundance gradients from the perinuclear to the peripheral mitochondria are established by the trafficking of individual mitochondria to their respective cellular destination.
Collapse
|
11
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
12
|
Rivas S, Hanif K, Chakouri N, Ben-Johny M. Probing ion channel macromolecular interactions using fluorescence resonance energy transfer. Methods Enzymol 2021; 653:319-347. [PMID: 34099178 DOI: 10.1016/bs.mie.2021.01.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ion channels are macromolecular complexes whose functions are exquisitely tuned by interacting proteins. Fluorescence resonance energy transfer (FRET) is a powerful methodology that is adept at quantifying ion channel protein-protein interactions in living cells. For FRET experiments, the interacting partners are tagged with appropriate donor and acceptor fluorescent proteins. If the fluorescently-labeled molecules are in close proximity, then photoexcitation of the donor results in non-radiative energy transfer to the acceptor, and subsequent fluorescence emission of the acceptor. The stoichiometry of ion channel interactions and their relative binding affinities can be deduced by quantifying both the FRET efficiency and the total number of donors and acceptors in a given cell. In this chapter, we discuss general considerations for FRET analysis of biological interactions, various strategies for estimating FRET efficiencies, and detailed protocols for construction of binding curves and determination of stoichiometry. We focus on implementation of FRET assays using a flow cytometer given its amenability for high-throughput data acquisition, enhanced accessibility, and robust analysis. This versatile methodology permits mechanistic dissection of dynamic changes in ion channel interactions.
Collapse
Affiliation(s)
- Sharen Rivas
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | | | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States.
| |
Collapse
|
13
|
Machine learning-based classification of mitochondrial morphology in primary neurons and brain. Sci Rep 2021; 11:5133. [PMID: 33664336 PMCID: PMC7933342 DOI: 10.1038/s41598-021-84528-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
The mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.
Collapse
|
14
|
Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer. Biophys J 2020; 120:254-269. [PMID: 33345902 PMCID: PMC7840444 DOI: 10.1016/j.bpj.2020.11.2275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Förster resonance energy transfer (FRET) is a powerful tool to investigate the interaction between proteins in living cells. Fluorescence proteins, such as the green fluorescent protein (GFP) and its derivatives, are coexpressed in cells linked to proteins of interest. Time-resolved fluorescence anisotropy is a popular tool to study homo-FRET of fluorescent proteins as an indicator of dimerization, in which its signature consists of a very short component at the beginning of the anisotropy decay. In this work, we present an approach to study GFP homo-FRET via a combination of time-resolved fluorescence anisotropy, the stretched exponential decay model, and molecular dynamics simulations. We characterize a new, to our knowledge, FRET standard formed by two enhanced GFPs (eGFPs) and a flexible linker of 15 aminoacids (eGFP15eGFP) with this protocol, which is validated by using an eGFP monomer as a reference. An excellent agreement is found between the FRET efficiency calculated from the fit of the eGFP15eGFP fluorescence anisotropy decays with a stretched exponential decay model (〈EFRETexp〉 = 0.25 ± 0.05) and those calculated from the molecular dynamics simulations (〈EFRETMD〉 = 0.18 ± 0.14). The relative dipole orientation between the GFPs is best described by the orientation factors 〈κ2〉 = 0.17 ± 0.16 and 〈|κ|〉 = 0.35 ± 0.20, contextualized within a static framework in which the linker hinders the free rotation of the fluorophores and excludes certain configurations. The combination of time- and polarization-resolved fluorescence spectroscopy with molecular dynamics simulations is shown to be a powerful tool for the study and interpretation of homo-FRET.
Collapse
|
15
|
Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen Med 2020; 5:22. [PMID: 33298971 PMCID: PMC7683736 DOI: 10.1038/s41536-020-00107-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are fundamental for metabolic homeostasis in all multicellular eukaryotes. In the nervous system, mitochondria-generated adenosine triphosphate (ATP) is required to establish appropriate electrochemical gradients and reliable synaptic transmission. Notably, several mitochondrial defects have been identified in central nervous system disorders. Membrane leakage and electrolyte imbalances, pro-apoptotic pathway activation, and mitophagy are among the mechanisms implicated in the pathogenesis of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's disease, as well as ischemic stroke. In this review, we summarize mitochondrial pathways that contribute to disease progression. Further, we discuss pathological states that damaged mitochondria impose on normal nervous system processes and explore new therapeutic approaches to mitochondrial diseases.
Collapse
|
16
|
Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing. Int J Mol Sci 2020; 21:ijms21207580. [PMID: 33066461 PMCID: PMC7589147 DOI: 10.3390/ijms21207580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with ageing, but the detailed causal relationship between the two is still unclear. We review the major phenomenological manifestations of mitochondrial age-related dysfunction including biochemical, regulatory and energetic features. We conclude that the complexity of these processes and their inter-relationships are still not fully understood and at this point it seems unlikely that a single linear cause and effect relationship between any specific aspect of mitochondrial biology and ageing can be established in either direction.
Collapse
Affiliation(s)
- Michael Webb
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| | - Dionisia P Sideris
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Computation of FRAP recovery times for linker histone – chromatin binding on the basis of Brownian dynamics simulations. Biochim Biophys Acta Gen Subj 2020; 1864:129653. [DOI: 10.1016/j.bbagen.2020.129653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
|
18
|
Attempts at the Characterization of In-Cell Biophysical Processes Non-Invasively-Quantitative NMR Diffusometry of a Model Cellular System. Cells 2020; 9:cells9092124. [PMID: 32961701 PMCID: PMC7565294 DOI: 10.3390/cells9092124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
In the literature, diffusion studies of cell systems are usually limited to two water pools that are associated with the extracellular space and the entire interior of the cell. Therefore, the time-dependent diffusion coefficient contains information about the geometry of these two water regions and the water exchange through their boundary. This approach is due to the fact that most of these studies use pulse techniques and relatively low gradients, which prevents the achievement of high b-values. As a consequence, it is not possible to register the signal coming from proton populations with a very low bulk or apparent self-diffusion coefficient, such as cell organelles. The purpose of this work was to obtain information on the geometry and dynamics of water at a level lower than the cell size, i.e., in cellular structures, using the time-dependent diffusion coefficient method. The model of the cell system was made of baker’s yeast (Saccharomyces cerevisiae) since that is commonly available and well-characterized. We measured characteristic fresh yeast properties with the application of a compact Nuclear Magnetic Resonance (NMR)-Magritek Mobile Universal Surface Explorer (MoUSE) device with a very high, constant gradient (~24 T/m), which enabled us to obtain a sufficient stimulated echo attenuation even for very short diffusion times (0.2–40 ms) and to apply very short diffusion encoding times. In this work, due to a very large diffusion weighting (b-values), splitting the signal into three components was possible, among which one was associated only with cellular structures. Time-dependent diffusion coefficient analysis allowed us to determine the self-diffusion coefficients of extracellular fluid, cytoplasm and cellular organelles, as well as compartment sizes. Cellular organelles contributing to each compartment were identified based on the random walk simulations and approximate volumes of water pools calculated using theoretical sizes or molar fractions. Information about different cell structures is contained in different compartments depending on the diffusion regime, which is inherent in studies applying extremely high gradients.
