1
|
Okada Y, Chikura S, Kimoto T, Iijima T. CDK4/6 inhibitor-induced bone marrow micronuclei might be caused by cell cycle arrest during erythropoiesis. Genes Environ 2024; 46:3. [PMID: 38303098 PMCID: PMC10832093 DOI: 10.1186/s41021-024-00298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND A micronucleus test is generally used to evaluate the genotoxic potential of chemicals. Exaggerated erythropoiesis, as occurs following bleeding, may induce an unexpected increase in micronucleus frequency. This false positive result would be typical in a genotoxicity study due to the enhanced progression of the cell cycle that restores decreased blood cells. The cyclin-dependent kinase (CDK) family is known to play an essential role in preventing genomic instability. Conversely, a selective CDK4/6 inhibitor PD0332991, clinically named Palbociclib, is reported to have genotoxic potential, shown by positive results in both in vitro and in vivo micronucleus studies. To clarify the mechanism by which cell cycle arrest induced by a CDK4/6 inhibitor increases micronucleus frequency, we investigated the positive results of the bone marrow micronucleus test conducted with PD0332991. RESULTS Rats treated with PD0332991 exhibited increased micronucleus frequency in an in vivo bone marrow micronucleus test whereas it was not increased by treatment in human lymphoblastoid TK6 cells. In addition, all other genotoxicity tests including the Ames test and the comet assay showed negative results with PD0332991. Interestingly, PD0332991 treatment led to an increase in erythrocyte size in rats and affected the size distribution of erythrocytes, including the micronucleus. The mean corpuscular volume of reticulocytes (MCVr) in the PD0332991 treatment group was significantly increased compared to that of the vehicle control (83.8 fL in the PD0332991, and 71.6 fL in the vehicle control.). Further, the average micronucleated erythrocytes (MNE) size of the PD0332991 group and vehicle control was 8.2 and 7.3 µm, respectively. In the histogram, the vehicle control showed a monomodal distribution with a peak near 7.3 µm. In contrast, the PD0332991 group showed a bimodal distribution with peaks around 7.5 and 8.5 µm. Micronucleated erythrocytes in the PD0332991 group were significantly larger than those in the vehicle control. These results suggest that the increase in micronucleus frequency induced by the CDK4/6 inhibitor is not due to genotoxicity, but is attributable to disturbance of the cell cycle, differentiation, and enucleation of erythroblasts. CONCLUSIONS It was suggested that the positive outcome of the in vivo bone marrow micronucleus test resulting from treatment with PD0332991 could not be attributed to its genotoxicity. Further studies to clarify the mechanism of action can contribute to the development of drug candidate compounds lacking intrinsic genotoxic effects.
Collapse
Affiliation(s)
- Yuki Okada
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Satsuki Chikura
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Takafumi Kimoto
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan.
| | - Takeshi Iijima
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| |
Collapse
|
2
|
Selvanesan BC, Varghese S, Andrys-Olek J, Arriaza RH, Prakash R, Tiwari PB, Hupalo D, Gusev Y, Patel MN, Contente S, Sanda M, Uren A, Wilkerson MD, Dalgard CL, Shimizu LS, Chruszcz M, Borowski T, Upadhyay G. Lymphocyte antigen 6K signaling to aurora kinase promotes advancement of the cell cycle and the growth of cancer cells, which is inhibited by LY6K-NSC243928 interaction. Cancer Lett 2023; 558:216094. [PMID: 36805500 PMCID: PMC10044439 DOI: 10.1016/j.canlet.2023.216094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Lymphocyte antigen 6K (LY6K) is a small GPI-linked protein that is normally expressed in testes. Increased expression of LY6K is significantly associated with poor survival outcomes in many solid cancers, including cancers of the breast, ovary, gastrointestinal tract, head and neck, brain, bladder, and lung. LY6K is required for ERK-AKT and TGF-β pathways in cancer cells and is required for in vivo tumor growth. In this report, we describe a novel role for LY6K in mitosis and cytokinesis through aurora B kinase and its substrate histone H3 signaling axis. Further, we describe the structural basis of the molecular interaction of small molecule NSC243928 with LY6K protein and the disruption of LY6K-aurora B signaling in cell cycle progression due to LY6K-NSC243928 interaction. Overall, disruption of LY6K function via NSC243928 led to failed cytokinesis, multinucleated cells, DNA damage, senescence, and apoptosis of cancer cells. LY6K is not required for vital organ function, thus inhibition of LY6K signaling is an ideal therapeutic approach for hard-to-treat cancers that lack targeted therapy such as triple-negative breast cancer.
Collapse
Affiliation(s)
- Benson Chellakkan Selvanesan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Sheelu Varghese
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Justyna Andrys-Olek
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Cracow, Poland
| | | | - Rahul Prakash
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | | | - Daniel Hupalo
- Henry M. Jackson Foundation, Bethesda, MD, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Yuriy Gusev
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Megha Nitin Patel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Contente
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Miloslav Sanda
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse, 43, 61231, Bad Nauheim, Germany
| | - Aykut Uren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Matthew D Wilkerson
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; John P. Murtha Cancer Center, Bethesda, MD, USA
| | - Clifton Lee Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; John P. Murtha Cancer Center, Bethesda, MD, USA
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Cracow, Poland
| | - Geeta Upadhyay
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; John P. Murtha Cancer Center, Bethesda, MD, USA.
| |
Collapse
|
3
|
A Truncated Form of the p27 Cyclin-Dependent Kinase Inhibitor Translated from Pre-mRNA Causes G 2-Phase Arrest. Mol Cell Biol 2022; 42:e0021722. [PMID: 36317925 PMCID: PMC9671031 DOI: 10.1128/mcb.00217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing is an indispensable mechanism for eukaryotic gene expression. Splicing inhibition causes cell cycle arrest at the G1 and G2/M phases, and this is thought to be one of the reasons for the potent antitumor activity of splicing inhibitors. However, the molecular mechanisms underlying the cell cycle arrest have many unknown aspects. In particular, the mechanism of G2/M-phase arrest caused by splicing inhibition is completely unknown. Here, we found that lower and higher concentrations of pladienolide B caused M-phase and G2-phase arrest, respectively. We analyzed protein levels of cell cycle regulators and found that a truncated form of the p27 cyclin-dependent kinase inhibitor, named p27*, accumulated in G2-arrested cells. Overexpression of p27* caused partial G2-phase arrest. Conversely, knockdown of p27* accelerated exit from G2/M phase after washout of splicing inhibitor. These results suggest that p27* contributes to G2/M-phase arrest caused by splicing inhibition. We also found that p27* bound to and inhibited M-phase cyclins, although it is well known that p27 regulates the G1/S transition. Intriguingly, p27*, but not full-length p27, was resistant to proteasomal degradation and remained in G2/M phase. These results suggest that p27*, which is a very stable truncated protein in G2/M phase, contributes to G2-phase arrest caused by splicing inhibition.
Collapse
|
4
|
Dantas M, Oliveira A, Aguiar P, Maiato H, Ferreira JG. Nuclear tension controls mitotic entry by regulating cyclin B1 nuclear translocation. J Cell Biol 2022; 221:213539. [PMID: 36222828 PMCID: PMC9565158 DOI: 10.1083/jcb.202205051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
As cells prepare to divide, they must ensure that enough space is available to assemble the mitotic machinery without perturbing tissue homeostasis. To do so, cells undergo a series of biochemical reactions regulated by cyclin B1-CDK1 that trigger cytoskeletal reorganization and ensure the coordination of cytoplasmic and nuclear events. Along with the biochemical events that control mitotic entry, mechanical forces have recently emerged as important players in cell-cycle regulation. However, the exact link between mechanical forces and the biochemical pathways that control mitotic progression remains unknown. Here, we identify a tension-dependent signal on the nucleus that sets the time for nuclear envelope permeabilization (NEP) and mitotic entry. This signal relies on actomyosin contractility, which unfolds the nucleus during the G2-M transition, activating the stretch-sensitive cPLA2 on the nuclear envelope and regulating the nuclear translocation of cyclin B1. Our data demonstrate how nuclear tension during the G2-M transition contributes to timely and efficient mitotic spindle assembly and prevents chromosomal instability.
