1
|
Branovets J, Soodla K, Vendelin M, Birkedal R. Rat and mouse cardiomyocytes show subtle differences in creatine kinase expression and compartmentalization. PLoS One 2023; 18:e0294718. [PMID: 38011179 PMCID: PMC10681188 DOI: 10.1371/journal.pone.0294718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Creatine kinase (CK) and adenylate kinase (AK) are energy transfer systems. Different studies on permeabilized cardiomyocytes suggest that ADP-channelling from mitochondrial CK alone stimulates respiration to its maximum, VO2_max, in rat but not mouse cardiomyocytes. Results are ambiguous on ADP-channelling from AK to mitochondria. This study was undertaken to directly compare the CK and AK systems in rat and mouse hearts. In homogenates, we assessed CK- and AK-activities, and the CK isoform distribution. In permeabilized cardiomyocytes, we assessed mitochondrial respiration stimulated by ADP from CK and AK, VO2_CK and VO2_AK, respectively. The ADP-channelling from CK or AK to mitochondria was assessed by adding PEP and PK to competitively inhibit the respiration rate. We found that rat compared to mouse hearts had a lower aerobic capacity, higher VO2_CK/VO2_max, and different CK-isoform distribution. Although rat hearts had a larger fraction of mitochondrial CK, less ADP was channeled from CK to the mitochondria. This suggests different intracellular compartmentalization in rat and mouse cardiomyocytes. VO2_AK/VO2_max was similar in mouse and rat cardiomyocytes, and AK did not channel ADP to the mitochondria. In the absence of intracellular compartmentalization, the AK- and CK-activities in homogenate should have been similar to the ADP-phosphorylation rates estimated from VO2_AK and VO2_CK in permeabilized cardiomyocytes. Instead, we found that the ADP-phosphorylation rates estimated from permeabilized cardiomyocytes were 2 and 9 times lower than the activities recorded in homogenate for CK and AK, respectively. Our results highlight the importance of energetic compartmentalization in cardiac metabolic regulation and signalling.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Kärol Soodla
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
2
|
Fam96b recruits brain-type creatine kinase to fuel mitotic spindle formation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119410. [PMID: 36503010 DOI: 10.1016/j.bbamcr.2022.119410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Mitosis is a complicated and ordered process with high energy demands and metabolite fluxes. Cytosolic creatine kinase (CK), an enzyme involved in ATP homeostasis, has been shown to be essential to chromosome movement during mitotic anaphase in sea urchin. However, it remains elusive for the molecular mechanism underlying the recruitment of cytosolic CK by the mitotic apparatus. In this study, Fam96b/MIP18, a component of the MMXD complex with a function in Fe/S cluster supply, was identified as a brain-type CK (CKB)-binding protein. The binding of Fam96b with CKB was independent of the presence of CKB substrates and did not interfere with CKB activity. Fam96b was prone to oligomerize via the formation of intermolecular disulfide bonds, while the binding of enzymatically active CKB could modulate Fam96b oligomerization. Oligomerized Fam96b recruited CKB and the MMXD complex to associate with the mitotic spindle. Depletion of Fam96b or CKB by siRNA in the HeLa cells led to mitotic defects, which further resulted in retarded cell proliferation, increased cell death and aberrant cell cycle progression. Rescue experiments indicated that both Fam96b oligomerization and CKB activity were essential to the proper formation of mitotic spindle. These findings suggest that Fam96b may act as a scaffold protein to coordinate the supply and homeostasis of ATP and Fe/S clusters during mitosis.
Collapse
|
3
|
Morgan CE, Zhang Z, Miyagi M, Golczak M, Yu EW. Toward structural-omics of the bovine retinal pigment epithelium. Cell Rep 2022; 41:111876. [PMID: 36577381 PMCID: PMC9875382 DOI: 10.1016/j.celrep.2022.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
The use of an integrated systems biology approach to investigate tissues and organs has been thought to be impracticable in the field of structural biology, where the techniques mainly focus on determining the structure of a particular biomacromolecule of interest. Here, we report the use of cryoelectron microscopy (cryo-EM) to define the composition of a raw bovine retinal pigment epithelium (RPE) lysate. From this sample, we simultaneously identify and solve cryo-EM structures of seven different RPE enzymes whose functions affect neurotransmitter recycling, iron metabolism, gluconeogenesis, glycolysis, axonal development, and energy homeostasis. Interestingly, dysfunction of these important proteins has been directly linked to several neurodegenerative disorders, including Huntington's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, Alzheimer's disease, and schizophrenia. Our work underscores the importance of cryo-EM in facilitating tissue and organ proteomics at the atomic level.
Collapse
Affiliation(s)
- Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Department of Chemistry, Thiel College, Greenville, PA 16125, USA,These authors contributed equally
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,These authors contributed equally
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Lead contact,Correspondence:
| |
Collapse
|
4
|
Desmin Knock-Out Cardiomyopathy: A Heart on the Verge of Metabolic Crisis. Int J Mol Sci 2022; 23:ijms231912020. [PMID: 36233322 PMCID: PMC9570457 DOI: 10.3390/ijms231912020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 12/05/2022] Open
Abstract
Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.