Collapse
|
19
|
Back to the Future: Genetically Encoded Fluorescent Proteins as Inert Tracers of the Intracellular Environment. Int J Mol Sci 2020; 21:ijms21114164. [PMID: 32545175 PMCID: PMC7312867 DOI: 10.3390/ijms21114164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Over the past decades, the discovery and development of genetically encoded fluorescent proteins (FPs) has brought a revolution into our ability to study biologic phenomena directly within living matter. First, FPs enabled fluorescence-labeling of a variety of molecules of interest to study their localization, interactions and dynamic behavior at various scales-from cells to whole organisms/animals. Then, rationally engineered FP-based sensors facilitated the measurement of physicochemical parameters of living matter-especially at the intracellular level, such as ion concentration, temperature, viscosity, pressure, etc. In addition, FPs were exploited as inert tracers of the intracellular environment in which they are expressed. This oft-neglected role is made possible by two distinctive features of FPs: (i) the quite null, unspecific interactions of their characteristic β-barrel structure with the molecular components of the cellular environment; and (ii) their compatibility with the use of time-resolved fluorescence-based optical microscopy techniques. This review seeks to highlight the potential of such unique combinations of properties and report on the most significative and original applications (and related advancements of knowledge) produced to date. It is envisioned that the use of FPs as inert tracers of living matter structural organization holds a potential for several lines of further development in the next future, discussed in the last section of the review, which in turn can lead to new breakthroughs in bioimaging.
Collapse
|
20
|
Wilcox XE, Ariola A, Jackson JR, Slade KM. Overlap Concentration and the Effect of Macromolecular Crowding on Citrate Synthase Activity. Biochemistry 2020; 59:1737-1746. [DOI: 10.1021/acs.biochem.0c00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xander E. Wilcox
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Ashton Ariola
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| | - Jasmine R. Jackson
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| | - Kristin M. Slade
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| |
Collapse
|
21
|
Impact of global structure on diffusive exploration of organelle networks. Sci Rep 2020; 10:4984. [PMID: 32188905 PMCID: PMC7080787 DOI: 10.1038/s41598-020-61598-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/25/2020] [Indexed: 01/08/2023] Open
Abstract
We investigate diffusive search on planar networks, motivated by tubular organelle networks in cell biology that contain molecules searching for reaction partners and binding sites. Exact calculation of the diffusive mean first-passage time on a spatial network is used to characterize the typical search time as a function of network connectivity. We find that global structural properties — the total edge length and number of loops — are sufficient to largely determine network exploration times for a variety of both synthetic planar networks and organelle morphologies extracted from living cells. For synthetic networks on a lattice, we predict the search time dependence on these global structural parameters by connecting with percolation theory, providing a bridge from irregular real-world networks to a simpler physical model. The dependence of search time on global network structural properties suggests that network architecture can be designed for efficient search without controlling the precise arrangement of connections. Specifically, increasing the number of loops substantially decreases search times, pointing to a potential physical mechanism for regulating reaction rates within organelle network structures.
Collapse
|
22
|
Mitochondrial morphology provides a mechanism for energy buffering at synapses. Sci Rep 2019; 9:18306. [PMID: 31797946 PMCID: PMC6893035 DOI: 10.1038/s41598-019-54159-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 01/27/2023] Open
Abstract
Mitochondria as the main energy suppliers of eukaryotic cells are highly dynamic organelles that fuse, divide and are transported along the cytoskeleton to ensure cellular energy homeostasis. While these processes are well established, substantial evidence indicates that the internal structure is also highly variable in dependence on metabolic conditions. However, a quantitative mechanistic understanding of how mitochondrial morphology affects energetic states is still elusive. To address this question, we here present an agent-based multiscale model that integrates three-dimensional morphologies from electron microscopy tomography with the molecular dynamics of the main ATP producing components. We apply our modeling approach to mitochondria at the synapse which is the largest energy consumer within the brain. Interestingly, comparing the spatiotemporal simulations with a corresponding space-independent approach, we find minor spatial effects when the system relaxes toward equilibrium but a qualitative difference in fluctuating environments. These results suggest that internal mitochondrial morphology is not only optimized for ATP production but also provides a mechanism for energy buffering and may represent a mechanism for cellular robustness.
Collapse
|
23
|
Smith EM, Gautier A, Puchner EM. Single-Molecule Localization Microscopy with the Fluorescence-Activating and Absorption-Shifting Tag (FAST) System. ACS Chem Biol 2019; 14:1115-1120. [PMID: 31083964 PMCID: PMC8608280 DOI: 10.1021/acschembio.9b00149] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We develop and employ the Fluorescence-Activating and absorption-Shifting Tag (FAST) system for super-resolution (SR) imaging and single-molecule tracking based on single-molecule localizations. The fast off rate of fluorogen binding, combined with its spatially well-separated labeling of the densely expressed FAST fusion proteins, allowed single-molecule measurements to be performed in both living and fixed cells. The well-separated fluorescence localization density was achieved by either reversibly controlling the fluorogen concentration or by irreversibly photobleaching the FAST-fluorogen complex. The experimentally determined resolution of 28 nm allowed us to resolve Ensconsin-labeled microtubules and to track single molecules in mitochondria. Our results demonstrate that FAST is well-suited for single-molecule localization microscopy (SMLM). The small size and the availability of spectrally distinct fluorogens present unique advantages of the FAST system as a potential orthogonal labeling strategy that could be applied in conjunction with existing super-resolution dyes and photoactivatable proteins in versatile imaging applications.