Collapse
Affiliation(s)
- Margarida Dantas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal,BiotechHealth PhD program, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Andreia Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal,Departamento de Biomedicina, Faculdade de Medicina do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge G. Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal,Departamento de Biomedicina, Faculdade de Medicina do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal,Correspondence to Jorge G. Ferreira:
| |
Collapse
|
5
|
Velásquez ZD, Rojas-Barón L, Larrazabal C, Salierno M, Gärtner U, Pervizaj-Oruqaj L, Herold S, Hermosilla C, Taubert A. Neospora caninum Infection Triggers S-phase Arrest and Alters Nuclear Characteristics in Primary Bovine Endothelial Host Cells. Front Cell Dev Biol 2022; 10:946335. [PMID: 36111335 PMCID: PMC9469085 DOI: 10.3389/fcell.2022.946335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Neospora caninum represents a major cause of abortive disease in bovines and small ruminants worldwide. As a typical obligate intracellular apicomplexan parasite, N. caninum needs to modulate its host cell for successful replication. In the current study, we focused on parasite-driven interference with host cell cycle progression. By performing DNA content-based cell cycle phase analyses in N. caninum-infected primary bovine umbilical vein endothelial cells (BUVEC), a parasite-driven S-phase arrest was detected at both 24 and 32 h p. i., being paralleled by fewer host cells experiencing the G0/G1 cell cycle phase. When analyzing S-subphases, proliferation cell nuclear antigen (per PCNA)-based experiments showed a reduced population of BUVEC in the late S-phase. Analyses on key molecules of cell cycle regulation documented a significant alteration of cyclin A2 and cyclin B1 abundance in N. caninum-infected host endothelial cells, thereby confirming irregularities in the S-phase and S-to-G2/M-phase transition. In line with cell cycle alterations, general nuclear parameters revealed smaller nuclear sizes and morphological abnormalities of BUVEC nuclei within the N. caninum-infected host cell layer. The latter observations were also confirmed by transmission electron microscopy (TEM) and by analyses of lamin B1 as a marker of nuclear lamina, which illustrated an inhomogeneous nuclear lamin B1 distribution, nuclear foldings, and invaginations, thereby reflecting nuclear misshaping. Interestingly, the latter finding applied to both non-infected and infected host cells within parasitized BUVEC layer. Additionally, actin detection indicated alterations in the perinuclear actin cap formation since typical nucleo-transversal filaments were consistently lacking in N. caninum-infected BUVEC, as also documented by significantly decreased actin-related intensities in the perinuclear region. These data indicate that N. caninum indeed alters host cell cycle progression and severely affects the host cell nuclear phenotype in primary bovine endothelial host cells. In summary, these findings add novel data on the complex N. caninum-specific modulation of host cell and nucleus, thereby demonstrating clear differences in cell cycle progression modulation driven by other closely related apicomplexans like Toxoplasma gondii and Besnotia besnoiti.
Collapse
Affiliation(s)
- Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Zahady D. Velásquez,
| | - Lisbeth Rojas-Barón
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Marcelo Salierno
- Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Learta Pervizaj-Oruqaj
- Department of Medicine V Internal Medicine Infectious Diseases and Infection Control Universities of Giessen and Marburg Lung Center (UGMLC) Member of the German Center for Lung Research (DZL) Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Excellence Cluster Cardipulmonary Institute (CPI), Giessen, Germany
| | - Susanne Herold
- Department of Medicine V Internal Medicine Infectious Diseases and Infection Control Universities of Giessen and Marburg Lung Center (UGMLC) Member of the German Center for Lung Research (DZL) Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Excellence Cluster Cardipulmonary Institute (CPI), Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Serjanov D, Bachay G, Hunter DD, Brunken WJ. Laminin β2 Chain Regulates Cell Cycle Dynamics in the Developing Retina. Front Cell Dev Biol 2022; 9:802593. [PMID: 35096830 PMCID: PMC8790539 DOI: 10.3389/fcell.2021.802593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin β2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin β2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.
Collapse
Affiliation(s)
- Dmitri Serjanov
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Dale D Hunter
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
7
|
Decoding the Phosphatase Code: Regulation of Cell Proliferation by Calcineurin. Int J Mol Sci 2022; 23:ijms23031122. [PMID: 35163061 PMCID: PMC8835043 DOI: 10.3390/ijms23031122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Calcineurin, a calcium-dependent serine/threonine phosphatase, integrates the alterations in intracellular calcium levels into downstream signaling pathways by regulating the phosphorylation states of several targets. Intracellular Ca2+ is essential for normal cellular physiology and cell cycle progression at certain critical stages of the cell cycle. Recently, it was reported that calcineurin is activated in a variety of cancers. Given that abnormalities in calcineurin signaling can lead to malignant growth and cancer, the calcineurin signaling pathway could be a potential target for cancer treatment. For example, NFAT, a typical substrate of calcineurin, activates the genes that promote cell proliferation. Furthermore, cyclin D1 and estrogen receptors are dephosphorylated and stabilized by calcineurin, leading to cell proliferation. In this review, we focus on the cell proliferative functions and regulatory mechanisms of calcineurin and summarize the various substrates of calcineurin. We also describe recent advances regarding dysregulation of the calcineurin activity in cancer cells. We hope that this review will provide new insights into the potential role of calcineurin in cancer development.
Collapse
|
8
|
Romeiro Motta M, Zhao X, Pastuglia M, Belcram K, Roodbarkelari F, Komaki M, Harashima H, Komaki S, Kumar M, Bulankova P, Heese M, Riha K, Bouchez D, Schnittger A. B1-type cyclins control microtubule organization during cell division in Arabidopsis. EMBO Rep 2022; 23:e53995. [PMID: 34882930 PMCID: PMC8728612 DOI: 10.15252/embr.202153995] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
Flowering plants contain a large number of cyclin families, each containing multiple members, most of which have not been characterized to date. Here, we analyzed the role of the B1 subclass of mitotic cyclins in cell cycle control during Arabidopsis development. While we reveal CYCB1;5 to be a pseudogene, the remaining four members were found to be expressed in dividing cells. Mutant analyses showed a complex pattern of overlapping, development-specific requirements of B1-type cyclins with CYCB1;2 playing a central role. The double mutant cycb1;1 cycb1;2 is severely compromised in growth, yet viable beyond the seedling stage, hence representing a unique opportunity to study the function of B1-type cyclin activity at the organismic level. Immunolocalization of microtubules in cycb1;1 cycb1;2 and treating mutants with the microtubule drug oryzalin revealed a key role of B1-type cyclins in orchestrating mitotic microtubule networks. Subsequently, we identified the GAMMA-TUBULIN COMPLEX PROTEIN 3-INTERACTING PROTEIN 1 (GIP1/MOZART) as an in vitro substrate of B1-type cyclin complexes and further genetic analyses support a potential role in the regulation of GIP1 by CYCB1s.
Collapse
Affiliation(s)
| | - Xin’Ai Zhao
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Martine Pastuglia
- Institute Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Katia Belcram
- Institute Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | | | - Maki Komaki
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Present address:
Solution Research LaboratoryAS ONE CorporationKawasakiJapan
| | - Shinichiro Komaki
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Nara Institute of Science and TechnologyNaraJapan
| | - Manoj Kumar
- Amity Institute of Genome EngineeringAmity University Uttar PradeshSector 125NoidaIndia
| | | | - Maren Heese
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Karel Riha
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - David Bouchez
- Institute Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersaillesFrance
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
9
|
Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021; 10:cells10123327. [PMID: 34943835 PMCID: PMC8699227 DOI: 10.3390/cells10123327] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.
Collapse
|
10
|
Li H, Weng Y, Wang S, Wang F, Wang Y, Kong P, Zhang L, Cheng C, Cui H, Xu E, Wei S, Guo D, Chen F, Bi Y, Meng Y, Cheng X, Cui Y. CDCA7 Facilitates Tumor Progression by Directly Regulating CCNA2 Expression in Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:734655. [PMID: 34737951 PMCID: PMC8561731 DOI: 10.3389/fonc.2021.734655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023] Open
Abstract
Background CDCA7 is a copy number amplified gene identified not only in esophageal squamous cell carcinoma (ESCC) but also in various cancer types. Its clinical relevance and underlying mechanisms in ESCC have remained unknown. Methods Tissue microarray data was used to analyze its expression in 179 ESCC samples. The effects of CDCA7 on proliferation, colony formation, and cell cycle were tested in ESCC cells. Real-time PCR and Western blot were used to detect the expression of its target genes. Correlation of CDCA7 with its target genes in ESCC and various SCC types was analyzed using GSE53625 and TCGA data. The mechanism of CDCA7 was studied by chromatin immunoprecipitation (ChIP), luciferase reporter assays, and rescue assay. Results The overexpression of CDCA7 promoted proliferation, colony formation, and cell cycle in ESCC cells. CDCA7 affected the expression of cyclins in different cell phases. GSE53625 and TCGA data showed CCNA2 expression was positively correlated with CDCA7. The knockdown of CCNA2 reversed the malignant phenotype induced by CDCA7 overexpression. Furthermore, CDCA7 was found to directly bind to CCNA2, thus promoting its expression. Conclusions Our results reveal a novel mechanism of CDCA7 that it may act as an oncogene by directly upregulating CCNA2 to facilitate tumor progression in ESCC.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yongjia Weng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shaojie Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Fang Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yanqiang Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Caixia Cheng
- Department of Pathology, the First Hospital, Shanxi Medical University, Taiyuan, China
| | - Heyang Cui
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Enwei Xu
- Department of Pathology, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Shuqing Wei
- Department of Thoracic Surgery (Ⅰ), Shanxi Province Cancer Hospital, Taiyuan, China
| | - Dinghe Guo
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Fei Chen
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yanghui Bi
- The Science Research Center, Shanxi Bethone Hospital, Taiyuan, China
| | - Yongsheng Meng
- Tumor Biobank, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Xiaolong Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yongping Cui
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Roopasree OJ, Adivitiya, Chakraborty S, Kateriya S, Veleri S. Centriole is the pivot coordinating dynamic signaling for cell proliferation and organization during early development in the vertebrates. Cell Biol Int 2021; 45:2178-2197. [PMID: 34288241 DOI: 10.1002/cbin.11667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and coordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- O J Roopasree
- Agroprocessing Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019 and Academy of CSIR, Uttar Pradesh - 201002, India
| | - Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| |
Collapse
|
12
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
13
|
Silva Cascales H, Burdova K, Middleton A, Kuzin V, Müllers E, Stoy H, Baranello L, Macurek L, Lindqvist A. Cyclin A2 localises in the cytoplasm at the S/G2 transition to activate PLK1. Life Sci Alliance 2021; 4:e202000980. [PMID: 33402344 PMCID: PMC7812317 DOI: 10.26508/lsa.202000980] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/23/2023] Open
Abstract
Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.