Collapse
|
5
|
Walker MA, Chavez J, Villet O, Tang X, Keller A, Bruce JE, Tian R. Acetylation of muscle creatine kinase negatively impacts high-energy phosphotransfer in heart failure. JCI Insight 2021; 6:144301. [PMID: 33554956 PMCID: PMC7934860 DOI: 10.1172/jci.insight.144301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 01/10/2023] Open
Abstract
A hallmark of impaired myocardial energetics in failing hearts is the downregulation of the creatine kinase (CK) system. In heart failure patients and animal models, myocardial phosphocreatine content and the flux of the CK reaction are negatively correlated with the outcome of heart failure. While decreased CK activity is highly reproducible in failing hearts, the underlying mechanisms remains elusive. Here, we report an inverse relationship between the activity and acetylation of CK muscle form (CKM) in human and mouse failing hearts. Hyperacetylation of recombinant CKM disrupted MM homodimer formation and reduced enzymatic activity, which could be reversed by sirtuin 2 treatment. Mass spectrometry analysis identified multiple lysine residues on the MM dimer interface, which were hyperacetylated in the failing hearts. Molecular modeling of CK MM homodimer suggested that hyperacetylation prevented dimer formation through interfering salt bridges within and between the 2 monomers. Deacetylation by sirtuin 2 reduced acetylation of the critical lysine residues, improved dimer formation, and restored CKM activity from failing heart tissue. These findings reveal a potentially novel mechanism in the regulation of CK activity and provide a potential target for improving high-energy phosphoryl transfer in heart failure.
Collapse
Affiliation(s)
- Matthew A Walker
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, and
| | - Juan Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, and
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, and
| |
Collapse
|
6
|
Gallo G. The bioenergetics of neuronal morphogenesis and regeneration: Frontiers beyond the mitochondrion. Dev Neurobiol 2020; 80:263-276. [PMID: 32750228 DOI: 10.1002/dneu.22776] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
The formation of axons and dendrites during development, and their regeneration following injury, are energy intensive processes. The underlying assembly and dynamics of the cytoskeleton, axonal transport mechanisms, and extensive signaling networks all rely on ATP and GTP consumption. Cellular ATP is generated through oxidative phosphorylation (OxP) in mitochondria, glycolysis and "regenerative" kinase systems. Recent investigations have focused on the role of the mitochondrion in axonal development and regeneration emphasizing the importance of this organelle and OxP in axon development and regeneration. In contrast, the understanding of alternative sources of ATP in neuronal morphogenesis and regeneration remains largely unexplored. This review focuses on the current state of the field of neuronal bioenergetics underlying morphogenesis and regeneration and considers the literature on the bioenergetics of non-neuronal cell motility to emphasize the potential contributions of non-mitochondrial energy sources.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Hamilton PD, Bozeman SL, Andley UP. Creatine kinase/α-crystallin interaction functions in cataract development. Biochem Biophys Rep 2020; 22:100748. [PMID: 32154391 PMCID: PMC7052508 DOI: 10.1016/j.bbrep.2020.100748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022] Open
Abstract
Creatine kinase (CK) is an energy storage enzyme that plays an important role in energy metabolism. CK/phosphocreatine functions as an energy buffer and links ATP production sites with ATP utilization sites. Several key mutations in the αA-crystallin (cryaa) and αB-crystallin (cryab) genes have been linked with autosomal-dominant, hereditary human cataracts. The cryaa-R49C mutation was identified in a four-generation Caucasian family. We previously identified an increase in the quantity of CK complexed with α-crystallin in the lenses of knock-in mice expressing the cryaa-R49C mutation using proteomic analyses. Increased levels of CK in postnatal cataractous lenses may indicate increased ATP requirements during early cataract development. To gain a further understanding of the relationship between CK and α-crystallin, we investigated whether α-crystallin interacts with and forms complexes with CK, in vitro. Isothermal titration calorimetry (ITC) showed that each CK dimer bound to 28 α-crystallin subunits, with a Kd of 3.3 × 10−7 M, and that the interaction between α-crystallin and CK was endothermic, thermodynamically favorable, and entropy-driven. High-salt concentrations did not affect the interaction between CK and α-crystallin, suggesting that the interaction between CK and α-crystallin is primarily hydrophobic. Gel permeation chromatography (GPC) detected water-soluble α-crystallin and CK complexes, as determined by increased light scattering after complex formation. In addition, CK and α-crystallin formed partially-water-insoluble, high-molecular-mass complexes. Enzyme-linked immunosorbent assay (ELISA)-based enzymatic activity analyses of lens homogenates showed a 17-fold increase in CK activity in the postnatal lenses of cryaa-R49C knock-in mice. These studies indicate that the interaction between α-crystallin and CK is functionally important and that increased CK levels may be necessary to meet the increased ATP demands of ATP-dependent functions in cataractous lenses. Cataract model α-crystallin mutant mice exhibit upregulated creatine kinase. Isothermal titration calorimetry detected creatine kinase/α-crystallin interaction. The protein-protein interaction is thermodynamically favorable and entropy driven.
