1
|
Shook DR, Wen JWH, Rolo A, O'Hanlon M, Francica B, Dobbins D, Skoglund P, DeSimone DW, Winklbauer R, Keller RE. Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians. eLife 2022; 11:e57642. [PMID: 35404236 PMCID: PMC9064293 DOI: 10.7554/elife.57642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
The morphogenic process of convergent thickening (CT) was originally described as the mediolateral convergence and radial thickening of the explanted ventral involuting marginal zone (IMZ) of Xenopus gastrulae (Keller and Danilchik, 1988). Here, we show that CT is expressed in all sectors of the pre-involution IMZ, which transitions to expressing convergent extension (CE) after involution. CT occurs without CE and drives symmetric blastopore closure in ventralized embryos. Assays of tissue affinity and tissue surface tension measurements suggest CT is driven by increased interfacial tension between the deep IMZ and the overlying epithelium. The resulting minimization of deep IMZ surface area drives a tendency to shorten the mediolateral (circumblastoporal) aspect of the IMZ, thereby generating tensile force contributing to blastopore closure (Shook et al., 2018). These results establish CT as an independent force-generating process of evolutionary significance and provide the first clear example of an oriented, tensile force generated by an isotropic, Holtfreterian/Steinbergian tissue affinity change.
Collapse
Affiliation(s)
- David R Shook
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Jason WH Wen
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Ana Rolo
- Centre for Craniofacial and Regenerative Biology, King's College LondonLondonUnited Kingdom
| | - Michael O'Hanlon
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | | | | | - Paul Skoglund
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Douglas W DeSimone
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Ray E Keller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| |
Collapse
|
2
|
Abstract
The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.
Collapse
|
3
|
Disorganization of intercalated discs in dilated cardiomyopathy. Sci Rep 2021; 11:11852. [PMID: 34088908 PMCID: PMC8178322 DOI: 10.1038/s41598-021-90502-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a primary myocardial disease, the pathology of which is left ventricular or biventricular dilation and impaired myocardial contractility. The clinical and pathological diagnosis of DCM is difficult, and other cardiac diseases must be ruled out. Several studies have reported pathological findings that are characteristic of DCM, including cardiomyocyte atrophy, nuclear pleomorphism, and interstitial fibrosis, but none of these findings are DCM-specific. In this study, we examined the morphological differences in the intercalated discs (ICDs) between three groups of patients, a DCM group, a chronic heart failure group, and a control group. A total of 22 autopsy cases, including five DCM cases, nine CHF cases and eight control cases, were retrieved from the archives of the Department of Pathology at Akita University, Japan. The morphological differences were examined using multiple methods: macroscopic examination, light microscopy, immunohistochemistry, electron microscopy, and gene expression analyses. We observed disorganized ICDs, clearly illustrated by N-cadherin immunostaining in the DCM group. "Reduction of N-cadherin immunostaining intensity" and "ICD scattering" was DCM-specific. The results suggest that disorganized ICDs contribute to the development of DCM, and that N-cadherin immunostaining is useful for determining the presence of disorganized ICDs and for the pathological diagnosis of DCM.
Collapse
|
4
|
P120 catenin potentiates constitutive E-cadherin dimerization at the plasma membrane and regulates trans binding. Curr Biol 2021; 31:3017-3027.e7. [PMID: 34019823 DOI: 10.1016/j.cub.2021.04.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/09/2020] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
Cadherins are essential adhesion proteins that regulate tissue cohesion and paracellular permeability by assembling dense adhesion plaques at cell-to-cell contacts. Adherens junctions are central to a wide range of tissue functions; identifying protein interactions that potentiate their assembly and regulation has been the focus of research for over 2 decades. Here, we present evidence for a new, unexpected mechanism of cadherin oligomerization on cells. Fully quantified spectral imaging fluorescence resonance energy transfer (FSI-FRET) and fluorescence intensity fluctuation (FIF) measurements directly demonstrate that E-cadherin forms constitutive lateral (cis) dimers at the plasma membrane. Results further show that binding of the cytosolic protein p120ctn binding to the intracellular region is required for constitutive E-cadherin dimerization. This finding differs from a model that attributes lateral (cis) cadherin oligomerization solely to extracellular domain interactions. The present, novel findings are further supported by studies of E-cadherin mutants that uncouple p120ctn binding or with cells in which p120ctn was knocked out using CRISPR-Cas9. Quantitative affinity measurements further demonstrate that uncoupling p120ctn binding reduces the cadherin trans binding affinity and cell adhesion. These findings transform the current model of cadherin assembly at cell surfaces and identify the core building blocks of cadherin-mediated intercellular adhesions. They also identify a new role for p120ctn and reconcile findings that implicate both the extracellular and intracellular cadherin domains in cadherin clustering and intercellular cohesion.
Collapse
|
5
|
Nagel M, Barua D, Damm EW, Kashef J, Hofmann R, Ershov A, Cecilia A, Moosmann J, Baumbach T, Winklbauer R. Capillarity and active cell movement at mesendoderm translocation in the Xenopus gastrula. Development 2021; 148:dev.198960. [PMID: 33674259 DOI: 10.1242/dev.198960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
During Xenopus gastrulation, leading edge mesendoderm (LEM) advances animally as a wedge-shaped cell mass over the vegetally moving blastocoel roof (BCR). We show that close contact across the BCR-LEM interface correlates with attenuated net advance of the LEM, which is pulled forward by tip cells while the remaining LEM frequently separates from the BCR. Nevertheless, lamellipodia persist on the detached LEM surface. They attach to adjacent LEM cells and depend on PDGF-A, cell-surface fibronectin and cadherin. We argue that active cell motility on the LEM surface prevents adverse capillary effects in the liquid LEM tissue as it moves by being pulled. It counters tissue surface-tension effects with oriented cell movement and bulges the LEM surface out to keep it close to the curved BCR without attaching to it. Proximity to the BCR is necessary, in turn, for the maintenance and orientation of lamellipodia that permit mass cell movement with minimal substratum contact. Together with a similar process in epithelial invagination, vertical telescoping, the cell movement at the LEM surface defines a novel type of cell rearrangement: vertical shearing.
Collapse
Affiliation(s)
- Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Erich W Damm
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Jubin Kashef
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Ralf Hofmann
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.,Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Alexey Ershov
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | | | - Julian Moosmann
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung, 21502 Geesthacht, Germany
| | - Tilo Baumbach
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| |
Collapse
|
6
|
Park KS, Schecterson L, Gumbiner BM. Enhanced endothelial barrier function by monoclonal antibody activation of vascular endothelial cadherin. Am J Physiol Heart Circ Physiol 2021; 320:H1403-H1410. [PMID: 33577432 DOI: 10.1152/ajpheart.00002.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Excessive vascular permeability occurs in inflammatory disease processes. Vascular endothelial cadherin (VE-cadherin) is an adhesion protein that controls vascular permeability. We identified monoclonal antibodies (mAbs) to human VE-cadherin that activate cell adhesion and inhibit the increased permeability of endothelial cell monolayers induced by thrombin receptor activator peptide-6 (TRAP-6). Two mAbs, 8A12c and 3A5a, reduce permeability, whereas an inhibitory mAb, 2E11d, enhances permeability. Activating mAbs also reduce permeability induced by tumor necrosis factor-α (TNF-α) and vascular endothelial cell growth factor (VEGF). The activating mAbs also stabilize the organization of the adherens junctions that are disrupted by TRAP-6, VEGF, or TNF-α. The activating mAbs act directly on the adhesive function of VE-cadherin because they did not block the accumulation of actin filaments stimulated by TRAP-6 and enhance physical cell-cell adhesion of VE-cadherin-expressing tissue culture cells. Therefore, VE-cadherin function can be regulated at the cell surface to control endothelial permeability.NEW & NOTEWORTHY Excessive vascular permeability is a serious complication of many inflammatory disease conditions. We have developed monoclonal antibodies that inhibit increases in endothelial monolayer permeability induced by several signaling factors by activating VE-cadherin mediated adhesion and stabilizing cell junctions. These antibodies and/or the mechanisms they reveal may lead to important therapeutics to treat vascular leakiness and inflammation.