Collapse
Affiliation(s)
| | - Kamila Burdova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anna Middleton
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Müllers
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Henriette Stoy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Eco-friendly sequential one-pot synthesis, molecular docking, and anticancer evaluation of arylidene-hydrazinyl-thiazole derivatives as CDK2 inhibitors. Bioorg Chem 2021; 108:104615. [PMID: 33484942 DOI: 10.1016/j.bioorg.2020.104615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
One current approach in the treatment of cancer is the inhibition of cyclin dependent kinase (CDK) enzymes with small molecules. CDK are a class of enzymes, which catalyze the transfer of the terminal phosphate of a molecule of ATP to a protein that acts as a substrate. Among CDK enzymes, CDK2 has been implicated in a variety of cancers, supporting its potential as a novel target for cancer therapy across many tumor types. Here the discovery and development of arylidene-hydrazinyl-thiazole as a potentially CDK2 inhibitors is described, including details of the design and successful synthesis of the series analogs (27a-r) using one-pot approach under eco-friendly ultrasound and microwave conditions. Most of the newly synthesized compounds showed good growth inhibition when assayed for their in-vitro anti-proliferative activity against three cancer cell lines (HepG2, MCF-7 and HCT-116) compared to the reference drug roscovitine, with little toxicity on the normal fibroblast cell lines (WI-38). Furthermore, the compounds exhibiting the highest anti-proliferative activities were tested against a panel of kinase enzymes. These derivatives displayed an outstanding CDK2 inhibitory potential with varying degree of inhibition in the range of IC50 0.35-1.49 μM when compared with the standard inhibitor roscovitine having an IC50 value 0.71 μM. The most promising CDK2 inhibitor (27f) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in HepG2 cell line. The results indicated that this compound implied inhibition in the G2/M phase of the cell cycle, and it is a good apoptotic agent. Finally, Molecular docking study was performed to identify the structural elements which involved in the inhibitory activity with the prospective target, CDK2, and to rationalize the structure-activity relationship (SAR).
Collapse
|
15
|
Luo X, Yu Z, Yue B, Ren J, Zhang J, Mani S, Wang Z, Dou W. Obacunone reduces inflammatory signalling and tumour occurrence in mice with chronic inflammation-induced colorectal cancer. PHARMACEUTICAL BIOLOGY 2020; 58:886-897. [PMID: 32878512 PMCID: PMC8202763 DOI: 10.1080/13880209.2020.1812673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Obacunone, a limonoid abundantly found in Citrus fruits, exhibits a variety of bioactivities. OBJECTIVE To investigate the effects of obacunone on a colorectal cancer (CRC) mouse model, and clarify its potential molecular mechanisms. MATERIALS AND METHODS The male Balb/c mice were induced with azoxymethane and dextran sulfate sodium for 12 weeks. Obacunone (50 mg/kg) was administered via oral gavage three times every week until the end of the experiment. Disease indexes including body weight, spleen weight, bloody diarrhea, colon length, histopathological score, and tumor size were measured. The anti-proliferation activities of obacunone were analyzed by MTT or flow cytometry. The expression of protein and mRNA related to cell proliferation or inflammatory cytokines was determined by Western blot, q-PCR and IHC. RESULTS Obacunone significantly alleviated bloody diarrhea, colon shortening (7.35 ± 0.2128 vs. 8.275 ± 0.2169 cm), splenomegaly, histological score (9 ± 0.5774 vs. 6 ± 0.5774) and reduced tumor size (4.25 ± 0.6196 vs. 2 ± 0.5669). Meanwhile, the expression of protein and mRNA related to cell proliferation or inflammatory cytokines was remarkably decreased in tumor tissue. Obacunone inhibited the proliferation activities of colorectal cancer cells. Moreover, obacunone induced colorectal cancer cells G1 and G2 phases arrest, and suppressed the expression of cell cycle genes. CONCLUSIONS Obacunone could alleviate CRC via inhibiting inflammatory response and tumor cells proliferation. The results may contribute to the effective utilization of obacunone or its derivatives in the treatment of human CRC.
Collapse
Affiliation(s)
- Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Junyu Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Jing Zhang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
16
|
Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 2020; 28:427-438. [PMID: 33130827 PMCID: PMC7862229 DOI: 10.1038/s41418-020-00648-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development. ![]()
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Li Nie
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Vishnoi N, Dhanasekeran K, Chalfant M, Surovstev I, Khokha MK, Lusk CP. Differential turnover of Nup188 controls its levels at centrosomes and role in centriole duplication. J Cell Biol 2020; 219:133835. [PMID: 32211895 PMCID: PMC7055002 DOI: 10.1083/jcb.201906031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/18/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
NUP188 encodes a scaffold component of the nuclear pore complex (NPC) and has been implicated as a congenital heart disease gene through an ill-defined function at centrioles. Here, we explore the mechanisms that physically and functionally segregate Nup188 between the pericentriolar material (PCM) and NPCs. Pulse-chase fluorescent labeling indicates that Nup188 populates centrosomes with newly synthesized protein that does not exchange with NPCs even after mitotic NPC breakdown. In addition, the steady-state levels of Nup188 are controlled by the sensitivity of the PCM pool, but not the NPC pool, to proteasomal degradation. Proximity-labeling and super-resolution microscopy show that Nup188 is vicinal to the inner core of the interphase centrosome. Consistent with this, we demonstrate direct binding between Nup188 and Cep152. We further show that Nup188 functions in centriole duplication at or upstream of Sas6 loading. Together, our data establish Nup188 as a component of PCM needed to duplicate the centriole with implications for congenital heart disease mechanisms.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | | | | | - Ivan Surovstev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, New Haven, CT
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
18
|
Holder J, Mohammed S, Barr FA. Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. eLife 2020; 9:e59885. [PMID: 32869743 PMCID: PMC7529458 DOI: 10.7554/elife.59885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55, allowing wide-spread dephosphorylation of substrates. Meanwhile, continued APC/C activity promotes proteolysis of other mitotic regulators. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution proteomics, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid proteolysis of cyclin B, securin and geminin at the metaphase-anaphase transition, followed by slow proteolysis of other substrates. Dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent categories with unique sequence motifs. We conclude that dephosphorylation initiated by selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
19
|
Hégarat N, Crncec A, Suarez Peredo Rodriguez MF, Echegaray Iturra F, Gu Y, Busby O, Lang PF, Barr AR, Bakal C, Kanemaki MT, Lamond AI, Novak B, Ly T, Hochegger H. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. EMBO J 2020; 39:e104419. [PMID: 32350921 PMCID: PMC7265243 DOI: 10.15252/embj.2020104419] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Adrijana Crncec
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | | | | | - Yan Gu
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Oliver Busby
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Paul F Lang
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Alexis R Barr
- MRC London Institute of Medical ScienceImperial CollegeLondonUK
- Institute of Clinical SciencesFaculty of MedicineImperial CollegeLondonUK
| | - Chris Bakal
- Institute for Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Masato T Kanemaki
- National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Department of GeneticsSOKENDAI (The Graduate University of Advanced Studies)MishimaJapan
| | - Angus I Lamond
- Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Bela Novak
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Helfrid Hochegger
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
20
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
21
|
Michowski W, Chick JM, Chu C, Kolodziejczyk A, Wang Y, Suski JM, Abraham B, Anders L, Day D, Dunkl LM, Li Cheong Man M, Zhang T, Laphanuwat P, Bacon NA, Liu L, Fassl A, Sharma S, Otto T, Jecrois E, Han R, Sweeney KE, Marro S, Wernig M, Geng Y, Moses A, Li C, Gygi SP, Young RA, Sicinski P. Cdk1 Controls Global Epigenetic Landscape in Embryonic Stem Cells. Mol Cell 2020; 78:459-476.e13. [PMID: 32240602 DOI: 10.1016/j.molcel.2020.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/26/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.