Collapse
Key Words
- CK, creatine kinase
- CKB, creatine kinase B
- CKM, creatine kinase M
- Cataract
- Complex formation
- Creatine kinase
- ELISA, enzyme-linked immunosorbent assay
- GPC, gel permeation chromatography
- ITC, isothermal titration calorimetry
- Mouse model
- PBS, phosphate-buffered saline
- RALS, right angle light scattering
- RI, refractive index
- WT, wild-type
- cryaa-R49C, αA-crystallin R49C mutant
- α-Crystallin
Collapse
Affiliation(s)
- Paul D Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephanie L Bozeman
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
8
|
Harahap NS, Amelia R. Red Dragon Fruit ( Hylocereus Polyrhizus) Extract Decreases Lactic Acid Level and Creatine Kinase Activity in Rats Receiving Heavy Physical Exercise. Open Access Maced J Med Sci 2019; 7:2232-2235. [PMID: 31592070 PMCID: PMC6765083 DOI: 10.3889/oamjms.2019.626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Heavy physical exercise causes relative hypoxia. In hypoxic condition, the cell's energy comes from anaerobic metabolism that produces lactic acid. An increment of oxygen need leads to ischemia-reperfusion, triggers free radical formation and damages muscles. Creatine kinase (CK) is a marker of muscle tissue damage. Red dragon fruit (RDF) has potential as antioxidant to reduce free radical formation. AIM This study aims to determine RDF extract potential to reduce the lactic acid level and CK activity after heavy physical exercise. METHODS A total of 32 male rats (Rattus Norvegicus) were randomly divided into 4 groups: group NORDF, treated heavy physical exercise and distilled water; group RDF100, treated heavy physical exercise and at 100 mg/kg BW RDF extract; group RDF200, treated heavy physical exercise and at 200 mg/kg BW RDF extract and group RDF300, treated heavy physical exercise and at 300 mg/kg BW RDF extract. The rats swam for 20 minutes, 3 times a week for 3 weeks. RESULTS RDF300 group showed lower lactic acid level and CK activity as compared to that of NORDF (p = 0.00) and RDF100 (p = 0.00) groups, but RDF300 are not significantly different for lactic acid (p = 0.45) and for CK (p = 0.68). CONCLUSION Red dragon fruit extract has potential in lowering lactic acid level and CK activity in male rats receiving heavy physical exercise.
Collapse
Affiliation(s)
- Novita Sari Harahap
- Department of Sports Sciences, Faculty of Sports Sciences, Universitas Negeri Medan, Medan, North Sumatra, Indonesia
| | - Rina Amelia
- Department of Community Medicine, Public Health, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| |
Collapse
|
9
|
Hoshino F, Murakami C, Sakai H, Satoh M, Sakane F. Creatine kinase muscle type specifically interacts with saturated fatty acid- and/or monounsaturated fatty acid-containing phosphatidic acids. Biochem Biophys Res Commun 2019; 513:1035-1040. [DOI: 10.1016/j.bbrc.2019.04.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 01/03/2023]
|
10
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
11
|
Bang HS, Seo DY, Chung YM, Kim DH, Lee SJ, Lee SR, Kwak HB, Kim TN, Kim M, Oh KM, Son YJ, Kim S, Han J. Ursolic acid supplementation decreases markers of skeletal muscle damage during resistance training in resistance-trained men: a pilot study. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:651-656. [PMID: 29200908 PMCID: PMC5709482 DOI: 10.4196/kjpp.2017.21.6.651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/24/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022]
Abstract
Ursolic acid (UA) supplementation was previously shown to improve skeletal muscle function in resistance-trained men. This study aimed to determine, using the same experimental paradigm, whether UA also has beneficial effects on exercise-induced skeletal muscle damage markers including the levels of cortisol, B-type natriuretic peptide (BNP), myoglobin, creatine kinase (CK), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase (LDH) in resistance-trained men. Sixteen healthy participants were randomly assigned to resistance training (RT) or RT+UA groups (n=8 per group). Participants were trained according to the RT program (60~80% of 1 repetition, 6 times/week), and the UA group was additionally given UA supplementation (450 mg/day) for 8 weeks. Blood samples were obtained before and after intervention, and cortisol, BNP, myoglobin, CK, CK-MB, and LDH levels were analyzed. Subjects who underwent RT alone showed no significant change in body composition and markers of skeletal muscle damage, whereas RT+UA group showed slightly decreased body weight and body fat percentage and slightly increased lean body mass, but without statistical significance. In addition, UA supplementation significantly decreased the BNP, CK, CK-MB, and LDH levels (p<0.05). In conclusion, UA supplementation alleviates increased skeletal muscle damage markers after RT. This finding provides evidence for a potential new therapy for resistance-trained men.