Collapse
Affiliation(s)
- Ki-Sook Park
- Department of Biomedical Science and Technology/East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Barry M Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Mendonsa AM, Bandyopadhyay C, Gumbiner BM. p120-catenin phosphorylation status alters E-cadherin mediated cell adhesion and ability of tumor cells to metastasize. PLoS One 2020; 15:e0235337. [PMID: 32589661 PMCID: PMC7319294 DOI: 10.1371/journal.pone.0235337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
p120-catenin is considered to be a tumor suppressor because it stabilizes E-cadherin levels at the cell surface. p120-catenin phosphorylation is increased in several types of cancer, but the role of phosphorylation in cancer is unknown. The phosphorylation state of p120-catenin is important in controlling E-cadherin homophilic binding strength which maintains epithelial junctions. Because decreased cell-cell adhesion is associated with increased cancer metastasis we hypothesize that p120-catenin phosphorylation at specific Serine and Threonine residues alters the E-cadherin binding strength between tumor cells and thereby affect the ability of tumor cells to leave the primary tumor and metastasize to distant sites. In this study we show that expression of the p120-catenin phosphorylation dead mutant, by converting six Serine and Threonine sites to Alanine, leads to enhanced E-cadherin adhesive binding strength in tumor cells. We observed a decrease in the ability of tumor cells expressing the p120-catenin phosphorylation mutant to migrate and invade using in-vitro models of cancer progression. Further, tumor cells expressing the phosphorylation mutant form of p120-catenin demonstrated a decrease in ability to metastasize to the lungs using an in-vivo orthotopic mammary fat pad injection model of breast cancer development and metastasis. This suggests that regulation of p120-catenin phosphorylation at the cell surface is important in mediating cell-adhesion, thereby impacting cancer progression and metastasis.
Collapse
Affiliation(s)
- Alisha M. Mendonsa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chirosree Bandyopadhyay
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Barry M. Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
8
|
The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci U S A 2020; 117:5931-5937. [PMID: 32127478 DOI: 10.1073/pnas.1918167117] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
E-cadherin is a tumor suppressor protein, and the loss of its expression in association with the epithelial mesenchymal transition (EMT) occurs frequently during tumor metastasis. However, many metastases continue to express E-cadherin, and a full EMT is not always necessary for metastasis; also, positive roles for E-cadherin expression in metastasis have been reported. We hypothesize instead that changes in the functional activity of E-cadherin expressed on tumor cells in response to environmental factors is an important determinant of the ability of the tumor cells to metastasize. We find that E-cadherin expression persists in metastatic lung nodules and circulating tumor cells (CTCs) in two mouse models of mammary cancer: genetically modified MMTV-PyMT mice and orthotopically grafted 4T1 tumor cells. Importantly, monoclonal antibodies that bind to and activate E-cadherin at the cell surface reduce lung metastasis from endogenous genetically driven tumors and from tumor cell grafts. E-cadherin activation inhibits metastasis at multiple stages, including the accumulation of CTCs from the primary tumor and the extravasation of tumor cells from the vasculature. These activating mAbs increase cell adhesion and reduce cell invasion and migration in both cell culture and three-dimensional spheroids grown from primary tumors. Moreover, activating mAbs increased the frequency of apoptotic cells without affecting proliferation. Although the growth of the primary tumors was unaffected by activating mAbs, CTCs and tumor cells in metastatic nodules exhibited increased apoptosis. Thus, the functional state of E-cadherin is an important determinant of metastatic potential beyond whether the gene is expressed.
Collapse
|
9
|
The Role of Carcinogenesis-Related Biomarkers in the Wnt Pathway and Their Effects on Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12030555. [PMID: 32121061 PMCID: PMC7139589 DOI: 10.3390/cancers12030555] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial-mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.
Collapse
|
10
|
Silva TP, Cotovio JP, Bekman E, Carmo-Fonseca M, Cabral JMS, Fernandes TG. Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells Int 2019; 2019:4508470. [PMID: 31149014 PMCID: PMC6501244 DOI: 10.1155/2019/4508470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022] Open
Abstract
Human morphogenesis is a complex process involving distinct microenvironmental and physical signals that are manipulated in space and time to give rise to complex tissues and organs. Advances in pluripotent stem cell (PSC) technology have promoted the in vitro recreation of processes involved in human morphogenesis. The development of organoids from human PSCs represents one reliable source for modeling a large spectrum of human disorders, as well as a promising approach for drug screening and toxicological tests. Based on the "self-organization" capacity of stem cells, different PSC-derived organoids have been created; however, considerable differences between in vitro-generated PSC-derived organoids and their in vivo counterparts have been reported. Advances in the bioengineering field have allowed the manipulation of different components, including cellular and noncellular factors, to better mimic the in vivo microenvironment. In this review, we focus on different examples of bioengineering approaches used to promote the self-organization of stem cells, including assembly, patterning, and morphogenesis in vitro, contributing to tissue-like structure formation.
Collapse
Affiliation(s)
- Teresa P. Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - João P. Cotovio
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria Carmo-Fonseca
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Szabó A, Theveneau E, Turan M, Mayor R. Neural crest streaming as an emergent property of tissue interactions during morphogenesis. PLoS Comput Biol 2019; 15:e1007002. [PMID: 31009457 PMCID: PMC6497294 DOI: 10.1371/journal.pcbi.1007002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/02/2019] [Accepted: 04/03/2019] [Indexed: 12/05/2022] Open
Abstract
A fundamental question in embryo morphogenesis is how a complex pattern is established in seemingly uniform tissues. During vertebrate development, neural crest cells differentiate as a continuous mass of tissue along the neural tube and subsequently split into spatially distinct migratory streams to invade the rest of the embryo. How these streams are established is not well understood. Inhibitory signals surrounding the migratory streams led to the idea that position and size of streams are determined by a pre-pattern of such signals. While clear evidence for a pre-pattern in the cranial region is still lacking, all computational models of neural crest migration published so far have assumed a pre-pattern of negative signals that channel the neural crest into streams. Here we test the hypothesis that instead of following a pre-existing pattern, the cranial neural crest creates their own migratory pathway by interacting with the surrounding tissue. By combining theoretical modeling with experimentation, we show that streams emerge from the interaction of the hindbrain neural crest and the neighboring epibranchial placodal tissues, without the need for a pre-existing guidance cue. Our model suggests that the initial collective neural crest invasion is based on short-range repulsion and asymmetric attraction between neighboring tissues. The model provides a coherent explanation for the formation of cranial neural crest streams in concert with previously reported findings and our new in vivo observations. Our results point to a general mechanism of inducing collective invasion patterns.