Collapse
Affiliation(s)
- Elizabeth M. Smith
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
| | - Arnaud Gautier
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Elias M. Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
24
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
25
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
26
|
Michel J, Nolin F, Wortham L, Lalun N, Tchelidze P, Banchet V, Terryn C, Ploton D. Various Nucleolar Stress Inducers Result in Highly Distinct Changes in Water, Dry Mass and Elemental Content in Cancerous Cell Compartments: Investigation Using a Nano-Analytical Approach. Nanotheranostics 2019; 3:179-195. [PMID: 31183313 PMCID: PMC6536780 DOI: 10.7150/ntno.31878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Numerous chemotherapeutic drugs that affect ribosome biogenesis in the nucleolus induce nucleolar stress. Improving our understanding of the effects of these drugs will require uncovering and comparing their impact on several biophysical parameters of the major cell compartments. Here, we quantified the water content and dry mass of cancerous cells treated with CX-5461, DRB or DAM to calculate macromolecular crowding and the volume occupied by free water, as well as elemental content. Methods: HeLa-H2B-GFP cells were treated with CX-5461, DRB or DAM. Water content and dry mass were measured in numerous regions of interest of ultrathin cryo-sections by quantitative scanning transmission electron microscope dark-field imaging and the elements quantified by energy dispersive X-ray spectrometry. The data were used to calculate macromolecular crowding and the volume occupied by free water in all cell compartments of control and treated cells. Hydrophobic and unfolded proteins were revealed by 8-Anilinonaphtalene-1-sulfonic acid (ANS) staining and imaging by two-photon microscopy. Immunolabeling of UBF, pNBS1 and pNF-κB was carried out and the images acquired with a confocal microscope for 3D imaging to address whether the localization of these proteins changes in treated cells. Results: Treatment with CX-5461, DRB or DAM induced completely different changes in macromolecular crowding and elemental content. Macromolecular crowding and elemental content were much higher in CX-5461-treated, moderately higher in DRB-treated, and much lower in DAM-treated cells than control cells. None of the drugs alone induced nucleolar ANS staining but it was induced by heat-shock of control cells and cells previously treated with DAM. UBF and pNBS1 were systematically co-localized in the nucleolus of CX-5461- and DAM-treated cells. pNF-κB only localized to the nucleolar caps of pre-apoptotic DAM-treated cells. Conclusion: We directly quantified water and ion content in cell compartments using cryo-correlative electron microscopy. We show that different chemotherapeutic nucleolar stress inducers result in distinctive, thus far-unrecognized changes in macromolecular crowding and elemental content which are known to modify cell metabolism. Moreover we were able to correlate these changes to the sensitivity of treated cells to heat-shock and the behavior of nucleolar pNBS1 and pNF-κB.
Collapse
Affiliation(s)
- Jean Michel
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | | | - Laurence Wortham
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | - Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | | | - Christine Terryn
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | | |
Collapse
|
27
|
Anand R, Agrawal M, Mattaparthi VS, Swaminathan R, Santra SB. Consequences of Heterogeneous Crowding on an Enzymatic Reaction: A Residence Time Monte Carlo Approach. ACS OMEGA 2019; 4:727-736. [PMID: 31459357 PMCID: PMC6649177 DOI: 10.1021/acsomega.8b02863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/26/2018] [Indexed: 05/06/2023]
Abstract
Translational diffusion of a free substrate in crowded metabolically active spaces such as cell cytoplasm or mitochondrial matrix is punctuated by collisions and nonspecific interactions with soluble/immobile macromolecules/macrostructures in a variety of shapes/sizes. It is not understood how such disruptions alter enzyme reaction kinetics in such spaces. A novel Monte Carlo (MC) technique, "residence time MC", has been developed to study the kinetics of a simple enzyme-substrate reaction in a crowded milieu using a single immobile enzyme in the midst of diffusing substrates and products. The reaction time lost while the substrate nonspecifically interacts or is transiently trapped with ambient macromolecules is quantified by introducing the residence time "tau". Tau scales with the size of crowding macromolecules but makes the knowledge of their shape redundant. The residence time thus presents a convenient parameter to realistically mimic the sticky surroundings encountered by a diffusing substrate in heterogeneously crowded physiological spaces. Results reveal that for identical substrate concentration and excluded volume, increase in tau significantly diminished enzymatic product yield and reaction rate, slowed down substrate/product diffusion, and prolonged their relaxation times. A smooth transition from the anomalous subdiffusive motion to normal diffusion at long time limits was observed irrespective of the value of tau. The predictions from the model are shown to be in qualitative agreement with in vitro experimental data revealing the rate of alkaline phosphatase-catalyzed hydrolysis of p-nitrophenyl phosphate in the midst of 40/500/2000 kDa dextrans. Our findings from the residence time MC model also attempt to rationalize previously unexplained experimental observations in crowded enzyme kinetics literature. Furthermore, major insights to emerge from this study are the reasons why free diffusion of the substrate in crowded physiological spaces is detrimental to enzyme function. It is argued that organized enzyme clusters such as "metabolon" may perhaps exist to regulate the substrate translocation in such sticky physiological spaces to maintain optimal enzyme function. In summary, this work provides key insights explaining why absence of substrate channeling can dramatically slow down enzyme reaction rate in crowded metabolically active spaces.