Collapse
Affiliation(s)
- Hyun Seok Bang
- Department of Physical Education, College of Health, Social Welfare and Education, Tong Myong University, Busan 48520, Korea
| | - Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK 21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Young Min Chung
- School of Free Major, Tong Myong University, Busan 48520, Korea
| | - Do Hyung Kim
- Department of Physical Education, Changwon National University, Changwon 51140, Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Social Welfare and Education, Tong Myong University, Busan 48520, Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK 21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Tae Nyun Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK 21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Min Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK 21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyoung-Mo Oh
- Department of Sports Leisure, College of Kyungsang, Busan 47583, Korea
| | - Young Jin Son
- Department of Sports Industry, Busan University of Foreign Studies, Busan 46234, Korea
| | - Sanghyun Kim
- Department of Sports Science, College of Natural Science, Chonbuk National University, Jeonju 54896, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK 21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
12
|
Madeira D, Araújo JE, Vitorino R, Costa PM, Capelo JL, Vinagre C, Diniz MS. Molecular Plasticity under Ocean Warming: Proteomics and Fitness Data Provides Clues for a Better Understanding of the Thermal Tolerance in Fish. Front Physiol 2017; 8:825. [PMID: 29109689 PMCID: PMC5660107 DOI: 10.3389/fphys.2017.00825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/06/2017] [Indexed: 11/24/2022] Open
Abstract
Ocean warming is known to alter the performance and fitness of marine organisms albeit the proteome underpinnings of species thermal tolerance are still largely unknown. In this 1-month experiment we assessed the vulnerability of the gilt-head sea bream Sparus aurata, taken here as a biological model for some key fisheries species, to ocean warming (control 18°C, nursery ground temperature 24°C and heat wave 30°C). Survival was impaired after 28 days, mainly at 30°C although fishes' condition was unaltered. Muscle proteome modulation was assessed at 14 and 21 days, showing that protein expression profiles were similar between fish exposed to 18 and 24°C, differing from fish exposed to 30°C. Fish subjected to 24°C showed an enhanced glycolytic potential and decreased glycogenolysis mainly at 14 days of exposure. Fish subjected to 30°C also showed enhanced glycolytic potential and up-regulated proteins related to gene expression, cellular stress response (CSR), and homeostasis (mostly cytoskeletal dynamics, acid-base balance, chaperoning). However, inflammatory processes were elicited at 21 days along with a down-regulation of the tricarboxylic acid cycle. Thus, juvenile fish seem able to acclimate to 24°C but possibly not to 30°C, which is the predicted temperature for estuaries during heat waves by the year 2100. This may be related with increasing constraints on organism physiology associated with metabolic scope available for performance and fitness at higher temperatures. Consequently, recruitment of commercial sea breams may be in jeopardy, highlighting the need for improved management plans for fish stocks.
Collapse
Affiliation(s)
- Diana Madeira
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - José E. Araújo
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro M. Costa
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José L. Capelo
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Mário S. Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 PMCID: PMC5473427 DOI: 10.12688/f1000research.11561.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
14
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 DOI: 10.12688/f1000research.11561.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
15
|
Barcelos RP, Tocchetto GL, Lima FD, Stefanello ST, Rodrigues HFM, Sangoi MB, Moresco RN, Royes LFF, Soares FAA, Bresciani G. Functional and biochemical adaptations of elite level futsal players from Brazil along a training season. Medicina (B Aires) 2017; 53:285-293. [DOI: 10.1016/j.medici.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
|
16
|
Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids 2016; 48:1751-74. [DOI: 10.1007/s00726-016-2267-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
|
17
|
Creatine kinase in cell cycle regulation and cancer. Amino Acids 2016; 48:1775-84. [PMID: 27020776 DOI: 10.1007/s00726-016-2217-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 02/05/2023]
Abstract
The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK.
Collapse
|
18
|
Liu H, Gao YS, Chen XJ, Chen Z, Zhou HM, Yan YB, Gong H. A single residue substitution accounts for the significant difference in thermostability between two isoforms of human cytosolic creatine kinase. Sci Rep 2016; 6:21191. [PMID: 26879258 PMCID: PMC4754747 DOI: 10.1038/srep21191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/19/2016] [Indexed: 11/14/2022] Open
Abstract
Creatine kinase (CK) helps maintain homeostasis of intracellular ATP level by catalyzing the reversible phosphotransfer between ATP and phosphocreatine. In humans, there are two cytosolic CK isoforms, the muscle-type (M) and the brain-type (B), which frequently function as homodimers (hMMCK and hBBCK). Interestingly, these isoenzymes exhibit significantly different thermostabilities, despite high similarity in amino acid sequences and tertiary structures. In order to investigate the mechanism of this phenomenon, in this work, we first used domain swapping and site-directed mutagenesis to search for the key residues responsible for the isoenzyme-specific thermostability. Strikingly, the difference in thermostability was found to principally arise from one single residue substitution at position 36 (Pro in hBBCK vs. Leu in hMMCK). We then engaged the molecular dynamics simulations to study the molecular mechanism. The calculations imply that the P36L substitution introduces additional local interactions around residue 36 and thus further stabilizes the dimer interface through a complex interaction network, which rationalizes the observation that hMMCK is more resistant to thermal inactivation than hBBCK. We finally confirmed this molecular explanation through thermal inactivation assays on Asp36 mutants that were proposed to devastate the local interactions and thus the dimer associations in both isoenzymes.