Collapse
Affiliation(s)
- András Szabó
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eric Theveneau
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Melissa Turan
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Roberto Mayor
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Tetley RJ, Mao Y. The same but different: cell intercalation as a driver of tissue deformation and fluidity. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0328. [PMID: 30249777 DOI: 10.1098/rstb.2017.0328] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
The ability of cells to exchange neighbours, termed intercalation, is a key feature of epithelial tissues. Intercalation is predominantly associated with tissue deformations that drive morphogenesis. More recently, however, intercalation that is not associated with large-scale tissue deformations has been described both during animal development and in mature epithelial tissues. This latter form of intercalation appears to contribute to an emerging phenomenon that we refer to as tissue fluidity-the ability of cells to exchange neighbours without changing the overall dimensions of the tissue. Here, we discuss the contribution of junctional dynamics to intercalation governing both morphogenesis and tissue fluidity. In particular, we focus on the relative roles of junctional contractility and cell-cell adhesion as the driving forces behind intercalation. These two contributors to junctional mechanics can be used to simulate cellular intercalation in mechanical computational models, to test how junctional cell behaviours might regulate tissue fluidity and contribute to the maintenance of tissue integrity and the onset of disease.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Robert J Tetley
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London, UK.,College of Information and Control, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, People's Republic of China
| |
Collapse
|
13
|
Abstract
E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.
Collapse
|
14
|
Canty L, Zarour E, Kashkooli L, François P, Fagotto F. Sorting at embryonic boundaries requires high heterotypic interfacial tension. Nat Commun 2017; 8:157. [PMID: 28761157 PMCID: PMC5537356 DOI: 10.1038/s41467-017-00146-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 06/02/2017] [Indexed: 11/22/2022] Open
Abstract
The establishment of sharp boundaries is essential for segregation of embryonic tissues during development, but the underlying mechanism of cell sorting has remained unclear. Opposing hypotheses have been proposed, either based on global tissue adhesive or contractile properties or on local signalling through cell contact cues. Here we use ectoderm-mesoderm separation in Xenopus to directly evaluate the role of these various parameters. We find that ephrin-Eph-based repulsion is very effective at inducing and maintaining separation, whereas differences in adhesion or contractility have surprisingly little impact. Computer simulations support and generalise our experimental results, showing that a high heterotypic interfacial tension between tissues is key to their segregation. We propose a unifying model, in which conditions of sorting previously considered as driven by differential adhesion/tension should be viewed as suboptimal cases of heterotypic interfacial tension.The mechanisms that cause different cells to segregate into distinct tissues are unclear. Here the authors show in Xenopus that formation of a boundary between two tissues is driven by local tension along the interface rather than by global differences in adhesion or cortical contractility.
Collapse
Affiliation(s)
- Laura Canty
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1
| | - Eleyine Zarour
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1
| | - Leily Kashkooli
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1
- CRBM, CNRS, Montpellier, 34293, France
| | - Paul François
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1
- Dept. of Physics, McGill University, Montreal, QC, Canada, H3A2T8
| | - François Fagotto
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1.
- CRBM, CNRS, Montpellier, 34293, France.
- Dept. of Biology, University of Montpellier, Montpellier, 34095, France.
| |
Collapse
|
15
|
Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell 2016; 27:3233-3244. [PMID: 27582386 PMCID: PMC5170857 DOI: 10.1091/mbc.e16-01-0058] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Loss of E-cadherin expression often occurs in tumors, but many metastases retain E-cadherin. Regulation of the adhesive activity of E-cadherin at the cell surface is important for metastasis of mammary tumor cells, and cancer-associated missense mutations in E-cadherin selectively affect the mechanism of cell surface regulation. The loss of E-cadherin expression in association with the epithelial–mesenchymal transition (EMT) occurs frequently during tumor metastasis. However, metastases often retain E-cadherin expression, an EMT is not required for metastasis, and metastases can arise from clusters of tumor cells. We demonstrate that the regulation of the adhesive activity of E-cadherin present at the cell surface by an inside-out signaling mechanism is important in cancer. First, we find that the metastasis of an E-cadherin–expressing mammary cell line from the mammary gland to the lung depends on reduced E-cadherin adhesive function. An activating monoclonal antibody to E-cadherin that induces a high adhesive state significantly reduced the number of cells metastasized to the lung without affecting the growth in size of the primary tumor in the mammary gland. Second, we find that many cancer-associated germline missense mutations in the E-cadherin gene in patients with hereditary diffuse gastric cancer selectively affect the mechanism of inside-out cell surface regulation without inhibiting basic E-cadherin adhesion function. This suggests that genetic deficits in E-cadherin cell surface regulation contribute to cancer progression. Analysis of these mutations also provides insights into the molecular mechanisms underlying cadherin regulation at the cell surface.
Collapse
Affiliation(s)
- Yuliya I Petrova
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101
| | - Barry M Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101 .,Departments of Pediatrics and Biochemistry, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
16
|
Pfister K, Shook DR, Chang C, Keller R, Skoglund P. Molecular model for force production and transmission during vertebrate gastrulation. Development 2016; 143:715-27. [PMID: 26884399 DOI: 10.1242/dev.128090] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vertebrate embryos undergo dramatic shape changes at gastrulation that require locally produced and anisotropically applied forces, yet how these forces are produced and transmitted across tissues remains unclear. We show that depletion of myosin regulatory light chain (RLC) levels in the embryo blocks force generation at gastrulation through two distinct mechanisms: destabilizing the myosin II (MII) hexameric complex and inhibiting MII contractility. Molecular dissection of these two mechanisms demonstrates that normal convergence force generation requires MII contractility and we identify a set of molecular phenotypes correlated with both this failure of convergence force generation in explants and of blastopore closure in whole embryos. These include reduced rates of actin movement, alterations in C-cadherin dynamics and a reduction in the number of polarized lamellipodia on intercalating cells. By examining the spatial relationship between C-cadherin and actomyosin we also find evidence for formation of transcellular linear arrays incorporating these proteins that could transmit mediolaterally oriented tensional forces. These data combine to suggest a multistep model to explain how cell intercalation can occur against a force gradient to generate axial extension forces. First, polarized lamellipodia extend mediolaterally and make new C-cadherin-based contacts with neighboring mesodermal cell bodies. Second, lamellipodial flow of actin coalesces into a tension-bearing, MII-contractility-dependent node-and-cable actin network in the cell body cortex. And third, this actomyosin network contracts to generate mediolateral convergence forces in the context of these transcellular arrays.