Collapse
Affiliation(s)
- Rajat Anand
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Manish Agrawal
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Venkata Satish
Kumar Mattaparthi
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
- E-mail:
| | - Sitangshu Bikas Santra
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
28
|
Unsay JD, Murad F, Hermann E, Ries J, García-Sáez AJ. Scanning Fluorescence Correlation Spectroscopy for Quantification of the Dynamics and Interactions in Tube Organelles of Living Cells. Chemphyschem 2018; 19:3273-3278. [PMID: 30335213 DOI: 10.1002/cphc.201800705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 01/03/2023]
Abstract
Single-molecule spectroscopic quantification of protein-protein interactions directly in the organelles of living cells is highly desirable but remains challenging. Bulk methods, such as Förster resonance energy transfer (FRET), currently only give a relative quantification of the strength of protein-protein interactions. Here, we introduce tube scanning fluorescence cross-correlation spectroscopy (tubeSFCCS) for the absolute quantification of diffusion and complex formation of fluorescently labeled molecules in the mitochondrial compartments. We determined the extent of association between the apoptosis regulators Bcl-xL and tBid at the mitochondrial outer membrane of living cells and discovered that practically all mitochondria-bound Bcl-xL and tBid are associated with each other, in contrast to undetectable association in the cytosol. Furthermore, we show further applicability of our method to other mitochondrial proteins, as well as to proteins in the endoplasmic reticulum (ER) membrane.
Collapse
Affiliation(s)
- Joseph D Unsay
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, Germany
- Max Planck Insitute for Intteligen Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany
- German Cancer Research Center, Im Neuenheimer Feld 280, 62120, Heidelberg, Germany
| | - Fabronia Murad
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, Germany
| | - Eduard Hermann
- Max Planck Insitute for Intteligen Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany
| | - Jonas Ries
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, Germany
- Max Planck Insitute for Intteligen Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany
| |
Collapse
|
29
|
Lippincott-Schwartz J, Snapp EL, Phair RD. The Development and Enhancement of FRAP as a Key Tool for Investigating Protein Dynamics. Biophys J 2018; 115:1146-1155. [PMID: 30219286 DOI: 10.1016/j.bpj.2018.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/18/2023] Open
Abstract
The saga of fluorescence recovery after photobleaching (FRAP) illustrates how disparate technical developments impact science. Starting with the classic 1976 Axelrod et al. work in Biophysical Journal, FRAP (originally fluorescence photobleaching recovery) opened the door to extraction of quantitative information from photobleaching experiments, laying the experimental and theoretical groundwork for quantifying both the mobility and the mobile fraction of a labeled population of proteins. Over the ensuing years, FRAP's reach dramatically expanded, with new developments in GFP technology and turn-key confocal microscopy, which enabled measurement of protein diffusion and binding/dissociation rates in virtually every compartment within the cell. The FRAP technique and data catalyzed an exchange of ideas between biophysicists studying membrane dynamics, cell biologists focused on intracellular dynamics, and systems biologists modeling the dynamics of cell activity. The outcome transformed the field of cellular biology, leading to a fundamental rethinking of long-held theories of cellular dynamism. Here, we review the pivotal FRAP studies that made these developments and conceptual changes possible, which gave rise to current models of complex cell dynamics.
Collapse
Affiliation(s)
| | - Erik Lee Snapp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia.
| | - Robert D Phair
- Integrative Bioinformatics, Inc., Mountain View, California
| |
Collapse
|
30
|
Lima AF, May G, Díaz-Colunga J, Pedreiro S, Paiva A, Ferreira L, Enver T, Iborra FJ, Pires das Neves R. Osmotic modulation of chromatin impacts on efficiency and kinetics of cell fate modulation. Sci Rep 2018; 8:7210. [PMID: 29740078 PMCID: PMC5940679 DOI: 10.1038/s41598-018-25517-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/12/2018] [Indexed: 11/23/2022] Open
Abstract
Chromatin structure is a major regulator of transcription and gene expression. Herein we explore the use of osmotic modulation to modify the chromatin structure and reprogram gene expression. In this study we use the extracellular osmotic pressure as a chromatin structure and transcriptional modulator. Hyposmotic modulation promotes chromatin loosening and induces changes in RNA polymerase II (Pol II) activity. The chromatin decondensation opens space for higher amounts of DNA engaged RNA Pol II. Hyposmotic modulation constitutes an alternative route to manipulate cell fate decisions. This technology was tested in model protocols of induced pluripotency and transdifferentiation in cells growing in suspension and adherent to substrates, CD34+ umbilical-cord-blood (UCB), fibroblasts and B-cells. The efficiency and kinetics of these cell fate modulation processes were improved by transient hyposmotic modulation of the cell environment.
Collapse
Affiliation(s)
- A F Lima
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal.,Faculty of Science and Technology, University Nova of Lisbon (MIT-Portugal PhD Program), 2829-516, Caparica, Portugal
| | - G May
- University College London, Gower Street, London, WC1E 6BT, UK
| | - J Díaz-Colunga
- Centro Nacional de Biotecnología, CSIC. Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - S Pedreiro
- Unidade de Gestão Operacional de Citometria, Centro Hospitalar e Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - A Paiva
- Unidade de Gestão Operacional de Citometria, Centro Hospitalar e Universitário de Coimbra, 3000-075, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine,University of Coimbra, 3004-504, Coimbra, Portugal
| | - L Ferreira
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal.,Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - T Enver
- University College London, Gower Street, London, WC1E 6BT, UK
| | - F J Iborra
- Centro Nacional de Biotecnología, CSIC. Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - R Pires das Neves
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal.
| |
Collapse
|
31
|
Gal A, Balicza P, Weaver D, Naghdi S, Joseph SK, Várnai P, Gyuris T, Horváth A, Nagy L, Seifert EL, Molnar MJ, Hajnóczky G. MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans. EMBO Mol Med 2018; 9:967-984. [PMID: 28554942 PMCID: PMC5494519 DOI: 10.15252/emmm.201607058] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The protein MSTO1 has been localized to mitochondria and linked to mitochondrial morphology, but its specific role has remained unclear. We identified a c.22G > A (p.Val8Met) mutation of MSTO1 in patients with minor physical abnormalities, myopathy, ataxia, and neurodevelopmental impairments. Lactate stress test and myopathological results suggest mitochondrial dysfunction. In patient fibroblasts, MSTO1 mRNA and protein abundance are decreased, mitochondria display fragmentation, aggregation, and decreased network continuity and fusion activity. These characteristics can be reversed by genetic rescue. Short‐term silencing of MSTO1 in HeLa cells reproduced the impairment of mitochondrial morphology and dynamics observed in the fibroblasts without damaging bioenergetics. At variance with a previous report, we find MSTO1 to be localized in the cytoplasmic area with limited colocalization with mitochondria. MSTO1 interacts with the fusion machinery as a soluble factor at the cytoplasm‐mitochondrial outer membrane interface. After plasma membrane permeabilization, MSTO1 is released from the cells. Thus, an MSTO1 loss‐of‐function mutation is associated with a human disorder showing mitochondrial involvement. MSTO1 likely has a physiologically relevant role in mitochondrial morphogenesis by supporting mitochondrial fusion.