Collapse
Affiliation(s)
- Huihui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan-Song Gao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Xiang-Jun Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhe Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Wu CL, Li BY, Wu JL, Hui CF. Mechanism and Aquaculture Application of Teleost Enzymes Adapted at Low Temperature. MARINE ENZYMES BIOTECHNOLOGY: PRODUCTION AND INDUSTRIAL APPLICATIONS, PART II - MARINE ORGANISMS PRODUCING ENZYMES 2016; 79:117-136. [DOI: 10.1016/bs.afnr.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Lourenço Dos Santos S, Baraibar MA, Lundberg S, Eeg-Olofsson O, Larsson L, Friguet B. Oxidative proteome alterations during skeletal muscle ageing. Redox Biol 2015; 5:267-274. [PMID: 26073261 PMCID: PMC4475901 DOI: 10.1016/j.redox.2015.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the 'oxi-proteome' or 'carbonylome', have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.
Collapse
Affiliation(s)
- Sofia Lourenço Dos Santos
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing-IBPS, Paris F-75005, France; CNRS UMR-8256, Paris F-75005, France; Inserm U1164, Paris F-75005, France
| | - Martin A Baraibar
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing-IBPS, Paris F-75005, France; CNRS UMR-8256, Paris F-75005, France; Inserm U1164, Paris F-75005, France
| | - Staffan Lundberg
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 82, Sweden
| | - Orvar Eeg-Olofsson
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 82, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden; Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Bertrand Friguet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing-IBPS, Paris F-75005, France; CNRS UMR-8256, Paris F-75005, France; Inserm U1164, Paris F-75005, France.
| |
Collapse
|
21
|
Venter G, Polling S, Pluk H, Venselaar H, Wijers M, Willemse M, Fransen JAM, Wieringa B. Submembranous recruitment of creatine kinase B supports formation of dynamic actin-based protrusions of macrophages and relies on its C-terminal flexible loop. Eur J Cell Biol 2014; 94:114-27. [PMID: 25538032 DOI: 10.1016/j.ejcb.2014.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022] Open
Abstract
Subcellular partitioning of creatine kinase contributes to the formation of patterns in intracellular ATP distribution and the fuelling of cellular processes with a high and sudden energy demand. We have previously shown that brain-type creatine kinase (CK-B) accumulates at the phagocytic cup in macrophages where it is involved in the compartmentalized generation of ATP for actin remodeling. Here, we report that CK-B catalytic activity also helps in the formation of protrusive ruffle structures which are actin-dependent and abundant on the surface of both unstimulated and LPS-activated macrophages. Recruitment of CK-B to these structures occurred transiently and inhibition of the enzyme's catalytic activity with cyclocreatine led to a general smoothening of surface morphology as visualized by scanning electron microscopy. Comparison of the dynamics of distribution of YFP-tagged CK-mutants and isoforms by live imaging revealed that amino acid residues in the C-terminal segment (aa positions 323-330) that forms one of the protein's two mobile loops are involved in partitioning over inner regions of the cytosol and nearby sites where membrane protrusions occur during induction of phagocytic cup formation. Although wt CK-B, muscle-type CK (CK-M), and a catalytically dead CK-B-E232Q mutant with intact loop region were normally recruited from the cytosolic pool, no dynamic transition to the phagocytic cup area was seen for the CK-homologue arginine kinase and a CK-B-D326A mutant protein. Bioinformatics analysis helped us to predict that conformational flexibility of the C-terminal loop, independent of conformational changes induced by substrate binding or catalytic activity, is likely involved in exposing the enzyme for binding at or near the sites of membrane protrusion formation.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Saskia Polling
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Helma Pluk
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jack A M Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Ahmetov II, Naumov VA, Donnikov AE, Maciejewska-Karłowska A, Kostryukova ES, Larin AK, Maykova EV, Alexeev DG, Fedotovskaya ON, Generozov EV, Jastrzębski Z, Zmijewski P, Kravtsova OA, Kulemin NA, Leonska-Duniec A, Martykanova DS, Ospanova EA, Pavlenko AV, Podol'skaya AA, Sawczuk M, Alimova FK, Trofimov DY, Govorun VM, Cieszczyk P. SOD2 gene polymorphism and muscle damage markers in elite athletes. Free Radic Res 2014; 48:948-55. [PMID: 24865797 DOI: 10.3109/10715762.2014.928410] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Exercise-induced oxidative stress is a state that primarily occurs in athletes involved in high-intensity sports when pro-oxidants overwhelm the antioxidant defense system to oxidize proteins, lipids, and nucleic acids. During exercise, oxidative stress is linked to muscle metabolism and muscle damage, because exercise increases free radical production. The T allele of the Ala16Val (rs4880 C/T) polymorphism in the mitochondrial superoxide dismutase 2 (SOD2) gene has been reported to reduce SOD2 efficiency against oxidative stress. In the present study we tested the hypothesis that the SOD2 TT genotype would be underrepresented in elite athletes involved in high-intensity sports and associated with increased values of muscle and liver damage biomarkers. The study involved 2664 Caucasian (2262 Russian and 402 Polish) athletes. SOD2 genotype and allele frequencies were compared to 917 controls. Muscle and liver damage markers [creatine kinase (CK), creatinine, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP)] were examined in serum from 1444 Russian athletes. The frequency of the SOD2 TT genotype (18.6%) was significantly lower in power/strength athletes (n = 524) compared to controls (25.0%, p = 0.0076) or athletes involved in low-intensity sports (n = 180; 33.9%, p < 0.0001). Furthermore, the SOD2 T allele was significantly associated with increased activity of CK (females: p = 0.0144) and creatinine level (females: p = 0.0276; males: p = 0.0135) in athletes. Our data show that the SOD2 TT genotype might be unfavorable for high-intensity athletic events.