Collapse
Affiliation(s)
- Katherine Pfister
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - David R Shook
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Chenbei Chang
- Department of Cell Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Paul Skoglund
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
17
|
Maiden SL, Petrova YI, Gumbiner BM. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS One 2016; 11:e0148574. [PMID: 26845024 PMCID: PMC4742228 DOI: 10.1371/journal.pone.0148574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/19/2016] [Indexed: 01/06/2023] Open
Abstract
Tight regulation of cadherin-mediated intercellular adhesions is critical to both tissue morphogenesis during development and tissue homeostasis in adults. Cell surface expression of the cadherin-catenin complex is often directly correlated with the level of adhesion, however, examples exist where cadherin appears to be inactive and cells are completely non-adhesive. The state of p120-catenin phosphorylation has been implicated in regulating the adhesive activity of E-cadherin but the mechanism is currently unclear. We have found that destabilization of the microtubule cytoskeleton, independent of microtubule plus-end dynamics, dephosphorylates p120-catenin and activates E-cadherin adhesion in Colo 205 cells. Through chemical screening, we have also identified several kinases as potential regulators of E-cadherin adhesive activity. Analysis of several p120-catenin phosphomutants suggests that gross dephosphorylation of p120-catenin rather than that of specific amino acids may trigger E-cadherin adhesion. Uncoupling p120-catenin binding to E-cadherin at the membrane causes constitutive adhesion in Colo 205 cells, further supporting an inhibitory role of phosphorylated p120-catenin on E-cadherin activity.
Collapse
Affiliation(s)
- Stephanie L. Maiden
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Department of Biology, Truman State University, Kirksville, Missouri, United States of America
| | - Yuliya I. Petrova
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Barry M. Gumbiner
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Seattle Children’s Research Institute and University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
Shashikanth N, Petrova YI, Park S, Chekan J, Maiden S, Spano M, Ha T, Gumbiner BM, Leckband DE. Allosteric Regulation of E-Cadherin Adhesion. J Biol Chem 2015; 290:21749-61. [PMID: 26175155 DOI: 10.1074/jbc.m115.657098] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation.
Collapse
Affiliation(s)
| | - Yuliya I Petrova
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | | | - Jillian Chekan
- Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Stephanie Maiden
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Martha Spano
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Taekjip Ha
- From the Departments of Biochemistry, Physics, and the Howard Hughes Medical Institute, Urbana, Illinois 61801
| | - Barry M Gumbiner
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Deborah E Leckband
- From the Departments of Biochemistry, Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois 61801,
| |
Collapse
|
19
|
Fagotto F. Regulation of Cell Adhesion and Cell Sorting at Embryonic Boundaries. Curr Top Dev Biol 2015; 112:19-64. [DOI: 10.1016/bs.ctdb.2014.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Adhesive/Repulsive Codes in Vertebrate Forebrain Morphogenesis. Symmetry (Basel) 2014. [DOI: 10.3390/sym6030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Abstract
Animal development requires a carefully orchestrated cascade of cell fate specification events and cellular movements. A surprisingly small number of choreographed cellular behaviours are used repeatedly to shape the animal body plan. Among these, cell intercalation lengthens or spreads a tissue at the expense of narrowing along an orthogonal axis. Key steps in the polarization of both mediolaterally and radially intercalating cells have now been clarified. In these different contexts, intercalation seems to require a distinct combination of mechanisms, including adhesive changes that allow cells to rearrange, cytoskeletal events through which cells exert the forces needed for cell neighbour exchange, and in some cases the regulation of these processes through planar cell polarity.
Collapse
|
22
|
Kowalczyk AP, Nanes BA. Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling. Subcell Biochem 2014; 60:197-222. [PMID: 22674073 DOI: 10.1007/978-94-007-4186-7_9] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adherens junctions are important mediators of intercellular adhesion, but they are not static structures. They are regularly formed, broken, and rearranged in a variety of situations, requiring changes in the amount of cadherins, the main adhesion molecule in adherens junctions, present at the cell surface. Thus, endocytosis, degradation, and recycling of cadherins are crucial for dynamic regulation of adherens junctions and control of intercellular adhesion. In this chapter, we review the involvement of cadherin endocytosis in development and disease. We discuss the various endocytic pathways available to cadherins, the adaptors involved, and the sorting of internalized cadherin for recycling or lysosomal degradation. In addition, we review the regulatory pathways controlling cadherin endocytosis and degradation, including regulation of cadherin endocytosis by catenins, cadherin ubiquitination, and growth factor receptor signaling pathways. Lastly, we discuss the proteolytic cleavage of cadherins at the plasma membrane.
Collapse
Affiliation(s)
- Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, 30332, Atlanta, GA, USA,
| | | |
Collapse
|
23
|
Mu L, Jing C, Guo Z. Expression of N-cadherin proteins in myocardial hypertrophy in rats. Exp Ther Med 2014; 7:355-359. [PMID: 24396404 PMCID: PMC3881044 DOI: 10.3892/etm.2013.1431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to examine the expression of N-cadherin in the myocardial tissues of isoproterenol-induced myocardial hypertrophy in rats. In addition, the present study provided morphological data to investigate the signal transduction mechanisms of myocardial hypertrophy and reverse myocardial hypertrophy. A myocardial hypertrophy model was established by subcutaneously injecting isoprenaline into healthy adult Sprague-Dawley rats. The myocardial tissue was collected, embedded in conventional paraffin, sectioned and stained with hematoxylin and the pathological changes were observed. The expression and distribution of N-cadherin were detected by immunohistochemistry (IHC) and the changes in mRNA expression of N-cadherin in the myocardial tissues of rats were detected by reverse transcription polymerase chain reaction. Image analysis software was used to quantitatively analyze the expression of N-cadherin. The IHC and immunofluorescence results showed that there was no statistically significant difference between the experimental and control groups in the positive expression of N-cadherin. Furthermore, mRNA expression of N-cadherin, in the myocardial tissues of rats, was consistent with the IHC and immunofluorescence results. Thus, N-cadherin may have a significant function in the occurrence and development of myocardial hypertrophy.
Collapse
Affiliation(s)
- Lingmin Mu
- Morphological Laboratory, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Changqin Jing
- Life Science and Technology Department, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhikun Guo
- Key Open Laboratory for Tissue Regeneration in Henan Province, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
24
|
Harata A, Matsuzaki T, Nishikawa A, Ihara S. The cell sorting process of Xenopus gastrula cells involves the acto-myosin system and TGF-β signaling. In Vitro Cell Dev Biol Anim 2013; 49:220-9. [PMID: 23435857 DOI: 10.1007/s11626-013-9586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/25/2013] [Indexed: 01/03/2023]
Abstract
We have previously shown that the cell sorting process of animal pole cells (AC) and vegetal pole cells (VC) from Xenopus gastrulae is considered to involve two steps: concentrification and polarization. In this study, we addressed the question of what specified the spatial relationship of the AC and VC clusters during the process. First, we examined the inhibitory or facilitatory treatment for myosin 2 activity during each of the two steps. The aggregates treated with Y27632 or blebbistatin during the concentrification step showed a cluster random arrangement, suggesting the prevention of the cell sorting by inhibition of myosin 2. Meanwhile, the treatment with a Rac1 inhibitor, NSC23766, during the same step resulted in promotion of the fusion of the AC clusters and the progression of the cell sorting, presumably by an indirect activation of myosin 2. On the other hand, the treatments with any of the three drugs during the polarization step showed that the two clusters did not appose, and their array remained concentric. Thus, the modulation of cell contraction might be indispensable to each of the two steps. Next, the activin/nodal TGF-β signaling was perturbed by using a specific activin receptor-like kinase inhibitor, SB431542. The results revealed a bimodal participation of the activin/nodal TGF-β signaling, i.e., suppressive and promotive effects on the concentrification and the polarization, respectively. Thus, the present in vitro system, which permits not only the cell contraction-mediated cell sorting but also the TGF-β-directed mesodermal induction such as cartilage formation, may fairly reflect the embryogenesis in vivo.