Collapse
Affiliation(s)
- Wojciech Michowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandra Kolodziejczyk
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yichen Wang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brian Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lars Anders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Daniel Day
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lukas M Dunkl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mitchell Li Cheong Man
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Phatthamon Laphanuwat
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nickolas A Bacon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lijun Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Otto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuelle Jecrois
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Han
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katharine E Sweeney
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samuele Marro
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Center for Analysis of Genome Evolution and Function, Toronto, ON M5S 3B2, Canada
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
23
|
Wang Y, Sun J, Ni Q, Nie A, Gu Y, Wang S, Zhang W, Ning G, Wang W, Wang Q. Dual Effect of Raptor on Neonatal β-Cell Proliferation and Identity Maintenance. Diabetes 2019; 68:1950-1964. [PMID: 31345937 DOI: 10.2337/db19-0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022]
Abstract
Immature pancreatic β-cells are highly proliferative, and the expansion of β-cells during the early neonatal period largely determines functional β-cell mass; however, the mechanisms are poorly characterized. We generated Ngn3RapKO mice (ablation of Raptor, an essential component of mechanistic target of rapamycin [mTORC1] in Ngn3+ endocrine progenitor cells) and found that mTORC1 was dispensable for endocrine cell lineage formation but specifically regulated both proliferation and identity maintenance of neonatal β-cells. Ablation of Raptor in neonatal β-cells led to autonomous loss of cell identity, decelerated cell cycle progression, compromised proliferation, and caused neonatal diabetes as a result of inadequate establishment of functional β-cell mass at postnatal day 14. Completely different from mature β-cells, Raptor regulated G1/S and G2/M phase cell cycle transition, thus permitting a high proliferation rate in neonatal β-cells. Moreover, Ezh2 was identified as a critical downstream target of mTORC1 in neonatal β-cells, which was responsible for G2/M phase transition and proliferation. Our discovery of the dual effect of mTORC1 in immature β-cells has revealed a potential target for replenishing functional β-cell pools by promoting both expansion and functional maturation of newly formed immature β-cells.
Collapse
Affiliation(s)
- Yanqiu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Dutta P, Islam S, Choppara S, Sengupta P, Kumar A, Kumar A, Wani MR, Chatterjee S, Santra MK. The tumor suppressor FBXO31 preserves genomic integrity by regulating DNA replication and segregation through precise control of cyclin A levels. J Biol Chem 2019; 294:14879-14895. [PMID: 31413110 DOI: 10.1074/jbc.ra118.007055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/09/2019] [Indexed: 11/06/2022] Open
Abstract
F-box protein 31 (FBXO31) is a reported putative tumor suppressor, and its inactivation due to loss of heterozygosity is associated with cancers of different origins. An emerging body of literature has documented FBXO31's role in preserving genome integrity following DNA damage and in the cell cycle. However, knowledge regarding the role of FBXO31 during normal cell-cycle progression is restricted to its functions during the G2/M phase. Interestingly, FBXO31 levels remain high even during the early G1 phase, a crucial stage for preparing the cells for DNA replication. Therefore, we sought to investigate the functions of FBXO31 during the G1 phase of the cell cycle. Here, using flow cytometric, biochemical, and immunofluorescence techniques, we show that FBXO31 is essential for maintaining optimum expression of the cell-cycle protein cyclin A for efficient cell-cycle progression. Stable FBXO31 knockdown led to atypical accumulation of cyclin A during the G1 phase, driving premature DNA replication and compromised loading of the minichromosome maintenance complex, resulting in replication from fewer origins and DNA double-strand breaks. Because of these inherent defects in replication, FBXO31-knockdown cells were hypersensitive to replication stress-inducing agents and displayed pronounced genomic instability. Upon entering mitosis, the cells defective in DNA replication exhibited a delay in the prometaphase-to-metaphase transition and anaphase defects such as lagging and bridging chromosomes. In conclusion, our findings establish that FBXO31 plays a pivotal role in preserving genomic integrity by maintaining low cyclin A levels during the G1 phase for faithful genome duplication and segregation.
Collapse
Affiliation(s)
- Parul Dutta
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra 411007, India.,Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Sehbanul Islam
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra 411007, India.,Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srinadh Choppara
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra 411007, India.,Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | | | - Anil Kumar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra 411007, India.,Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Avinash Kumar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra 411007, India.,Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201
| | - Mohan R Wani
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | | | - Manas Kumar Santra
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra 411007, India
| |
Collapse
|
25
|
Li X, Ma X, Tian F, Wu F, Zhang J, Zeng W, Lin Y, Zhang Y. Downregulation of
CCNA2
disturbs trophoblast migration, proliferation, and apoptosis during the pathogenesis of recurrent miscarriage. Am J Reprod Immunol 2019; 82:e13144. [PMID: 31087423 DOI: 10.1111/aji.13144] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xiao Li
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao‐Ling Ma
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fu‐Ju Tian
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fan Wu
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Zhang
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Wei‐Hong Zeng
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yan Zhang
- Department of Obstetrics and Gynecology Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
26
|
Puthumana SSE, Damodaran B. ICT‐Based Blue‐Emitting Dual‐Functional Probe (Ugi EML BLUE) for Bio‐Imaging and Cytotoxic Activities on HeLa Cells. ChemistrySelect 2019. [DOI: 10.1002/slct.201900474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Bahulayan Damodaran
- Department of ChemistryUniversity of Calicut Malappuram 673635, Kerala India
| |
Collapse
|
27
|
Olson CM, Liang Y, Leggett A, Park WD, Li L, Mills CE, Elsarrag SZ, Ficarro SB, Zhang T, Düster R, Geyer M, Sim T, Marto JA, Sorger PK, Westover KD, Lin CY, Kwiatkowski N, Gray NS. Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chem Biol 2019; 26:792-803.e10. [PMID: 30905681 DOI: 10.1016/j.chembiol.2019.02.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/19/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 7 (CDK7) regulates both cell cycle and transcription, but its precise role remains elusive. We previously described THZ1, a CDK7 inhibitor, which dramatically inhibits superenhancer-associated gene expression. However, potent CDK12/13 off-target activity obscured CDK7s contribution to this phenotype. Here, we describe the discovery of a highly selective covalent CDK7 inhibitor. YKL-5-124 causes arrest at the G1/S transition and inhibition of E2F-driven gene expression; these effects are rescued by a CDK7 mutant unable to covalently engage YKL-5-124, demonstrating on-target specificity. Unlike THZ1, treatment with YKL-5-124 resulted in no change to RNA polymerase II C-terminal domain phosphorylation; however, inhibition could be reconstituted by combining YKL-5-124 and THZ531, a selective CDK12/13 inhibitor, revealing potential redundancies in CDK control of gene transcription. These findings highlight the importance of CDK7/12/13 polypharmacology for anti-cancer activity of THZ1 and posit that selective inhibition of CDK7 may be useful for treatment of cancers marked by E2F misregulation.
Collapse
Affiliation(s)
- Calla M Olson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA; Therapeutic Innovation Center (THINC@BCM), Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanke Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Alan Leggett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Woojun D Park
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston MA 02115, USA
| | - Selma Z Elsarrag
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Taebo Sim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Korea
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston MA 02115, USA
| | - Ken D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Charles Y Lin
- Therapeutic Innovation Center (THINC@BCM), Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
28
|
Shankar EPS, Bahulayan D. Chemistry, chemical biology and photophysics of certain new chromene–triazole–coumarin triads as fluorescent inhibitors of CDK2 and CDK4 induced cancers. NEW J CHEM 2019. [DOI: 10.1039/c9nj02924a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The chromene–triazole–coumarin triads synthesized through the MCR-Click strategy possess intense solution state fluorescence, intense solid-state fluorescence and CDK2/CDK4 targeted cytotoxic activity against human cervical cancer cells (HeLa).