Collapse
Affiliation(s)
- I I Ahmetov
- Sport Technology Research Centre, Volga Region State Academy of Physical Culture, Sport and Tourism , Kazan , Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ramírez Ríos S, Lamarche F, Cottet-Rousselle C, Klaus A, Tuerk R, Thali R, Auchli Y, Brunisholz R, Neumann D, Barret L, Tokarska-Schlattner M, Schlattner U. Regulation of brain-type creatine kinase by AMP-activated protein kinase: interaction, phosphorylation and ER localization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1271-83. [PMID: 24727412 DOI: 10.1016/j.bbabio.2014.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) and cytosolic brain-type creatine kinase (BCK) cooperate under energy stress to compensate for loss of adenosine triphosphate (ATP) by either stimulating ATP-generating and inhibiting ATP-consuming pathways, or by direct ATP regeneration from phosphocreatine, respectively. Here we report on AMPK-dependent phosphorylation of BCK from different species identified by in vitro screening for AMPK substrates in mouse brain. Mass spectrometry, protein sequencing, and site-directed mutagenesis identified Ser6 as a relevant residue with one site phosphorylated per BCK dimer. Yeast two-hybrid analysis revealed interaction of active AMPK specifically with non-phosphorylated BCK. Pharmacological activation of AMPK mimicking energy stress led to BCK phosphorylation in astrocytes and fibroblasts, as evidenced with a highly specific phospho-Ser6 antibody. BCK phosphorylation at Ser6 did not affect its enzymatic activity, but led to the appearance of the phosphorylated enzyme at the endoplasmic reticulum (ER), close to the ER calcium pump, a location known for muscle-type cytosolic creatine kinase (CK) to support Ca²⁺-pumping.
Collapse
Affiliation(s)
- Sacnicte Ramírez Ríos
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Frédéric Lamarche
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Cécile Cottet-Rousselle
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Anna Klaus
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Roland Tuerk
- Institute of Cell Biology, ETH Zurich, Switzerland
| | - Ramon Thali
- Institute of Cell Biology, ETH Zurich, Switzerland
| | - Yolanda Auchli
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Switzerland
| | - René Brunisholz
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Switzerland
| | | | - Luc Barret
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Uwe Schlattner
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France.
| |
Collapse
|
24
|
Branovets J, Sepp M, Kotlyarova S, Jepihhina N, Sokolova N, Aksentijevic D, Lygate CA, Neubauer S, Vendelin M, Birkedal R. Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT-/- mouse hearts. Am J Physiol Heart Circ Physiol 2013; 305:H506-20. [PMID: 23792673 DOI: 10.1152/ajpheart.00919.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of the creatine kinase (CK) system in hearts of CK-deficient mice leads to changes in the ultrastructure and regulation of mitochondrial respiration. We expected to see similar changes in creatine-deficient mice, which lack the enzyme guanidinoacetate methyltransferase (GAMT) to produce creatine. The aim of this study was to characterize the changes in cardiomyocyte mitochondrial organization, regulation of respiration, and intracellular compartmentation associated with GAMT deficiency. Three-dimensional mitochondrial organization was assessed by confocal microscopy. On populations of permeabilized cardiomyocytes, we recorded ADP and ATP kinetics of respiration, competition between mitochondria and pyruvate kinase for ADP produced by ATPases, ADP kinetics of endogenous pyruvate kinase, and ATP kinetics of ATPases. These data were analyzed by mathematical models to estimate intracellular compartmentation. Quantitative analysis of morphological and kinetic data as well as derived model fits showed no difference between GAMT-deficient and wild-type mice. We conclude that inactivation of the CK system by GAMT deficiency does not alter mitochondrial organization and intracellular compartmentation in relaxed cardiomyocytes. Thus, our results suggest that the healthy heart is able to preserve cardiac function at a basal level in the absence of CK-facilitated energy transfer without compromising intracellular organization and the regulation of mitochondrial energy homeostasis. This raises questions on the importance of the CK system as a spatial energy buffer in unstressed cardiomyocytes.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li XH, Chen XJ, Ou WB, Zhang Q, Lv ZR, Zhan Y, Ma L, Huang T, Yan YB, Zhou HM. Knockdown of creatine kinase B inhibits ovarian cancer progression by decreasing glycolysis. Int J Biochem Cell Biol 2013; 45:979-86. [PMID: 23416112 DOI: 10.1016/j.biocel.2013.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 01/28/2023]
Abstract
Creatine kinase plays a key role in the energy homeostasis of vertebrate cells. Creatine kinase B (CKB), a cytosolic isoform of creatine kinase, shows upregulated expression in a variety of cancers. In this research, we confirmed that some ovarian cancer tissues had elevated CKB expression at the protein level. The functions of CKB in ovarian cancer progression were investigated in the ovarian cancer cell line Skov3, which has a high CKB expression. It was found that CKB knockdown inhibited Skov3 cell proliferation and induced apoptosis under hypoxia or hypoglycemia conditions. CKB depletion also sensitized Skov3 to chemotherapeutic agents. Furthermore, the CKB knockdown reduced glucose consumption and lactate production, and increased ROS production and oxygen consumption. This suggested that CKB knockdown decreased cytosolic glycolysis and resulted in a tumor suppressive metabolic state in Skov3 cells. Consequently, we found that the knockdown of CKB induced G2 arrest in cell cycle by elevating p21 expression and affected the PI3K/Akt and AMPK pathways. These findings provide new insights in the role of CKB in cancer cell survival and tumor progression. Our results also suggest that CKB depletion/inhibition in combination with chemotherapeutic agents might have synergistic effects in ovarian cancer therapy.