Collapse
Affiliation(s)
- Ayano Harata
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, 1060 Nisikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | | | | | | |
Collapse
|
25
|
Julier A, Goll C, Korte B, Knöchel W, Wacker SA. Pou-V factor Oct25 regulates early morphogenesis inXenopus laevis. Dev Growth Differ 2012; 54:702-16. [DOI: 10.1111/j.1440-169x.2012.01371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/16/2012] [Accepted: 07/22/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra Julier
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Claudio Goll
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Brigitte Korte
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Walter Knöchel
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | | |
Collapse
|
26
|
Petrova YI, Spano MM, Gumbiner BM. Conformational epitopes at cadherin calcium-binding sites and p120-catenin phosphorylation regulate cell adhesion. Mol Biol Cell 2012; 23:2092-108. [PMID: 22513089 PMCID: PMC3364174 DOI: 10.1091/mbc.e11-12-1060] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The activity state of E-cadherin is controlled by conformational epitopes at interfaces between different EC domains, which are coupled to p120-catenin phosphorylation. Dephosphorylation activates adhesion, whereas phosphorylation inhibits activation. p120-dependent changes in the physical state of E-cadherin regulate epithelial cell morphogenesis. We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin–catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor–induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane.
Collapse
Affiliation(s)
- Yuliya I Petrova
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
27
|
CRIM1 complexes with ß-catenin and cadherins, stabilizes cell-cell junctions and is critical for neural morphogenesis. PLoS One 2012; 7:e32635. [PMID: 22427856 PMCID: PMC3299674 DOI: 10.1371/journal.pone.0032635] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/28/2012] [Indexed: 02/01/2023] Open
Abstract
In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ß-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ß-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.
Collapse
|
28
|
Ninomiya H, David R, Damm EW, Fagotto F, Niessen CM, Winklbauer R. Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. J Cell Sci 2012; 125:1877-83. [PMID: 22328523 DOI: 10.1242/jcs.095315] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adhesion differences between cell populations are in principle a source of strong morphogenetic forces promoting cell sorting, boundary formation and tissue positioning, and cadherins are main mediators of cell adhesion. However, a direct link between cadherin expression, differential adhesion and morphogenesis has not yet been determined for a specific process in vivo. To identify such a connection, we modulated the expression of C-cadherin in the Xenopus laevis gastrula, and combined this with direct measurements of cell adhesion-related parameters. Our results show that gastrulation is surprisingly tolerant of overall changes in adhesion. Also, as expected, experimentally generated, cadherin-based adhesion differences promote cell sorting in vitro. Importantly, however, such differences do not lead to the sorting of cells in the embryo, showing that differential adhesion is not sufficient to drive morphogenesis in this system. Compensatory recruitment of cadherin protein to contacts between cadherin-deprived and -overexpressing cells could contribute to the prevention of sorting in vivo.
Collapse
Affiliation(s)
- Hiromasa Ninomiya
- University of Toronto, Department of Cell and Systems Biology, Toronto, M5S 3G5 Canada
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Xenopus gastrulation consists of the orderly deformation of a single, multilayered cell sheet that resembles a multilayered epithelium, and flexible cell-cell adhesion has to provide tissue cohesion while allowing for cell rearrangements that drive gastrulation. A few classic cadherins are expressed in the Xenopus early embryo. The prominent C-cadherin is essential for the cohesion of the animal part of the gastrula including ectoderm and chordamesoderm, and it contributes to the adhesion of endoderm and anterior mesoderm in the vegetal moiety. The cadherin/catenin complex is expressed in a graded pattern which is stable during early development. Regional differences in cell adhesion conform to the graded cadherin/catenin expression pattern. However, although the cadherin/catenin pattern seems to be actively maintained, and cadherin function is modulated to reinforce differential adhesiveness, it is not clear how regional differences in tissue cohesion affect gastrulation. Manipulating cadherin expression or function does not induce cell sorting or boundary formation in the embryo. Moreover, known boundary formation mechanisms in the gastrula are based on active cell repulsion. Cell rearrangement is also compatible with variable tissue cohesion. Thus, identifying roles for differential adhesion in the Xenopus gastrula remains a challenge.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada,
| |
Collapse
|
30
|
Abstract
Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.
Collapse
Affiliation(s)
- Deborah Leckband
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, 61801, Urbana, IL, USA,
| | | |
Collapse
|
31
|
Mateus AM, Martinez Arias A. Patterned cell adhesion associated with tissue deformations during dorsal closure in Drosophila. PLoS One 2011; 6:e27159. [PMID: 22076130 PMCID: PMC3208594 DOI: 10.1371/journal.pone.0027159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 10/11/2011] [Indexed: 12/19/2022] Open
Abstract
Cell shape changes within epithelia require the regulation of adhesive molecules that maintain tissue integrity. How remodelling of cell contacts is achieved while tissue integrity is maintained remains a fundamental question in morphogenesis. Dorsal Closure is a good system to study the dynamics of DE-Cadherin during morphogenesis. It relies on concerted cell shape changes of two epithelial sheets: amnioserosa cell contraction and epidermal cell elongation. To investigate the modulation of DE-Cadherin we performed antibody uptake experiments in live embryos during Dorsal Closure. We found that some antibodies access certain epitopes of the extracellular domain of native DE-Cadherin only in the amnioserosa and epidermal cells attached to the amnioserosa, which has never been observed in fixed DE-Cadherin in Drosophila embryos. These differences correlate with the different cell behaviour of these regions and therefore we suggest that DE-Cadherin exists in different forms that confer different adhesive strengths. We propose this to be a widespread mechanism for the differential modulation of adhesion during morphogenesis.
Collapse
Affiliation(s)
- Ana Margarida Mateus
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Gulbenkian PhD Programme in Biomedicine, Oeiras, Portugal
| | | |
Collapse
|
32
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
33
|
Abstract
Together with cell growth, division and death, changes in cell shape are of central importance for tissue morphogenesis during development. Cell shape is the product of a cell's material and active properties balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of intracellular mechanics and the cell's physical interaction with its environment. In this review, we first discuss the biological and physical mechanisms of cell shape control. We next examine a number of developmental processes in which cell shape change - either individually or in a coordinated manner - drives embryonic morphogenesis and discuss how cell shape is controlled in these processes. Finally, we emphasize that cell shape control during tissue morphogenesis can only be fully understood by using a combination of cellular, molecular, developmental and biophysical approaches.