Collapse
|
29
|
Zhao K, Zheng WW, Dong XM, Yin RH, Gao R, Li X, Liu JF, Zhan YQ, Yu M, Chen H, Ge CH, Ning HM, Yang XM, Li CY. EDAG promotes the expansion and survival of human CD34+ cells. PLoS One 2018; 13:e0190794. [PMID: 29324880 PMCID: PMC5764277 DOI: 10.1371/journal.pone.0190794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
EDAG is multifunctional transcriptional regulator primarily expressed in the linloc-kit+Sca-1+ hematopoietic stem cells (HSC) and CD34+ progenitor cells. Previous studies indicate that EDAG is required for maintaining hematopoietic lineage commitment balance. Here using ex vivo culture and HSC transplantation models, we report that EDAG enhances the proliferative potential of human cord blood CD34+ cells, increases survival, prevents cell apoptosis and promotes their repopulating capacity. Moreover, EDAG overexpression induces rapid entry of CD34+ cells into the cell cycle. Gene expression profile analysis indicate that EDAG knockdown leads to down-regulation of various positive cell cycle regulators including cyclin A, B, D, and E. Together these data provides novel insights into EDAG in regulation of expansion and survival of human hematopoietic stem/progenitor cells.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei-Wei Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Ming Dong
- Tianjin University, School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering, Tianjin, China
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiu Li
- An Hui Medical University, Hefei, China
| | - Jin-Fang Liu
- Guang Dong Pharmaceutical University, School of Pharmacy, Guangzhou, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang-Hui Ge
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing, China
- * E-mail: (HMN); (XMY); (CYL)
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Tianjin University, School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering, Tianjin, China
- * E-mail: (HMN); (XMY); (CYL)
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Guang Dong Pharmaceutical University, School of Pharmacy, Guangzhou, China
- * E-mail: (HMN); (XMY); (CYL)
| |
Collapse
|
30
|
Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep 2017; 7:13429. [PMID: 29044141 PMCID: PMC5647392 DOI: 10.1038/s41598-017-12868-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/17/2017] [Indexed: 02/03/2023] Open
Abstract
Although cyclin-dependent kinase 2 (Cdk2) controls the G1/S transition and promotes DNA replication, it is dispensable for cell cycle progression due to redundancy with Cdk1. Yet Cdk2 also has non-redundant functions that can be revealed in certain genetic backgrounds and it was reported to promote the G2/M DNA damage response checkpoint in TP53 (p53)-deficient cancer cells. However, in p53-proficient cells subjected to DNA damage, Cdk2 is inactivated by the CDK inhibitor p21. We therefore investigated whether Cdk2 differentially affects checkpoint responses in p53-proficient and deficient cell lines. We show that, independently of p53 status, Cdk2 stimulates the ATR/Chk1 pathway and is required for an efficient DNA replication checkpoint response. In contrast, Cdk2 is not required for a sustained DNA damage response and G2 arrest. Rather, eliminating Cdk2 delays S/G2 progression after DNA damage and accelerates appearance of early markers of cell cycle exit. Notably, Cdk2 knockdown leads to down-regulation of Cdk6, which we show is a non-redundant pRb kinase whose elimination compromises cell cycle progression. Our data reinforce the notion that Cdk2 is a key p21 target in the DNA damage response whose inactivation promotes exit from the cell cycle in G2.
Collapse
|
31
|
Zhang QH, Yuen WS, Adhikari D, Flegg JA, FitzHarris G, Conti M, Sicinski P, Nabti I, Marangos P, Carroll J. Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. J Cell Biol 2017; 216:3133-3143. [PMID: 28819014 PMCID: PMC5626527 DOI: 10.1083/jcb.201607111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022] Open
Abstract
Cyclin A2 is a crucial mitotic Cdk regulatory partner that coordinates entry into mitosis and is then destroyed in prometaphase within minutes of nuclear envelope breakdown. The role of cyclin A2 in female meiosis and its dynamics during the transition from meiosis I (MI) to meiosis II (MII) remain unclear. We found that cyclin A2 decreases in prometaphase I but recovers after the first meiotic division and persists, uniquely for metaphase, in MII-arrested oocytes. Conditional deletion of cyclin A2 from mouse oocytes has no discernible effect on MI but leads to disrupted MII spindles and increased merotelic attachments. On stimulation of exit from MII, there is a dramatic increase in lagging chromosomes and an inhibition of cytokinesis. These defects are associated with an increase in microtubule stability in MII spindles, suggesting that cyclin A2 mediates the fidelity of MII by maintaining microtubule dynamics during the rapid formation of the MII spindle.
Collapse
Affiliation(s)
- Qing-Hua Zhang
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia .,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Wai Shan Yuen
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Deepak Adhikari
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Flegg
- Monash Academy for Cross and Interdisciplinary Mathematical Applications, Monash University, Melbourne, Victoria, Australia
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada
| | - Marco Conti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| | - Piotr Sicinski
- Dana-Farber Cancer Institute, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Ibtissem Nabti
- Department of Cell and Developmental Biology, University College London, London, England, UK.,Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Petros Marangos
- Department of Cell and Developmental Biology, University College London, London, England, UK.,Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, Ioannina, Greece
| | - John Carroll
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia .,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.,Department of Cell and Developmental Biology, University College London, London, England, UK
| |
Collapse
|
32
|
Nguyen PD, Gurevich DB, Sonntag C, Hersey L, Alaei S, Nim HT, Siegel A, Hall TE, Rossello FJ, Boyd SE, Polo JM, Currie PD. Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest. Cell Stem Cell 2017; 21:107-119.e6. [DOI: 10.1016/j.stem.2017.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/20/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022]
|
33
|
Gheghiani L, Loew D, Lombard B, Mansfeld J, Gavet O. PLK1 Activation in Late G2 Sets Up Commitment to Mitosis. Cell Rep 2017; 19:2060-2073. [PMID: 28591578 DOI: 10.1016/j.celrep.2017.05.031] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/08/2017] [Accepted: 05/09/2017] [Indexed: 11/15/2022] Open
Abstract
Commitment to mitosis must be tightly coordinated with DNA replication to preserve genome integrity. While we have previously established that the timely activation of CyclinB1-Cdk1 in late G2 triggers mitotic entry, the upstream regulatory mechanisms remain unclear. Here, we report that Polo-like kinase 1 (Plk1) is required for entry into mitosis during an unperturbed cell cycle and is rapidly activated shortly before CyclinB1-Cdk1. We determine that Plk1 associates with the Cdc25C1 phosphatase and induces its phosphorylation before mitotic entry. Plk1-dependent Cdc25C1 phosphosites are sufficient to promote mitotic entry, even when Plk1 activity is inhibited. Furthermore, we find that activation of Plk1 during G2 relies on CyclinA2-Cdk activity levels. Our findings thus elucidate a critical role for Plk1 in CyclinB1-Cdk1 activation and mitotic entry and outline how CyclinA2-Cdk, an S-promoting factor, poises cells for commitment to mitosis.
Collapse
Affiliation(s)
- Lilia Gheghiani
- Sorbonne Universités, UPMC University Paris 06, UFR927, 75005 Paris, France; CNRS UMR 8200, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Damarys Loew
- Institut Curie, PSL Research University, LSMP, 75248 Paris, France
| | | | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Olivier Gavet
- Sorbonne Universités, UPMC University Paris 06, UFR927, 75005 Paris, France; CNRS UMR 8200, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France.
| |
Collapse
|
34
|
Abstract
Over the past two decades there has been a great deal of interest in the development of inhibitors of the cyclin-dependent kinases (CDKs). This attention initially stemmed from observations that different CDK isoforms have key roles in cancer cell proliferation through loss of regulation of the cell cycle, a hallmark feature of cancer. CDKs have now been shown to regulate other processes, particularly various aspects of transcription. The early non-selective CDK inhibitors exhibited considerable toxicity and proved to be insufficiently active in most cancers. The lack of patient selection biomarkers and an absence of understanding of the inhibitory profile required for efficacy hampered the development of these inhibitors. However, the advent of potent isoform-selective inhibitors with accompanying biomarkers has re-ignited interest. Palbociclib, a selective CDK4/6 inhibitor, is now approved for the treatment of ER+/HER2- advanced breast cancer. Current developments in the field include the identification of potent and selective inhibitors of the transcriptional CDKs; these include tool compounds that have allowed exploration of individual CDKs as cancer targets and the determination of their potential therapeutic windows. Biomarkers that allow the selection of patients likely to respond are now being discovered. Drug resistance has emerged as a major hurdle in the clinic for most protein kinase inhibitors and resistance mechanism are beginning to be identified for CDK inhibitors. This suggests that the selective inhibitors may be best used combined with standard of care or other molecularly targeted agents now in development rather than in isolation as monotherapies.