Collapse
Affiliation(s)
- Aniko Gal
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Peter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shamim Naghdi
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Suresh K Joseph
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Péter Várnai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Tibor Gyuris
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Attila Horváth
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Erin L Seifert
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
32
|
Anzell AR, Maizy R, Przyklenk K, Sanderson TH. Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Mol Neurobiol 2018; 55:2547-2564. [PMID: 28401475 PMCID: PMC5636654 DOI: 10.1007/s12035-017-0503-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/28/2022]
Abstract
Mitochondria are key regulators of cell fate during disease. They control cell survival via the production of ATP that fuels cellular processes and, conversely, cell death via the induction of apoptosis through release of pro-apoptotic factors such as cytochrome C. Therefore, it is essential to have stringent quality control mechanisms to ensure a healthy mitochondrial network. Quality control mechanisms are largely regulated by mitochondrial dynamics and mitophagy. The processes of mitochondrial fission (division) and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins, and metabolites. The process of mitophagy are responsible for the degradation and recycling of damaged mitochondria. These mitochondrial quality control mechanisms have been well studied in chronic and acute pathologies such as Parkinson's disease, Alzheimer's disease, stroke, and acute myocardial infarction, but less is known about how these two processes interact and contribute to specific pathophysiologic states. To date, evidence for the role of mitochondrial quality control in acute and chronic disease is divergent and suggests that mitochondrial quality control processes can serve both survival and death functions depending on the disease state. This review aims to provide a synopsis of the molecular mechanisms involved in mitochondrial quality control, to summarize our current understanding of the complex role that mitochondrial quality control plays in the progression of acute vs chronic diseases and, finally, to speculate on the possibility that targeted manipulation of mitochondrial quality control mechanisms may be exploited for the rationale design of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anthony R Anzell
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Rita Maizy
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Karin Przyklenk
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
33
|
Phair RD. Differential equation methods for simulation of GFP kinetics in non-steady state experiments. Mol Biol Cell 2018; 29:763-771. [PMID: 29367436 PMCID: PMC6003217 DOI: 10.1091/mbc.e17-06-0396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 11/11/2022] Open
Abstract
Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis.
Collapse
Affiliation(s)
- Robert D Phair
- Integrative Bioinformatics Inc., Mountain View, CA 94041
| |
Collapse
|
34
|
Appelhans T, Busch KB. Dynamic imaging of mitochondrial membrane proteins in specific sub-organelle membrane locations. Biophys Rev 2017; 9:345-352. [PMID: 28819924 DOI: 10.1007/s12551-017-0287-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are cellular organelles with multifaceted tasks and thus composed of different sub-compartments. The inner mitochondrial membrane especially has a complex nano-architecture with cristae protruding into the matrix. Related to their function, the localization of mitochondrial membrane proteins is more or less restricted to specific sub-compartments. In contrast, it can be assumed that membrane proteins per se diffuse unimpeded through continuous membranes. Fluorescence recovery after photobleaching is a versatile technology used in mobility analyses to determine the mobile fraction of proteins, but it cannot provide data on subpopulations or on confined diffusion behavior. Fluorescence correlation spectroscopy is used to analyze single molecule diffusion, but no trajectory maps are obtained. Single particle tracking (SPT) technologies in live cells, such as tracking and localization microscopy (TALM), do provide nanotopic localization and mobility maps of mitochondrial proteins in situ. Molecules can be localized with a precision of between 10 and 20 nm, and single trajectories can be recorded and analyzed; this is sufficient to reveal significant differences in the spatio-temporal behavior of diverse mitochondrial proteins. Here, we compare diffusion coefficients obtained by these different technologies and discuss trajectory maps of diverse mitochondrial membrane proteins obtained by SPT/TALM. We show that membrane proteins in the outer membrane generally display unhindered diffusion, while the mobility of inner membrane proteins is restricted by the inner membrane architecture, resulting in significantly lower diffusion coefficients. Moreover, tracking analysis could discern proteins in the inner boundary membrane from proteins preferentially diffusing in cristae membranes, two sub-compartments of the inner mitochondrial membrane. Thus, by evaluating trajectory maps it is possible to assign proteins to different sub-compartments of the same membrane.
Collapse
Affiliation(s)
- Timo Appelhans
- Mitochondrial Dynamics Group, School of Biology, University of Osnabrück, 49076, Osnabrück, Germany
| | - Karin B Busch
- Mitochondrial Dynamics Group, School of Biology, University of Osnabrück, 49076, Osnabrück, Germany. .,Institute of Molecular Cell Biology, School of Biology, Westfälische Wilhelms-University of Münster, 48149, Münster, Germany.
| |
Collapse
|
35
|
Chen E, Kliger DS. Time-Resolved Linear Dichroism Measurements of Carbonmonoxy Myoglobin as a Probe of the Microviscosity in Crowded Environments. J Phys Chem B 2017; 121:7064-7074. [PMID: 28703591 DOI: 10.1021/acs.jpcb.7b04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of viscosities in living cells is heterogeneous because of the different sizes and natures of macromolecular components. When thinking about protein folding/function processes in such an environment, the relevant (micro)viscosity at the micrometer length scale is necessarily distinguished from the bulk (macro)viscosity. The concentration dependencies of microviscosities are determined by a number of factors, such as electrostatic interactions, van der Waals forces, and excluded volume effects. To explore such factors, the rotational diffusion time of myoglobin in the presence of varying concentrations of macromolecules that differ in molecular weight (dextran 6000, 10 000, and 70 000), shape (dextran versus Ficoll), size, and surface charge is measured with time-resolved linear dichroism spectroscopy. The results of these studies offer simple empirically determined linear and exponential functions useful for predicting microviscosities as a function of concentration for these macromolecular crowders that are typically used to study crowding effects on protein folding. To understand how relevant these microviscosity measurements are to intracellular environments, the TRLD results are discussed in the context of studies that measure viscosity in cells.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| |
Collapse
|
36
|
Nasca A, Scotton C, Zaharieva I, Neri M, Selvatici R, Magnusson OT, Gal A, Weaver D, Rossi R, Armaroli A, Pane M, Phadke R, Sarkozy A, Muntoni F, Hughes I, Cecconi A, Hajnóczky G, Donati A, Mercuri E, Zeviani M, Ferlini A, Ghezzi D. Recessive mutations in MSTO1 cause mitochondrial dynamics impairment, leading to myopathy and ataxia. Hum Mutat 2017; 38:970-977. [PMID: 28544275 PMCID: PMC5575512 DOI: 10.1002/humu.23262] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
Abstract
We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients’ fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.