Collapse
Affiliation(s)
- Ewa Paluch
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
34
|
Seifert K, Ibrahim H, Stodtmeister T, Winklbauer R, Niessen CM. An adhesion-independent, aPKC-dependent function for cadherins in morphogenetic movements. J Cell Sci 2009; 122:2514-23. [PMID: 19549688 DOI: 10.1242/jcs.042796] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cadherin shedding affects migration and occurs in development and cancer progression. By examining the in vivo biological function of the extracellular cadherin domain (CEC1-5) independently of the shedding process itself, we identified a novel function for cadherins in convergent extension (CE) movements in Xenopus. CEC1-5 interfered with CE movements during gastrulation. Unexpectedly, CEC1-5 did not alter cell aggregation or adhesion to cadherin substrates. Instead, gastrulation defects were rescued by a membrane-anchored cadherin cytoplasmic domain, the polarity protein atypical PKC (aPKC) or constitutive active Rac, indicating that CEC1-5 modulates a cadherin-dependent signalling pathway. We found that the cadherin interacts with aPKC and, more importantly, that the extracellular domain alters this association as well as the phosphorylation status of aPKC. This suggests that CE movements require a dynamic regulation of cadherin-aPKC interaction. Our results show that cadherins play a dual role in CE movements: a previously identified adhesive activity and an adhesion-independent function that requires aPKC and Rac, thereby directly connecting cadherins with polarity. Our results also suggest that increased cadherin shedding, often observed in cancer progression, can regulate migration and invasion by modulating polarity protein activity.
Collapse
Affiliation(s)
- Karla Seifert
- Center for Molecular Medicine Cologne, University of Cologne, 50923 Cologne, Germany
| | | | | | | | | |
Collapse
|
35
|
Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation. Biophys J 2009; 96:1606-16. [PMID: 19217876 DOI: 10.1016/j.bpj.2008.10.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 10/08/2008] [Indexed: 11/21/2022] Open
Abstract
Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.
Collapse
|
36
|
Abstract
Morphogenesis of epithelial tissues involves various forms of reshaping of cell layers, such as invagination or bending, convergent extension, and epithelial-mesenchymal transition. At the cellular level, these processes include changes in the shape, position, and assembly pattern of cells. During such morphogenetic processes, epithelial sheets in general maintain their multicellular architecture, implying that they must engage the mechanisms to change the spatial relationship with their neighbors without disrupting the junctions. A major junctional structure in epithelial tissues is the "adherens junction," which is composed of cadherin adhesion receptors and associated proteins including F-actin. The adherens junctions are required for the firm associations between cells, as disruption of them causes disorganization of the epithelial architecture. The adherens junctions, however, appear to be a dynamic entity, allowing the rearrangement of cells within cell sheets. This dynamic nature of the adherens junctions seems to be supported by various mechanisms, such as the interactions of cadherins with actin cytoskeleton, endocytosis and recycling of cadherins, and the cooperation of cadherins with other adhesion receptors. In this chapter, we provide an overview of these mechanisms analyzed in vitro and in vivo.
Collapse
|
37
|
Winklbauer R. Cell adhesion in amphibian gastrulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:215-75. [PMID: 19815180 DOI: 10.1016/s1937-6448(09)78005-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amphibian gastrula can be regarded as a single coherent tissue which folds and distorts itself in a reproducible pattern to establish the embryonic germ layers. It is held together by cadherins which provide the flexible adhesion required for the massive cell rearrangements that accompany gastrulation. Cadherin expression and adhesiveness increase as one goes from the vegetal cell mass through the anterior mesendoderm to the chordamesoderm, and then decrease again slightly in the ectoderm. Together with a basic random component of cell motility, this flexible, differentially expressed adhesiveness generates surface and interfacial tension effects which, in principle, can exert strong forces. However, conclusive evidence for an in vivo role of differential adhesion-related effects in gastrula morphogenesis is still lacking. The most important morphogenetic process in the amphibian gastrula seems to be intercellular migration, where cells crawl actively across each other's surface. The crucial aspect of this process is that cell motility is globally oriented, leading for example to mediolateral intercalation of bipolar cells during convergent extension of the chordamesoderm or to the directional migration of unipolar cells during translocation of the anterior mesendoderm on the ectodermal blastocoel roof. During these movements, the boundary between ectoderm and mesoderm is maintained by a tissue separation process.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
38
|
Skoglund P, Rolo A, Chen X, Gumbiner BM, Keller R. Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network. Development 2008; 135:2435-44. [PMID: 18550716 DOI: 10.1242/dev.014704] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Force-producing convergence (narrowing) and extension (lengthening) of tissues by active intercalation of cells along the axis of convergence play a major role in axial morphogenesis during embryo development in both vertebrates and invertebrates, and failure of these processes in human embryos leads to defects including spina bifida and anencephaly. Here we use Xenopus laevis, a system in which the polarized cell motility that drives this active cell intercalation has been related to the development of forces that close the blastopore and elongate the body axis, to examine the role of myosin IIB in convergence and extension. We find that myosin IIB is localized in the cortex of intercalating cells, and show by morpholino knockdown that this myosin isoform is essential for the maintenance of a stereotypical, cortical actin cytoskeleton as visualized with time-lapse fluorescent confocal microscopy. We show that this actin network consists of foci or nodes connected by cables and is polarized relative to the embryonic axis, preferentially cyclically shortening and lengthening parallel to the axis of cell polarization, elongation and intercalation, and also parallel to the axis of convergence forces during gastrulation. Depletion of MHC-B results in disruption of this polarized cytoskeleton, loss of the polarized protrusive activity characteristic of intercalating cells, eventual loss of cell-cell and cell-matrix adhesion, and dose-dependent failure of blastopore closure, arguably because of failure to develop convergence forces parallel to the myosin IIB-dependent dynamics of the actin cytoskeleton. These findings bridge the gap between a molecular-scale motor protein and tissue-scale embryonic morphogenesis.
Collapse
Affiliation(s)
- Paul Skoglund
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | | | | | |
Collapse
|
39
|
Keller R, Shook D. Dynamic determinations: patterning the cell behaviours that close the amphibian blastopore. Philos Trans R Soc Lond B Biol Sci 2008; 363:1317-32. [PMID: 18192174 DOI: 10.1098/rstb.2007.2250] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review the dynamic patterns of cell behaviours in the marginal zone of amphibians with a focus on how the progressive nature and the geometry of these behaviours drive blastopore closure. Mediolateral cell intercalation behaviour and epithelial-mesenchymal transition are used in different combinations in several species of amphibian to generate a conserved pattern of circumblastoporal hoop stresses. Although these cell behaviours are quite different and involve different germ layers and tissue organization, they are expressed in similar patterns. They are expressed progressively along presumptive lateral-medial and anterior-posterior axes of the body plan in highly ordered geometries of functional significance in the context of the biomechanics of blastopore closure, thereby accounting for the production of similar patterns of circumblastoporal forces. It is not the nature of the cell behaviour alone, but the context, the biomechanical connectivity and spatial and temporal pattern of its expression that determine specificity of morphogenic output during gastrulation and blastopore closure. Understanding the patterning of these dynamic features of cell behaviour is important and will require analysis of signalling at much greater spatial and temporal resolution than that has been typical in the analysis of patterning tissue differentiation.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
40
|
PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. Oncogene 2008; 27:4657-65. [PMID: 18408767 DOI: 10.1038/onc.2008.101] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carcinoma is an altered state of tissue differentiation in which epithelial cells no longer respond to cues that keep them in their proper position. A break down in these cues has disastrous consequences not only in cancer but also in embryonic development when cells of various lineages must organize into discrete entities to form a body plan. Paraxial protocadherin (PAPC) is an adhesion protein with six cadherin repeats that organizes the formation and polarity of developing cellular structures in frog, fish and mouse embryos. Here we show that protocadherin-8 (PCDH8), the human ortholog of PAPC, is inactivated through either mutation or epigenetic silencing in a high fraction of breast carcinomas. Loss of PCDH8 expression is associated with loss of heterozygosity, partial promoter methylation, and increased proliferation. Complementation of mutant tumor cell line HCC2218 with wild-type PCDH8 inhibited its growth. Two tumor mutants, E146K and R343H, were defective for inhibition of cell growth and migration. Surprisingly, the E146K mutant transformed the human mammary epithelial cell line MCF10A and sustained the expression of cyclin D1 and MYC without epidermal growth factor. We propose that loss of PCDH8 promotes oncogenesis in epithelial human cancers by disrupting cell-cell communication dedicated to tissue organization and repression of mitogenic signaling.