Collapse
Affiliation(s)
- Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Aurélie Mallinger
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul A Clarke
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom.
| |
Collapse
|
35
|
Distinct and Overlapping Requirements for Cyclins A, B, and B3 in Drosophila Female Meiosis. G3-GENES GENOMES GENETICS 2016; 6:3711-3724. [PMID: 27652889 PMCID: PMC5100870 DOI: 10.1534/g3.116.033050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Meiosis, like mitosis, depends on the activity of the cyclin dependent kinase Cdk1 and its cyclin partners. Here, we examine the specific requirements for the three mitotic cyclins, A, B, and B3 in meiosis of Drosophila melanogaster. We find that all three cyclins contribute redundantly to nuclear envelope breakdown, though cyclin A appears to make the most important individual contribution. Cyclin A is also required for biorientation of homologs in meiosis I. Cyclin B3, as previously reported, is required for anaphase progression in meiosis I and in meiosis II. We find that it also plays a redundant role, with cyclin A, in preventing DNA replication during meiosis. Cyclin B is required for maintenance of the metaphase I arrest in mature oocytes, for spindle organization, and for timely progression through the second meiotic division. It is also essential for polar body formation at the completion of meiosis. With the exception of its redundant role in meiotic maturation, cyclin B appears to function independently of cyclins A and B3 through most of meiosis. We conclude that the three mitotic cyclin-Cdk complexes have distinct and overlapping functions in Drosophila female meiosis.
Collapse
|
36
|
Davies C, Ward VK. Expression of the NS5 (VPg) Protein of Murine Norovirus Induces a G1/S Phase Arrest. PLoS One 2016; 11:e0161582. [PMID: 27556406 PMCID: PMC4996510 DOI: 10.1371/journal.pone.0161582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Murine norovirus-1 (MNV-1) is known to subvert host cell division inducing an accumulation of cells in the G0/G1 phase, creating conditions where viral replication is favored. This study identified that NS5 (VPg), is capable of inducing cell cycle arrest in the absence of viral replication or other viral proteins in an analogous manner to MNV-1 infection. NS5 expression induced an accumulation of cells in the G0/G1 phase in an asynchronous population by inhibiting progression at the G1/S restriction point. Furthermore, NS5 expression resulted in a down-regulation of cyclin A expression in asynchronous cells and inhibited cyclin A expression in cells progressing from G1 to S phase. The activity of NS5 on the host cell cycle occurs through an uncharacterized function. Amino acid substitutions of NS5(Y26A) and NS5(F123A) that inhibit the ability for NS5 to attach to RNA and recruit host eukaryotic translation initiation factors, respectively, retained the ability to induce an accumulation of cells in the G0/G1 phase as identified for wild-type NS5. To the best of our knowledge, this is the first report of a VPg protein manipulating the host cell cycle.
Collapse
Affiliation(s)
- Colin Davies
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
| | - Vernon K. Ward
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
- * E-mail:
| |
Collapse
|
37
|
Mazzolini L, Broban A, Froment C, Burlet-Schiltz O, Besson A, Manenti S, Dozier C. Phosphorylation of CDC25A on SER283 in late S/G2 by CDK/cyclin complexes accelerates mitotic entry. Cell Cycle 2016; 15:2742-52. [PMID: 27580187 DOI: 10.1080/15384101.2016.1220455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Cdc25A phosphatase is an essential activator of CDK-cyclin complexes at all steps of the eukaryotic cell cycle. The activity of Cdc25A is itself regulated in part by positive and negative feedback regulatory loops performed by its CDK-cyclin substrates that occur in G1 as well as during the G1/S and G2/M transitions. However, the regulation of Cdc25A during G2 phase progression before mitotic entry has not been intensively characterized. Here, we identify by mass spectrometry analysis a new phosphorylation event of Cdc25A on Serine283. Phospho-specific antibodies revealed that the phosphorylation of this residue appears in late S/G2 phase of an unperturbed cell cycle and is performed by CDK-cyclin complexes. Overexpression studies of wild-type and non-phosphorylatable mutant forms of Cdc25A indicated that Ser283 phosphorylation increases the G2/M-promoting activity of the phosphatase without impacting its stability or subcellular localization. Our results therefore identify a new positive regulatory loop between Cdc25A and its CDK-cyclin substrates which contributes to accelerate entry into mitosis through the regulation of Cdc25A activity in G2.
Collapse
Affiliation(s)
- Laurent Mazzolini
- a Centre de Recherche en Cancérologie de Toulouse, INSERM UMR1037, CNRS ERL5294 , Université Toulouse III Paul Sabatier , Toulouse , France.,b Equipe labellisée LIGUE contre le Cancer , CNRS ERL5294 , Toulouse , France
| | - Anaïs Broban
- a Centre de Recherche en Cancérologie de Toulouse, INSERM UMR1037, CNRS ERL5294 , Université Toulouse III Paul Sabatier , Toulouse , France
| | - Carine Froment
- c Institut de Pharmacologie et de Biologie Structurale , Université Toulouse III Paul Sabatier Toulouse , CNRS UMR5089 , Toulouse , France
| | - Odile Burlet-Schiltz
- c Institut de Pharmacologie et de Biologie Structurale , Université Toulouse III Paul Sabatier Toulouse , CNRS UMR5089 , Toulouse , France
| | - Arnaud Besson
- a Centre de Recherche en Cancérologie de Toulouse, INSERM UMR1037, CNRS ERL5294 , Université Toulouse III Paul Sabatier , Toulouse , France.,b Equipe labellisée LIGUE contre le Cancer , CNRS ERL5294 , Toulouse , France
| | - Stéphane Manenti
- a Centre de Recherche en Cancérologie de Toulouse, INSERM UMR1037, CNRS ERL5294 , Université Toulouse III Paul Sabatier , Toulouse , France.,b Equipe labellisée LIGUE contre le Cancer , CNRS ERL5294 , Toulouse , France
| | - Christine Dozier
- a Centre de Recherche en Cancérologie de Toulouse, INSERM UMR1037, CNRS ERL5294 , Université Toulouse III Paul Sabatier , Toulouse , France.,b Equipe labellisée LIGUE contre le Cancer , CNRS ERL5294 , Toulouse , France
| |
Collapse
|
38
|
Hégarat N, Rata S, Hochegger H. Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. Bioessays 2016; 38:627-43. [PMID: 27231150 DOI: 10.1002/bies.201600057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Scott Rata
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
39
|
Hasvold G, Lund-Andersen C, Lando M, Patzke S, Hauge S, Suo Z, Lyng H, Syljuåsen RG. Hypoxia-induced alterations of G2 checkpoint regulators. Mol Oncol 2016; 10:764-73. [PMID: 26791779 DOI: 10.1016/j.molonc.2015.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023] Open
Abstract
Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage-induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting of U2OS cells. While some of the changes reflected hypoxia-induced inhibition of cell cycle progression, the levels of several G2 checkpoint regulators, in particular Cyclin B, were reduced in G2 phase cells after hypoxic exposure, as shown by flow cytometric barcoding analysis of individual cells. These effects were accompanied by decreased phosphorylation of a Cyclin dependent kinase (CDK) target in G2 phase cells after hypoxia, suggesting decreased CDK activity. Furthermore, cells pre-exposed to hypoxia showed increased G2 checkpoint arrest upon treatment with ionizing radiation. Similar results were found following other hypoxic conditions (∼0.03% O2 20 h and 0.2% O2 72 h). These results demonstrate that the DNA damage-induced G2 checkpoint can be altered as a consequence of hypoxia, and we propose that such alterations may influence the genome stability of hypoxic tumors.
Collapse
Affiliation(s)
- Grete Hasvold
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Christin Lund-Andersen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Malin Lando
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - ZhenHe Suo
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway.
| |
Collapse
|
40
|
SHI XINAN, LI HONGJIAN, YAO HONG, LIU XU, LI LING, LEUNG KWONGSAK, KUNG HSIANGFU, LIN MARIECHIAMI. Adapalene inhibits the activity of cyclin-dependent kinase 2 in colorectal carcinoma. Mol Med Rep 2015; 12:6501-8. [PMID: 26398439 PMCID: PMC4626183 DOI: 10.3892/mmr.2015.4310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 08/04/2015] [Indexed: 12/03/2022] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) has been reported to be overexpressed in human colorectal cancer; it is responsible for the G1‑to‑S‑phase transition in the cell cycle and its deregulation is a hallmark of cancer. The present study was the first to use idock, a free and open‑source protein‑ligand docking software developed by our group, to identify potential CDK2 inhibitors from 4,311 US Food and Drug Administration‑approved small molecular drugs with a re‑purposing strategy. Among the top compounds identified by idock score, nine were selected for further study. Among them, adapalene (ADA; CD271,6‑[3‑(1‑adamantyl)‑4‑methoxyphenyl]‑2‑naphtoic acid) exhibited the highest anti‑proliferative effects in LOVO and DLD1 human colon cancer cell lines. Consistent with the expected properties of CDK2 inhibitors, the present study demonstrated that ADA significantly increased the G1‑phase population and decreased the expression of CDK2, cyclin E and retinoblastoma protein (Rb), as well as the phosphorylation of CDK2 (on Thr‑160) and Rb (on Ser‑795). Furthermore, the anti‑cancer effects of ADA were examined in vivo on xenograft tumors derived from DLD1 human colorectal cancer cells subcutaneously inoculated in BALB/C nude mice. ADA (20 mg/kg orally) exhibited marked anti‑tumor activity, comparable to that of oxaliplatin (40 mg/kg), and dose‑dependently inhibited tumor growth (P<0.05), while combined administration of ADA and oxaliplatin produced the highest therapeutic effect. To the best of our knowledge, the present study was the first to indicate that ADA inhibits CDK2 and is a potential candidate drug for the treatment of human colorectal cancer.