Collapse
Affiliation(s)
- Xu-Hui Li
- Beijing Key Laboratory of Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
K. Vishnudas V, S. Guillemette S, Lekkas P, W. Maughan D, O. Vigoreaux J. Characterization of the Intracellular Distribution of Adenine Nucleotide Translocase (ANT) in Drosophila Indirect Flight Muscles. Cell 2013. [DOI: 10.4236/cellbio.2013.23017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Wang SF, Si YX, Wang ZJ, Yin SJ, Yang JM, Qian GY. Folding studies on muscle type of creatine kinase from Pelodiscus sinensis. Int J Biol Macromol 2012; 50:981-90. [PMID: 22405779 DOI: 10.1016/j.ijbiomac.2012.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
A folding study of creatine kinase from Pelodiscus sinensis has not yet been reported. To gain more insight into structural and folding mechanisms of P. sinensis CK (PSCK), denaturants such as SDS, guanidine HCl, and urea were applied in this study. We purified PSCK from the muscle of P. sinensis and conducted inhibition kinetics with structural unfolding studies under various conditions. The results revealed that PSCK was completely inactivated at 1.8 mM SDS, 1.05 M guanidine HCl, and 7.5 M urea. The kinetics via time-interval measurements showed that the inactivation by SDS, guanidine HCl, and urea were all first-order reactions with kinetic processes shifting from monophase to biphase at increasing concentrations. With respect to tertiary structural changes, PSCK was unfolded in different ways; SDS increased the hydrophobicity but retained the most tertiary structural conformation, while guanidine HCl and urea induced conspicuous changes in tertiary structures and initiated kinetic unfolding mechanisms. Our study provides information regarding PSCK and enhances our knowledge of the reptile-derived enzyme folding.
Collapse
Affiliation(s)
- Su-Fang Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Dissimilarity in the folding of human cytosolic creatine kinase isoenzymes. PLoS One 2011; 6:e24681. [PMID: 21931810 PMCID: PMC3170377 DOI: 10.1371/journal.pone.0024681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/15/2011] [Indexed: 12/02/2022] Open
Abstract
Creatine kinase (CK, EC 2.7.3.2) plays a key role in the energy homeostasis of excitable cells. The cytosolic human CK isoenzymes exist as homodimers (HMCK and HBCK) or a heterodimer (MBCK) formed by the muscle CK subunit (M) and/or brain CK subunit (B) with highly conserved three-dimensional structures composed of a small N-terminal domain (NTD) and a large C-terminal domain (CTD). The isoforms of CK provide a novel system to investigate the sequence/structural determinants of multimeric/multidomain protein folding. In this research, the role of NTD and CTD as well as the domain interactions in CK folding was investigated by comparing the equilibrium and kinetic folding parameters of HMCK, HBCK, MBCK and two domain-swapped chimeric forms (BnMc and MnBc). Spectroscopic results indicated that the five proteins had distinct structural features depending on the domain organizations. MBCK BnMc had the smallest CD signals and the lowest stability against guanidine chloride-induced denaturation. During the biphasic kinetic refolding, three proteins (HMCK, BnMc and MnBc), which contained either the NTD or CTD of the M subunit and similar microenvironments of the Trp fluorophores, refolded about 10-fold faster than HBCK for both the fast and slow phase. The fast folding of these three proteins led to an accumulation of the aggregation-prone intermediate and slowed down the reactivation rate thereby during the kinetic refolding. Our results suggested that the intra- and inter-subunit domain interactions modified the behavior of kinetic refolding. The alternation of domain interactions based on isoenzymes also provides a valuable strategy to improve the properties of multidomain enzymes in biotechnology.