Collapse
|
41
|
Keller R, Shook D, Skoglund P. The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys Biol 2008; 5:015007. [PMID: 18403829 DOI: 10.1088/1478-3975/5/1/015007] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
42
|
Abstract
Modular proteins such as titin, fibronectin, and cadherin are ubiquitous components of living cells. Often involved in signaling and mechanical processes, their architecture is characterized by domains containing a variable number of heterogeneous "repeats" arranged in series, with either flexible or rigid linker regions that determine their elasticity. Cadherin repeats arranged in series are unique in that linker regions also feature calcium-binding motifs. While it is well known that the extracellular repeats of cadherin proteins mediate cell-cell adhesion in a calcium-dependent manner, the molecular mechanisms behind the influence of calcium in adhesion dynamics and cadherin's mechanical response are not well understood. Here we show, using molecular dynamics simulations, how calcium ions control the structural integrity of cadherin's linker regions, thereby affecting cadherin's equilibrium dynamics, the availability of key residues involved in cell-cell adhesion, and cadherin's mechanical response. The all-atom, multi-nanosecond molecular dynamics simulations involved the entire C-cadherin extracellular domain solvated in water (a 345,000 atom system). Equilibrium simulations show that the extracellular domain maintains its crystal conformation (elongated and slightly curved) when calcium ions are present. In the absence of calcium ions, however, it assumes a disordered conformation. The conserved residue Trp(2), which is thought to insert itself into a hydrophobic pocket of another cadherin molecule (thereby providing the basis for cell-cell adhesion), switches conformation from exposed to intermittently buried upon removal of calcium ions. Furthermore, the overall mechanical response of C-cadherin's extracellular domain is characterized at low force by changes in shape (tertiary structure elasticity), and at high force by unraveling of secondary structure elements (secondary structure elasticity). This mechanical response is modulated by calcium ions at both low and high force, switching from a stiff, rod-like to a soft, spring-like behavior upon removal of ions. The simulations provide an unprecedented molecular view of calcium-mediated allostery in cadherins, also illustrating the general principles of linker-mediated elasticity of modular proteins relevant not only for cell-cell adhesion and sound transduction, but also muscle elasticity.
Collapse
|
43
|
Abstract
Morphogenesis integrates a wide range of cellular processes into a self-organizing, self-deforming tissue. No single molecular "magic bullet" controls morphogenesis. Wide ranging cellular processes, often without parallels in conventional cell culture systems, work together to generate the architecture and modulate forces that produce and guide shape changes in the embryo. In this review we summarize the early development of the frog Xenopus laevis from a biomechanical perspective. We describe processes operating in the embryo from whole embryo scale, the tissue-scale, to the cellular and extracellular matrix scale. We focus on describing cells, their behaviors and the unique microenvironments they traverse during gastrulation and discuss the role of tissue mechanics in these processes.
Collapse
Affiliation(s)
- Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pensylvania 15260, USA
| |
Collapse
|
44
|
Harrington MJ, Hong E, Fasanmi O, Brewster R. Cadherin-mediated adhesion regulates posterior body formation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:130. [PMID: 18045497 PMCID: PMC2231375 DOI: 10.1186/1471-213x-7-130] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/28/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND The anterior-posterior axis of the vertebrate embryo undergoes a dramatic elongation during early development. Convergence and extension of the mesoderm, occurring during gastrulation, initiates the narrowing and lengthening of the embryo. However the lengthening of the axis continues during post-gastrula stages in the tailbud region, and is thought to involve convergent extension movements as well as other cell behaviors specific to posterior regions. RESULTS We demonstrate here, using a semi-dominant N-cadherin allele, that members of the classical cadherin subfamily of cell-cell adhesion molecules are required for tailbud elongation in the zebrafish. In vivo imaging of cell behaviors suggests that the extension of posterior axial mesodermal cells is impaired in embryos that carry the semi-dominant N-cadherin allele. This defect most likely results from a general loss of cell-cell adhesion in the tailbud region. Consistent with these observations, N-cadherin is expressed throughout the tailbud during post-gastrulation stages. In addition, we show that N-cadherin interacts synergistically with vang-like 2, a member of the non-canonical Wnt signaling/planar cell polarity pathway, to mediate tail morphogenesis. CONCLUSION We provide the first evidence here that N-cadherin and other members of the classical cadherin subfamily function in parallel with the planar cell polarity pathway to shape the posterior axis during post-gastrulation stages. These findings further highlight the central role that adhesion molecules play in the cellular rearrangements that drive morphogenesis in vertebrates and identify classical cadherins as major contributors to tail development.
Collapse
Affiliation(s)
- Michael J Harrington
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.
| | | | | | | |
Collapse
|
45
|
Chien YH, Jiang N, Li F, Zhang F, Zhu C, Leckband D. Two stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J Biol Chem 2007; 283:1848-56. [PMID: 17999960 DOI: 10.1074/jbc.m708044200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Micropipette manipulation measurements quantified the pre-steady state binding kinetics between cell pairs mediated by Xenopus cleavage stage cadherin. The time-dependence of the intercellular binding probability exhibits a fast forming, low probability binding state, which transitions to a slower forming, high probability state. The biphasic kinetics are independent of the cytoplasmic region, but the transition to the high probability state requires the third extracellular domain EC3. Deleting either EC3 or EC3-5, or substituting Trp(2) for Ala reduces the binding curves to a simple, monophasic rise in binding probability to a limiting plateau, as predicted for a single site binding mechanism. The two stage cadherin binding process reported here directly parallels previous biophysical studies, and confirms that the cadherin ectodomain governs the initial intercellular adhesion dynamics.
Collapse
Affiliation(s)
- Yuan-Hung Chien
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | |
Collapse
|
46
|
Perryn ED, Czirók A, Little CD. Vascular sprout formation entails tissue deformations and VE-cadherin-dependent cell-autonomous motility. Dev Biol 2007; 313:545-55. [PMID: 18062955 DOI: 10.1016/j.ydbio.2007.10.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/21/2007] [Accepted: 10/23/2007] [Indexed: 01/02/2023]
Abstract
Embryonic and fetal vascular sprouts form within constantly expanding tissues. Nevertheless, most biological assays of vascular spouting are conducted in a static mechanical milieu. Here we study embryonic mouse allantoides, which normally give raise to an umbilical artery and vein. However, when placed in culture, allantoides assemble a primary vascular network. Unlike other in vitro assays, allantoic primordial vascular cells are situated on the upper surface of a cellular layer that is engaged in robust spreading motion. Time-lapse imaging allows quantification of primordial vascular cell motility as well as the underlying mesothelial tissue motion. Specifically, we calculate endothelial cell-autonomous motion by subtracting the tissue-level mesothelial motion from the total endothelial cell displacements. Formation of new vascular polygons is hindered by administration of function-blocking VE-cadherin antibodies. Time-lapse recordings reveal that (1) cells at the base of sprouts normally move distally "over" existing sprout cells to form new tip-cells; and (2) loss of VE-cadherin activity prevents this motile behavior. Thus, endothelial cell-cell-adhesion-based motility is required for the advancement of vascular sprouts within a moving tissue environment. To the best of our knowledge, this is the first study that couples endogenous tissue dynamics to assembly of vascular networks in a mammalian system.