Collapse
Affiliation(s)
- XI-NAN SHI
- Biotechnology Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
- Department of Medicine, Southwest Guizhou Vocational and Technical College for Nationalities, Xingyi, Guizhou 554300, P.R. China
| | - HONGJIAN LI
- Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong 999077, P.R. China
| | - HONG YAO
- The Cancer Biotherapy Institute of Jiangsu, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 221000, P.R. China
| | - XU LIU
- Biotechnology Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - LING LI
- Biotechnology Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - KWONG-SAK LEUNG
- Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong 999077, P.R. China
| | - HSIANG-FU KUNG
- Biotechnology Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 221000, P.R. China
| | - MARIE CHIA-MI LIN
- Biotechnology Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
- Shenzhen Key Lab of Translational Medicine of Tumor, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
41
|
Oakes V, Wang W, Harrington B, Lee WJ, Beamish H, Chia KM, Pinder A, Goto H, Inagaki M, Pavey S, Gabrielli B. Cyclin A/Cdk2 regulates Cdh1 and claspin during late S/G2 phase of the cell cycle. Cell Cycle 2015; 13:3302-11. [PMID: 25485510 DOI: 10.4161/15384101.2014.949111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Whereas many components regulating the progression from S phase through G2 phase into mitosis have been identified, the mechanism by which these components control this critical cell cycle progression is still not fully elucidated. Cyclin A/Cdk2 has been shown to regulate the timing of Cyclin B/Cdk1 activation and progression into mitosis although the mechanism by which this occurs is only poorly understood. Here we show that depletion of Cyclin A or inhibition of Cdk2 during late S/early G2 phase maintains the G2 phase arrest by reducing Cdh1 transcript and protein levels, thereby stabilizing Claspin and maintaining elevated levels of activated Chk1 which contributes to the G2 phase observed. Interestingly, the Cyclin A/Cdk2 regulated APC/C(Cdh1) activity is selective for only a subset of Cdh1 targets including Claspin. Thus, a normal role for Cyclin A/Cdk2 during early G2 phase is to increase the level of Cdh1 which destabilises Claspin which in turn down regulates Chk1 activation to allow progression into mitosis. This mechanism links S phase exit with G2 phase transit into mitosis, provides a novel insight into the roles of Cyclin A/Cdk2 in G2 phase progression, and identifies a novel role for APC/C(Cdh1) in late S/G2 phase cell cycle progression.
Collapse
Affiliation(s)
- Vanessa Oakes
- a The University of Queensland Diamantina Institute; Translational Research Institute ; Brisbane , Queensland , Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu M, Zou Y, Nambiar SM, Lee J, Yang Y, Dai G. Keap1 modulates the redox cycle and hepatocyte cell cycle in regenerating liver. Cell Cycle 2015; 13:2349-58. [PMID: 25483186 DOI: 10.4161/cc.29298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Keap1 negatively controls the activity of transcription factor Nrf2. This Keap1/Nrf2 pathway plays a critical role in combating oxidative stress. We aimed at determining whether and how Keap1 modulates the cell cycle of replicating hepatocytes during liver regeneration. Two-thirds partial hepatectomy (PH) was performed on wild-type mice and Keap1+/- (Keap1 knockdown) mice. We found that, following PH, Keap1 knockdown resulted in a delay in S-phase entry, disruption of S-phase progression, and loss of mitotic rhythm of replicating hepatocytes. These events are associated with dysregulation of c-Met, EGFR, Akt1, p70S6K, Cyclin A2, and Cyclin B1 in regenerating livers. Astonishingly, normal regenerating livers exhibited the redox fluctuation coupled with hepatocyte cell cycle progression, while keeping Nrf2 quiescent. Keap1 knockdown caused severe disruption in both the redox cycle and the cell cycle of replicating hepatocytes. Thus, we demonstrate that Keap1 is a potent regulator of hepatic redox cycle and hepatocyte cell cycle during liver regeneration.
Collapse
Affiliation(s)
- Min Hu
- a Department of Pharmacology; Anhui Medical University; Hefei, China
| | | | | | | | | | | |
Collapse
|
43
|
Ludwig LS, Cho H, Wakabayashi A, Eng JC, Ulirsch JC, Fleming MD, Lodish HF, Sankaran VG. Genome-wide association study follow-up identifies cyclin A2 as a regulator of the transition through cytokinesis during terminal erythropoiesis. Am J Hematol 2015; 90:386-91. [PMID: 25615569 DOI: 10.1002/ajh.23952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 01/21/2023]
Abstract
Genome-wide association studies (GWAS) hold tremendous promise to improve our understanding of human biology. Recent GWAS have revealed over 75 loci associated with erythroid traits, including the 4q27 locus that is associated with red blood cell size (mean corpuscular volume). The close linkage disequilibrium block at this locus harbors the CCNA2 gene that encodes cyclin A2. CCNA2 mRNA is highly expressed in human and murine erythroid progenitor cells and regulated by the essential erythroid transcription factor GATA1. To understand the role of cyclin A2 in erythropoiesis, we have reduced expression of this gene using short hairpin RNAs in a primary murine erythroid culture system. We demonstrate that cyclin A2 levels affect erythroid cell size by regulating the passage through cytokinesis during the final cell division of terminal erythropoiesis. Our study provides new insight into cell cycle regulation during terminal erythropoiesis and more generally illustrates the value of functional GWAS follow-up to gain mechanistic insight into hematopoiesis.
Collapse
Affiliation(s)
- Leif S. Ludwig
- Division of Hematology/Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
- Department of Pediatric Oncology; Dana-Farber Cancer Institute; Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
- Whitehead Institute for Biomedical Research; Cambridge Massachusetts
- Institute for Chemistry and Biochemistry; Freie Universität Berlin; Berlin Germany. Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Hyunjii Cho
- Whitehead Institute for Biomedical Research; Cambridge Massachusetts
- Department of Biology; Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Aoi Wakabayashi
- Division of Hematology/Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
- Department of Pediatric Oncology; Dana-Farber Cancer Institute; Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | - Jennifer C. Eng
- Whitehead Institute for Biomedical Research; Cambridge Massachusetts
| | - Jacob C. Ulirsch
- Division of Hematology/Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
- Department of Pediatric Oncology; Dana-Farber Cancer Institute; Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | - Mark D. Fleming
- Department of Pathology; Boston Children's Hospital; Boston Massachusetts
| | - Harvey F. Lodish
- Whitehead Institute for Biomedical Research; Cambridge Massachusetts
- Department of Biology; Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Vijay G. Sankaran
- Division of Hematology/Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
- Department of Pediatric Oncology; Dana-Farber Cancer Institute; Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
- Whitehead Institute for Biomedical Research; Cambridge Massachusetts
| |
Collapse
|
44
|
Abstract
In this article, we will discuss the biochemistry of mitosis in eukaryotic cells. We will focus on conserved principles that, importantly, are adapted to the biology of the organism. It is vital to bear in mind that the structural requirements for division in a rapidly dividing syncytial Drosophila embryo, for example, are markedly different from those in a unicellular yeast cell. Nevertheless, division in both systems is driven by conserved modules of antagonistic protein kinases and phosphatases, underpinned by ubiquitin-mediated proteolysis, which create molecular switches to drive each stage of division forward. These conserved control modules combine with the self-organizing properties of the subcellular architecture to meet the specific needs of the cell. Our discussion will draw on discoveries in several model systems that have been important in the long history of research on mitosis, and we will try to point out those principles that appear to apply to all cells, compared with those in which the biochemistry has been specifically adapted in a particular organism.
Collapse
Affiliation(s)
- Samuel Wieser
- The Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | | |
Collapse
|
45
|
Jung H, Shin JH, Park YS, Chang MS. Ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein regulates neuroblastoma cell proliferation through p21. Mol Cells 2014; 37:881-7. [PMID: 25410904 PMCID: PMC4275705 DOI: 10.14348/molcells.2014.0182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022] Open
Abstract
Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the G1 phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the G1 phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.