Collapse
Affiliation(s)
- Alessia Nasca
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| | - Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, London, UK
| | - Marcella Neri
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rita Selvatici
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Aniko Gal
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rachele Rossi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Annarita Armaroli
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marika Pane
- Neuropsichiatry Unit, Catholic University, Policlinico Gemelli, Rome, Italy
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, London, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, London, UK
| | - Imelda Hughes
- Royal Manchester Children's Hospital, Manchester, UK
| | - Antonella Cecconi
- Pediatrics Medical Genetics, Hospital S. Maria Annunziata Bagno a Ripoli, Florence, Italy
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alice Donati
- Unit of Metabolic and Muscular Diseases, Meyer Children Hospital, Florence, Italy
| | - Eugenio Mercuri
- Neuropsichiatry Unit, Catholic University, Policlinico Gemelli, Rome, Italy
| | | | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, London, UK
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| |
Collapse
|
37
|
Wongso D, Dong J, Ueda H, Kitaguchi T. Flashbody: A Next Generation Fluobody with Fluorescence Intensity Enhanced by Antigen Binding. Anal Chem 2017; 89:6719-6725. [PMID: 28534613 DOI: 10.1021/acs.analchem.7b00959] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent probes are valuable tools for visualizing the spatiotemporal dynamics of molecules in living cells. Here we developed a genetically encoded antibody probe with antigen-dependent fluorescence intensity called "Flashbody". We first created a fusion of EGFP to the single chain variable region fragment (scFv) of antibody against seven amino acids of the bone Gla protein C-terminus (BGPC7) called BGP Fluobody, which successfully showed the intracellular localization of BGPC7-tagged protein. To generate BGP Flashbody, circularly permuted GFP was inserted in between two variable region fragments, and the linkers were optimized, resulting in fluorescence intensity increase of 300% upon binding with BGPC7 in a dose-dependent manner. Live-cell imaging using BGP Flashbody showed that BGPC7 fused with cell penetrating peptide was able to enter through the plasma membrane by forming a nucleation zone, while it penetrated the nuclear membrane with different mechanism. The construction of Flashbody will be possible for a range of antibody fragments and opens up new possibilities for visualizing a myriad of molecules of interest.
Collapse
Affiliation(s)
- Devina Wongso
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS) , 11 Biopolis Way #05-02 Helios, Singapore 138667, Singapore
| | - Jinhua Dong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS) , 11 Biopolis Way #05-02 Helios, Singapore 138667, Singapore.,Comprehensive Research Organization, Waseda University , #304, Block 120-4, 513 Wasedatsurumaki-cho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
38
|
Rothe M, Gruber T, Gröger S, Balbach J, Saalwächter K, Roos M. Transient binding accounts for apparent violation of the generalized Stokes-Einstein relation in crowded protein solutions. Phys Chem Chem Phys 2016; 18:18006-14. [PMID: 27326536 DOI: 10.1039/c6cp01056c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of high concentration, also referred to as crowding conditions, on Brownian motion is of central relevance for the understanding of the physical, chemical and biological properties of proteins in their native environment. Specifically, the simple inverse relationship between the translational diffusion coefficient and the macroscopic solution viscosity as predicted by the generalized Stokes-Einstein (GSE) relation has been the subject of many studies, yet a consensus on its applicability has not been reached. Here, we use isotope-filtered pulsed-field gradient NMR to separately assess the μm-scale diffusivity of two proteins, BSA and an SH3 domain, in mixtures as well as single-protein solutions, and demonstrate that transient binding can account for an apparent violation of the GSE relation. Whereas GSE behavior applies for the single-protein solutions, it does not hold for the protein mixtures. Transient binding behavior in the concentrated mixtures is evidenced by calorimetric experiments and by a significantly increased apparent activation energy of diffusion. In contrast, the temperature dependence of the viscosity, as well as of the diffusivity in single-component solutions, is always dominated by the flow activation energy of pure water. As a practically relevant second result, we further show that, for high protein concentrations, the diffusion of small molecules such as dioxane or water is not generally a suitable probe for the viscosity experienced by the diffusing proteins.
Collapse
Affiliation(s)
- M Rothe
- Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, 06120 Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Ichikawa K, Ohshima D, Sagara H. Regulation of signal transduction by spatial parameters: a case in NF-κB oscillation. IET Syst Biol 2016; 9:41-51. [PMID: 26672147 DOI: 10.1049/iet-syb.2013.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor regulating expression of more than 500 genes, and its dysfunction leads to the autoimmune and inflammatory diseases. In malignant cancer cells, NF-κB is constitutively activated. Thus the elucidation of mechanisms for NF-κB regulation is important for the establishment of therapeutic treatment caused by incorrect NF-κB responses. Cytoplasmic NF-κB translocates to the nucleus by the application of extracellular stimuli such as cytokines. Nuclear NF-κB is known to oscillate with the cycle of 1.5-4.5 h, and it is thought that the oscillation pattern regulates the expression profiles of genes. In this review, first we briefly describe regulation mechanisms of NF-κB. Next, published computational simulations on the oscillation of NF-κB are summarised. There are at least 60 reports on the computational simulation and analysis of NF-κB oscillation. Third, the importance of a 'space' for the regulation of oscillation pattern of NF-κB is discussed, showing altered oscillation pattern by the change in spatial parameters such as diffusion coefficient, nuclear to cytoplasmic volume ratio (N/C ratio), and transport through nuclear membrane. Finally, simulations in a true intracellular space (TiCS), which is an intracellular 3D space reconstructed in a computer with organelles such as nucleus and mitochondria are discussed.