Collapse
Affiliation(s)
- Erica D Perryn
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
47
|
Ogata S, Morokuma J, Hayata T, Kolle G, Niehrs C, Ueno N, Cho KW. TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. Genes Dev 2007; 21:1817-31. [PMID: 17639085 PMCID: PMC1920175 DOI: 10.1101/gad.1541807] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms governing the cell behaviors underlying morphogenesis remain a major focus of research in both developmental biology and cancer biology. TGF-beta ligands control cell fate specification via Smad-mediated signaling. However, their ability to guide cellular morphogenesis in a variety of biological contexts is poorly understood. We report on the discovery of a novel TGF-beta signaling-mediated cellular morphogenesis occurring during vertebrate gastrulation. Activin/nodal members of the TGF-beta superfamily induce the expression of two genes regulating cell adhesion during gastrulation: Fibronectin Leucine-rich Repeat Transmembrane 3 (FLRT3), a type I transmembrane protein containing extracellular leucine-rich repeats, and the small GTPase Rnd1. FLRT3 and Rnd1 interact physically and modulate cell adhesion during embryogenesis by controlling cell surface levels of cadherin through a dynamin-dependent endocytosis pathway. Our model suggests that cell adhesion can be dynamically regulated by sequestering cadherin through internalization, and subsequent redeploying internalized cadherin to the cell surface as needed. As numerous studies have linked aberrant expression of small GTPases, adhesion molecules such as cadherins, and TGF-beta signaling to oncogenesis and metastasis, it is tempting to speculate that this FLRT3/Rnd1/cadherin pathway might also control cell behavior and morphogenesis in adult tissue homeostasis.
Collapse
Affiliation(s)
- Souichi Ogata
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California at Irvine, Irvine, California 92697, USA
| | - Junji Morokuma
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Tadayoshi Hayata
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California at Irvine, Irvine, California 92697, USA
| | - Gabriel Kolle
- Division of Molecular Embryology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- E-MAIL ; FAX 0564-57-7571
| | - Ken W.Y. Cho
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California at Irvine, Irvine, California 92697, USA
- Corresponding authors.E-MAIL
; FAX (949) 824-9395
| |
Collapse
|
48
|
Tsuiji H, Xu L, Schwartz K, Gumbiner BM. Cadherin conformations associated with dimerization and adhesion. J Biol Chem 2007; 282:12871-82. [PMID: 17347145 DOI: 10.1074/jbc.m611725200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate conformations of C-cadherin associated with functional activity and physiological regulation, we generated monoclonal antibodies (mAbs) that bind differentially to monomeric or dimeric forms. These mAbs recognize conformational epitopes at multiple sites along the C-cadherin ectodomain aside from the well known Trp-2-mediated dimer interface in the N-terminal EC1 domain. Group 1 mAbs, which bind monomer better than dimer and the Trp-2-mutated protein (W2A) better than wild type, recognize epitopes in EC4 or EC5. Dimerization of the W2A mutant protein via a C-terminal immunoglobulin Fc domain restored the dimeric mAb-binding properties to EC4-5 and partial homophilic binding activity but did not restore full cell adhesion activity. Group 2 and Group 3 mAbs, which bind dimer better than monomer and wild type better than W2A, recognize epitopes in EC1 and the interface between EC1 and EC2, respectively. None of the mAbs could distinguish between different physiological states of C-cadherin at the cell surface of either Xenopus embryonic cells or Colo 205 cultured cells, demonstrating that changes in dimerization do not underlie regulation of adhesion activity. On the cell surface the EC3-EC5 domains are much less accessible to mAb binding than EC1-EC2, suggesting that they are masked by the state of cadherin organization or by other molecules. Thus, the EC2-EC5 domains either reflect, or are involved in, cadherin dimerization and organization at the cell surface.
Collapse
Affiliation(s)
- Hitomi Tsuiji
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | | | | | | |
Collapse
|
49
|
Nie S, Chang C. Regulation of Xenopus gastrulation by ErbB signaling. Dev Biol 2006; 303:93-107. [PMID: 17134691 PMCID: PMC4939279 DOI: 10.1016/j.ydbio.2006.10.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/18/2006] [Accepted: 10/25/2006] [Indexed: 12/15/2022]
Abstract
During Xenopus gastrulation, mesendodermal cells are internalized and display different movements. Head mesoderm migrates along the blastocoel roof, while trunk mesoderm undergoes convergent extension (C&E). Different signals are implicated in these processes. Our previous studies reveal that signals through ErbB receptor tyrosine kinases modulate Xenopus gastrulation, but the mechanisms employed are not understood. Here we report that ErbB signals control both C&E and head mesoderm migration. Inhibition of ErbB pathway blocks elongation of dorsal marginal zone explants and activin-treated animal caps without removing mesodermal gene expression. Bipolar cell shape and cell mixing in the dorsal region are impaired. Inhibition of ErbB signaling also interferes with migration of prechordal mesoderm on fibronectin. Cell-cell and cell-matrix interaction and cell spreading are reduced when ErbB signaling is blocked. Using antisense morpholino oligonucleotides, we show that ErbB4 is involved in Xenopus gastrulation morphogenesis, and it partially regulates cell movements through modulation of cell adhesion and membrane protrusions. Our results reveal for the first time that vertebrate ErbB signaling modulates gastrulation movements, thus providing a novel pathway, in addition to non-canonical Wnt and FGF signals, that controls gastrulation. We further demonstrate that regulation of cell adhesive properties and cell morphology may underlie the functions of ErbBs in gastrulation.
Collapse
Affiliation(s)
| | - Chenbei Chang
- Corresponding author. Fax: +1 205 975 5648. (C. Chang)
| |
Collapse
|
50
|
Chen X, Gumbiner BM. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. ACTA ACUST UNITED AC 2006; 174:301-13. [PMID: 16847104 PMCID: PMC2064189 DOI: 10.1083/jcb.200602062] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. Moreover, loss of endogenous PAPC results in elevated C-cadherin adhesion activity in the dorsal mesoderm and interferes with the normal blastopore closure, a defect that can be rescued by a dominant-negative C-cadherin mutant. Importantly, activin induces PAPC expression, and PAPC is required for activin-induced regulation of C-cadherin adhesion activity and explant morphogenesis. Signaling through Frizzled-7 is not required for PAPC regulation of C-cadherin, suggesting that C-cadherin regulation and Frizzled-7 signaling are two distinct branches of the PAPC pathway that induce morphogenetic movements. Thus, spatial regulation of classical cadherin adhesive function by local expression of a protocadherin is a novel mechanism for controlling cell sorting and tissue morphogenesis.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|