Collapse
Affiliation(s)
- Heekyung Jung
- Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Joo-Hyun Shin
- Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Young-Seok Park
- Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Mi-Sook Chang
- Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| |
Collapse
|
46
|
PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog 2014; 10:e1004514. [PMID: 25393019 PMCID: PMC4231158 DOI: 10.1371/journal.ppat.1004514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/11/2014] [Indexed: 12/02/2022] Open
Abstract
Entry into mitosis is accompanied by dramatic changes in cellular architecture, metabolism and gene expression. Many viruses have evolved cell cycle arrest strategies to prevent mitotic entry, presumably to ensure sustained, uninterrupted viral replication. Here we show for human cytomegalovirus (HCMV) what happens if the viral cell cycle arrest mechanism is disabled and cells engaged in viral replication enter into unscheduled mitosis. We made use of an HCMV mutant that, due to a defective Cyclin A2 binding motif in its UL21a gene product (pUL21a), has lost its ability to down-regulate Cyclin A2 and, therefore, to arrest cells at the G1/S transition. Cyclin A2 up-regulation in infected cells not only triggered the onset of cellular DNA synthesis, but also promoted the accumulation and nuclear translocation of Cyclin B1-CDK1, premature chromatin condensation and mitotic entry. The infected cells were able to enter metaphase as shown by nuclear lamina disassembly and, often irregular, metaphase spindle formation. However, anaphase onset was blocked by the still intact anaphase promoting complex/cyclosome (APC/C) inhibitory function of pUL21a. Remarkably, the essential viral IE2, but not the related chromosome-associated IE1 protein, disappeared upon mitotic entry, suggesting an inherent instability of IE2 under mitotic conditions. Viral DNA synthesis was impaired in mitosis, as demonstrated by the abnormal morphology and strongly reduced BrdU incorporation rates of viral replication compartments. The prolonged metaphase arrest in infected cells coincided with precocious sister chromatid separation and progressive fragmentation of the chromosomal material. We conclude that the Cyclin A2-binding function of pUL21a contributes to the maintenance of a cell cycle state conducive for the completion of the HCMV replication cycle. Unscheduled mitotic entry during the course of the HCMV replication has fatal consequences, leading to abortive infection and cell death. Cyclin A2 is a key regulator of the cell division cycle. Interactors of Cyclin A2 typically contain short sequence elements (RXL/Cy motifs) that bind with high affinity to a hydrophobic patch in the Cyclin A2 protein. Two types of RXL/Cy-containing factors are known: i) cyclin-dependent kinase (CDK) substrates, which are processed by the CDK subunit that complexes to Cyclin A2, and ii) CDK inhibitors, which stably associate to Cyclin A2-CDK due to the lack of CDK phosphorylation sites. Human cytomegalovirus (HCMV) has evolved a novel type of RXL/Cy-containing protein. Its UL21a gene product, a small and highly unstable protein, binds to Cyclin A2 via an RXL/Cy motif in its N-terminus, leading to efficient degradation of Cyclin A2 by the proteasome. Here, we show that this mechanism is not only essential for viral inhibition of cellular DNA synthesis, but also to prevent entry of infected cells into mitosis. Unscheduled mitotic entry is followed by aberrant spindle formation, metaphase arrest, precocious separation of sister chromatids, chromosomal fragmentation and cell death. Viral DNA replication and expression of the essential viral IE2 protein are abrogated in mitosis. Thus, pUL21a-Cyclin A2 interaction protects HCMV from a collapse of viral and cellular functions in mitosis.
Collapse
|
47
|
Abstract
Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin-Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry.
Collapse
|
48
|
Gopinathan L, Tan SLW, Padmakumar VC, Coppola V, Tessarollo L, Kaldis P. Loss of Cdk2 and cyclin A2 impairs cell proliferation and tumorigenesis. Cancer Res 2014; 74:3870-9. [PMID: 24802190 DOI: 10.1158/0008-5472.can-13-3440] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-cycle inhibition has yet to offer a generally effective approach to cancer treatment, but a full evaluation of different combinations of cell-cycle inhibitors has not been evaluated. Cyclin A2, a core component of the cell cycle, is often aberrantly expressed in cancer where it may impact cell proliferation. In this study, we investigated the role of cyclin A2 in tumorigenesis using a conditional genetic knockout mouse model. Cyclin A2 deletion in oncogene-transformed mouse embryonic fibroblasts (MEF) suppressed tumor formation in immunocompromised mice. These findings were confirmed in mice with cyclin A2-deficient hepatocytes, where a delay in liver tumor formation was observed. Because cyclin A2 acts in complex with Cdk2 in the cell cycle, we explored a hypothesized role for Cdk2 dysregulation in this effect through conditional deletions of both genes. In oncogene-transformed MEFs lacking both genes, tumor formation was strongly suppressed in a manner associated with decreased proliferation, premature senescence, and error-prone recovery from serum deprivation after immortalization. Whereas loss of cyclin A2 led to a compensatory increase in Cdk1 activity, this did not occur with loss of both Cdk2 and cyclin A2. Our work offers a rationale to explore combinations of Cdk1 and Cdk2 inhibitors as a general approach in cancer therapy.
Collapse
Affiliation(s)
- Lakshmi Gopinathan
- Authors' Affiliations: Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research)
| | - Shawn Lu Wen Tan
- Authors' Affiliations: Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research)
| | - V C Padmakumar
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, Frederick, Maryland
| | - Vincenzo Coppola
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, Frederick, Maryland
| | - Lino Tessarollo
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, Frederick, Maryland
| | - Philipp Kaldis
- Authors' Affiliations: Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research); Department of Biochemistry, National University of Singapore (NUS), Singapore, Republic of Singapore; and
| |
Collapse
|
49
|
Yang HL, Kumar KJS, Kuo YT, Chang HC, Liao JW, Hsu LS, Hseu YC. Antrodia camphorata induces G1 cell-cycle arrest in human premyelocytic leukemia (HL-60) cells and suppresses tumor growth in athymic nude mice. Food Funct 2014; 5:2278-88. [DOI: 10.1039/c4fo00423j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antrodia camphorata is a well-known medicinal mushroom in Taiwan.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition
- China Medical University
- Taichung 40402, Taiwan
| | | | - Ya-Ting Kuo
- Institute of Nutrition
- China Medical University
- Taichung 40402, Taiwan
| | - Hebron C. Chang
- Institute of Biotechnology and Bioinformatics
- Asia University
- Taichung 41354, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology
- Chung Shan Medical University
- Taichung 40401, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung 41354, Taiwan
- Department of Cosmeceutics
- College of Pharmacy
| |
Collapse
|
50
|
Takashima S, Saito H, Takahashi N, Imai K, Kudo S, Atari M, Saito Y, Motoyama S, Minamiya Y. Strong expression of cyclin B2 mRNA correlates with a poor prognosis in patients with non-small cell lung cancer. Tumour Biol 2013; 35:4257-65. [PMID: 24375198 DOI: 10.1007/s13277-013-1556-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022] Open
Abstract
Cyclin family proteins act in association with cyclin-dependent kinases (CDK) at cell cycle checkpoints to regulate the eukaryotic cell cycle. CyclinB2 contributes to G2/M transition by activating CDK1 kinase, and cyclin B2 inhibition induces cell cycle arrest. CyclinB2 is overexpressed in various human tumors, though the relationship between cyclin B2 expression and the clinicopathological characteristics of lung cancer and patient prognosis is not well understood. In the present study, therefore, we investigated the relationship between cyclin B2 mRNA expression and the prognosis of patients with non-small cell lung cancer (NSCLC). We used semiquantitative real-time reverse transcription polymerase chain reaction to assess the expression of cyclin B2 mRNA in tumor samples from 79 patients with NSCLC. We then correlated the cyclin B2 mRNA levels with clinicopathological factors. We also used immunohistochemical staining to determine the localization of expressed cyclin B2. The 5-year overall survival rates among patients with adenocarcinoma of lung expressing lower levels of cyclin B2 mRNA were significantly better than the corresponding rates among patients expressing higher levels (p = 0.004). Multivariate Cox proportional hazard analyses revealed that gender ((hazard ratio (HR), 9.81; p = 0.044)), n2 (HR, 146.26; p ≤ 0.001), and cyclin B2 mRNA high (HR, 7.21; p = 0.021) were independent factors affecting the 5-year overall survival rates. However, there was no significance in the 5-year overall survival rates among the patients with squamous cell carcinoma between expressing lower and higher level of cyclin B2 mRNA. Stronger expression of cyclin B2 mRNA in tumor cells is an independent predictor of a poor prognosis in patients with adenocarcinoma of lung.
Collapse
Affiliation(s)
- Shinogu Takashima
- Department of Surgery, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|