Collapse
|
40
|
Cerqueira FM, Chausse B, Baranovski BM, Liesa M, Lewis EC, Shirihai OS, Kowaltowski AJ. Diluted serum from calorie-restricted animals promotes mitochondrial β-cell adaptations and protect against glucolipotoxicity. FEBS J 2016; 283:822-33. [PMID: 26732506 DOI: 10.1111/febs.13632] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/04/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022]
Abstract
β-cells quickly adjust insulin secretion to oscillations in nutrients carried by the blood, acting as fuel sensors. However, most studies of β-cell responses to nutrients do not discriminate between fuel levels and signaling components present in the circulation. Here we studied the effect of serum from calorie-restricted rats versus serum from rats fed ad libitum, diluted tenfold in the medium, which did not contribute significantly to the pool of nutrients, on β-cell mitochondrial function and dynamics under regular and high-nutrient culture conditions. Insulin secreting beta-cell derived line (INS1) cells incubated with serum from calorie-restricted rats (CR serum) showed higher levels of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and active nitric oxide synthase. The expression of mitofusin-2 (Mfn-2) and optic atrophy 1 (OPA-1), proteins involved in mitochondrial fusion, was increased, while the levels of the mitochondrial fission mediator dynamin related protein 1 (DRP-1) were reduced. Consistent with changes in mitochondrial dynamics protein levels, CR serum treatment increased mitochondrial fusion rates, as well as their length and connectivity. These changes in mitochondrial morphology were associated with prolonged glucose-stimulated insulin secretion and mitochondrial respiration. When combining CR serum and high levels of glucose and palmitate (20 and 0.4 mm, respectively), an in vitro model of type II diabetes, we observed that signaling promoted by CR serum was enough to overcome glucolipotoxicity, as indicated by CR-mediated prevention of mitochondrial fusion arrest and reduced respiratory function in INS1 cells under glucolipotoxicity. Overall, our results provide evidence that non-nutrient factors in serum have a major impact on β-cell mitochondrial adaptations to changes in metabolism.
Collapse
Affiliation(s)
- Fernanda M Cerqueira
- Department of Medicine, Boston University School of Medicine, MA, USA.,Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.,Departamento de Bioquímica, Universidade de São Paulo, Brazil
| | - Bruno Chausse
- Departamento de Bioquímica, Universidade de São Paulo, Brazil
| | - Boris M Baranovski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Marc Liesa
- Department of Medicine, Boston University School of Medicine, MA, USA.,UCLA Section of Endocrinology, Department of Medicine, David Geffen School of Medicine, UCLA, CA, USA
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Orian S Shirihai
- Department of Medicine, Boston University School of Medicine, MA, USA.,Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.,UCLA Section of Endocrinology, Department of Medicine, David Geffen School of Medicine, UCLA, CA, USA
| | | |
Collapse
|
41
|
Wei Y, Zhou F, Zhang D, Chen Q, Xing D. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. NANOSCALE 2016; 8:3530-8. [PMID: 26799192 DOI: 10.1039/c5nr07785k] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the 'on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Yanchun Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou 510631, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Zhang C, Shi Z, Zhang L, Zhou Z, Zheng X, Liu G, Bu G, Fraser PE, Xu H, Zhang YW. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology. J Cell Sci 2016; 129:994-1002. [PMID: 26813789 DOI: 10.1242/jcs.176792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial morphology is regulated by fusion and fission machinery. Impaired mitochondria dynamics cause various diseases, including Alzheimer's disease. Appoptosin (encoded by SLC25A38) is a mitochondrial carrier protein that is located in the mitochondrial inner membrane. Appoptosin overexpression causes overproduction of reactive oxygen species (ROS) and caspase-dependent apoptosis, whereas appoptosin downregulation abolishes β-amyloid-induced mitochondrial fragmentation and neuronal death during Alzheimer's disease. Herein, we found that overexpression of appoptosin resulted in mitochondrial fragmentation in a manner independent of its carrier function, ROS production or caspase activation. Although appoptosin did not affect levels of mitochondrial outer-membrane fusion (MFN1 and MFN2), inner-membrane fusion (OPA1) and fission [DRP1 (also known as DNM1L) and FIS1] proteins, appoptosin interacted with MFN1 and MFN2, as well as with the mitochondrial ubiquitin ligase MITOL (also known as MARCH5) but not OPA1, FIS1 or DRP1. Appoptosin overexpression impaired the interaction between MFN1 and MFN2, and mitochondrial fusion. By contrast, co-expression of MFN1, MITOL and a dominant-negative form of DRP1, DRP1(K38A), partially rescued appoptosin-induced mitochondrial fragmentation and apoptosis, whereas co-expression of FIS1 aggravated appoptosin-induced apoptosis. Together, our results demonstrate that appoptosin can interact with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.
Collapse
Affiliation(s)
- Cuilin Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhun Shi
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Lingzhi Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Zehua Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyuan Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Guiying Liu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China Degenerative Disease Research Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
43
|
Rashid R, Chee SML, Raghunath M, Wohland T. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization. Phys Biol 2015; 12:034001. [DOI: 10.1088/1478-3975/12/3/034001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Hoitzing H, Johnston IG, Jones NS. What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research. Bioessays 2015; 37:687-700. [PMID: 25847815 PMCID: PMC4672710 DOI: 10.1002/bies.201400188] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria can change their shape from discrete isolated organelles to a large continuous reticulum. The cellular advantages underlying these fused networks are still incompletely understood. In this paper, we describe and compare hypotheses regarding the function of mitochondrial networks. We use mathematical and physical tools both to investigate existing hypotheses and to generate new ones, and we suggest experimental and modelling strategies. Among the novel insights we underline from this work are the possibilities that (i) selective mitophagy is not required for quality control because selective fusion is sufficient; (ii) increased connectivity may have non-linear effects on the diffusion rate of proteins; and (iii) fused networks can act to dampen biochemical fluctuations. We hope to convey to the reader that quantitative approaches can drive advances in the understanding of the physiological advantage of these morphological changes.
Collapse
Affiliation(s)
- Hanne Hoitzing
- Department of Mathematics, Imperial College London, London, UK
| | - Iain G Johnston
- Department of Mathematics, Imperial College London, London, UK
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, UK
| |
Collapse
|
45
|
Li R, Todd BA. Diffusion-limited encounter rate in a three-dimensional lattice of connected compartments studied by Brownian-dynamics simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032801. [PMID: 25871151 DOI: 10.1103/physreve.91.032801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 06/04/2023]
Abstract
We considered the rate at which a diffusing particle encounters a target in a three-dimensional lattice of compartments with semipermeable walls. This work expands a previous theory [Li et al., Phys. Rev. Lett. 113, 028303 (2014)] for the encounter rate in the dilute limit of targets to the general case of any density of targets. We also used Brownian dynamics simulations to evaluate the approximations in the analytical theory. We find that the largest errors in the analytical theory are on the order of 10%. This work therefore demonstrates an analytical theory capable of describing the encounter rates in compartmentalized environments for any level of confinement and any target density.
Collapse
Affiliation(s)
- Ran Li
- School of Electrical and Computer Engineering and Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Brian A Todd
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
46
|
Ohshima D, Ichikawa K. Regulation of nuclear NF-κB oscillation by a diffusion coefficient and its biological implications. PLoS One 2014; 9:e109895. [PMID: 25302804 PMCID: PMC4193834 DOI: 10.1371/journal.pone.0109895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/10/2014] [Indexed: 11/18/2022] Open
Abstract
The transcription factor NF-κB shuttles between the cytoplasm and the nucleus, and nuclear NF-κB is known to oscillate with a cycle of 1.5-2.5 h following the application of external stimuli. Oscillation pattern of NF-κB is implicated in regulation of the gene expression profile. In a previous report, we found that the oscillation pattern of nuclear NF-κB in a computational 3D spherical cell was regulated by spatial parameters such as nuclear to cytoplasmic volume ratio, nuclear transport, locus of protein synthesis, and diffusion coefficient. Here we report analyses and a biological implication for the regulation of oscillation pattern by diffusion coefficient. Our analyses show that the “reset” of nuclear NF-κB, defined as the return of nuclear NF-κB to the initial level or lower, was crucial for the oscillation; this was confirmed by the flux analysis. In addition, we found that the distant cytoplasmic location from the nucleus acted as a “reservoir” for storing newly synthesized IκBα. When the diffusion coefficient of proteins was large (≥10−11 m2/s), a larger amount of IκBα was stored in the “reservoir” with a large flux by diffusion. Subsequently, stored IκBα diffused back to the nucleus, where nuclear NF-κB was “reset” to the initial state. This initiated the next oscillation cycle. When the diffusion coefficient was small (≤10−13 m2/s), oscillation of nuclear NF-κB was not observed because a smaller amount of IκBα was stored in the “reservoir” and there was incomplete “reset” of nuclear NF-κB. If the diffusion coefficient for IκBα was increased to 10−11 m2/s keeping other proteins at 10−13 m2/s, the oscillation was rescued confirming the “reset” and “reservoir” hypothesis. Finally, we showed altered effective value of diffusion coefficient by diffusion obstacles. Thus, organelle crowding seen in stressed cells possibly changes the oscillation pattern by controlling the effective diffusion coefficient.
Collapse
Affiliation(s)
- Daisuke Ohshima
- Division of Mathematical Oncology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kazuhisa Ichikawa
- Division of Mathematical Oncology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
47
|
Chapanian R, Kwan DH, Constantinescu I, Shaikh FA, Rossi NAA, Withers SG, Kizhakkedathu JN. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat Commun 2014; 5:4683. [PMID: 25140641 PMCID: PMC4978540 DOI: 10.1038/ncomms5683] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022] Open
Abstract
The reaction of macromolecules such as enzymes and antibodies with cell surfaces is often an inefficient process, requiring large amounts of expensive reagent. Here we report a general method based on macromolecular crowding with a range of neutral polymers to enhance such reactions, using red blood cells (RBCs) as a model system. Rates of conversion of type A and B red blood cells to universal O type by removal of antigenic carbohydrates with selective glycosidases are increased up to 400-fold in the presence of crowders. Similar enhancements are seen for antibody binding. We further explore the factors underlying these enhancements using confocal microscopy and fluorescent recovery after bleaching (FRAP) techniques with various fluorescent protein fusion partners. Increased cell-surface concentration due to volume exclusion, along with two-dimensionally confined diffusion of enzymes close to the cell surface, appear to be the major contributing factors.
Collapse
Affiliation(s)
- Rafi Chapanian
- 1] Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [2] Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - David H Kwan
- 1] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1 [2] Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Iren Constantinescu
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - Fathima A Shaikh
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Nicholas A A Rossi
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - Stephen G Withers
- 1] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1 [2] Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 [3] Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jayachandran N Kizhakkedathu
- 1] Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [2] Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [3] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
48
|
Dynamics of mitochondrial RNA-binding protein complex in Trypanosoma brucei and its petite mutant under optimized immobilization conditions. EUKARYOTIC CELL 2014; 13:1232-40. [PMID: 25063375 DOI: 10.1128/ec.00149-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There are a variety of complex metabolic processes ongoing simultaneously in the single, large mitochondrion of Trypanosoma brucei. Understanding the organellar environment and dynamics of mitochondrial proteins requires quantitative measurement in vivo. In this study, we have validated a method for immobilizing both procyclic stage (PS) and bloodstream stage (BS) T. brucei brucei with a high level of cell viability over several hours and verified its suitability for undertaking fluorescence recovery after photobleaching (FRAP), with mitochondrion-targeted yellow fluorescent protein (YFP). Next, we used this method for comparative analysis of the translational diffusion of mitochondrial RNA-binding protein 1 (MRP1) in the BS and in T. b. evansi. The latter flagellate is like petite mutant Saccharomyces cerevisiae because it lacks organelle-encoded nucleic acids. FRAP measurement of YFP-tagged MRP1 in both cell lines illuminated from a new perspective how the absence or presence of RNA affects proteins involved in mitochondrial RNA metabolism. This work represents the first attempt to examine this process in live trypanosomes.
Collapse
|
49
|
Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease. Biochem Biophys Res Commun 2014; 451:131-6. [PMID: 25065742 DOI: 10.1016/j.bbrc.2014.07.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022]
Abstract
Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ(0) cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.
Collapse
|
50
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|