Collapse
|
29
|
Slow skeletal muscle myosin-binding protein-C (MyBPC1) mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem J 2011; 436:437-45. [PMID: 21426302 DOI: 10.1042/bj20102007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Muscle contraction requires high energy fluxes, which are supplied by MM-CK (muscle-type creatine kinase) which couples to the myofibril. However, little is known about the detailed molecular mechanisms of how MM-CK participates in and is regulated during muscle contraction. In the present study, MM-CK is found to physically interact with the slow skeletal muscle-type MyBPC1 (myosin-binding protein C1). The interaction between MyBPC1 and MM-CK depended on the creatine concentration in a dose-dependent manner, but not on ATP, ADP or phosphocreatine. The MyBPC1-CK interaction favoured acidic conditions, and the two molecules dissociated at above pH 7.5. Domain-mapping experiments indicated that MM-CK binds to the C-terminal domains of MyBPC1, which is also the binding site of myosin. The functional coupling of myosin, MyBPC1 and MM-CK is further corroborated using an ATPase activity assay in which ATP expenditure accelerates upon the association of the three proteins, and the apparent K(m) value of myosin is therefore reduced. The results of the present study suggest that MyBPC1 acts as an adaptor to connect the ATP consumer (myosin) and the regenerator (MM-CK) for efficient energy metabolism and homoeostasis.
Collapse
|
30
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
31
|
Brancaccio P, Maffulli N, Politano L, Lippi G, Limongelli FM. Persistent HyperCKemia in Athletes. Muscles Ligaments Tendons J 2011; 1:31-35. [PMID: 23738242 PMCID: PMC3666463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED We compared the effects of exercise on serum levels of creatin kinase (CK) in athletes with persistent hyperCKemia at rest (CK group) and in healthy athletes (control group). Prospective controlled study. Eighteen male Caucasian athletes with high serum CK levels at rest (CK between 80 and 150 U/L) and 25 male Caucasian athletes with normal serum CK levels at rest (CK between 10 and 80 U/L). MAIN OUTCOME MEASURES Blood samples were collected at rest, 30 minutes, 6 hours, 24 hours, 48 hours and 72 hours after a progressive cycloergometer test to exhaustion. The levels of serum CK and its isoenzymes were measured. In the control group, serum CK values at rest were normal (48.18 ± 14.14 U/L). After exercise, they increased slightly, though they always remained <80 U/L, decreasing to the rest level after 48 hours. The CK group had serum CK levels at rest higher than normal (116.56 ± 33.30 U/L). Serum CK levels were still outwith the normal range after 48 hours (130.11 ± 46.95 U/L) and 72 hours (116.55 ± 24.84 U/L). Serum CK levels were significantly different in both groups both before and after progressive cycloergometer test to exhaustion. In athletes with high serum CK levels at rest, serum CK levels remained elevated and had a different kinetics after exercise when compared with healthy athletes.
Collapse
Affiliation(s)
- Paola Brancaccio
- Seconda Università di Napoli, Servizio di Medicina dello Sport, Department of Experimental Medicine, Centre of Excellence of Cardiovascular Disease, Napoli, Italy (PB, GL, FML)
| | - Nicola Maffulli
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, London E1 4DG, England (NM)
| | - Luisa Politano
- Seconda Università di Napoli, Servizio di Cardiomiologia e genetica medica, Department of Experimental Medicine, Centre of Excellence of Cardiovascular Disease, Napoli, Italy (LP)
| | - Giuseppe Lippi
- U.O. Diagnostica Ematochimica, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Italy
| | - Francesco Mario Limongelli
- Seconda Università di Napoli, Servizio di Medicina dello Sport, Department of Experimental Medicine, Centre of Excellence of Cardiovascular Disease, Napoli, Italy (PB, GL, FML)
| |
Collapse
|
32
|
van den Hoven R, Bauer A, Hackl S, Zickl M, Spona J, Zentek J. A preliminary study on the changes in some potential markers of muscle-cell degradation in sub-maximally exercised horses supplemented with a protein and amino acid mixture. J Anim Physiol Anim Nutr (Berl) 2010; 95:664-75. [PMID: 21121963 DOI: 10.1111/j.1439-0396.2010.01097.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this preliminary study, time-dependent changes in plasma CK and AST activity, tyrosine (Tyr), 3-methyl-histidine (3mHis), glucose and lactate concentrations were analysed in nine horses under two different conditions. Furthermore, intramuscular concentrations of Tyr, 3mHis and activities of cathepsin B, acid phosphatase (ACP), glucose-6-phosphate dehydrogenase (G6PDH) and mRNA expression of ubiquitin were determined at the same time. After studying the effects of exercise alone, the effects of exercise and feeding of an experimental protein/amino acid (AA) supplement were analysed. Horses were submitted to a total of four standardised exercise tests (SETs) of high intensity. Potential markers of muscle break down were determined prior to, immediately after, 4 and 18 h after exercise. The experiment was subdivided into two consecutive periods of 3 weeks. In each period, two SETs were performed. In the second period, horses were fed with the protein/AA supplement within 1 h after exercise. Significant changes in plasma, intramuscular Tyr levels and mRNA expression of ubiquitin were caused both by time in relation to exercise and by treatment with the protein/AA supplement. The experimental supplement significantly decreased the 4-h post-exercise expression of ubiquitin mRNA in muscle. Only a borderline increase of markers of lysosomal involvement was seen and CK and AST activity generally showed their normal post-exercise patterns. A clear post-exercise reduction of this CK activity, however, was not observed after supplementation with the protein/AA mixture. The current findings indicate that horses might benefit from protein and AA supplementation directly after training by decreasing post-exercise proteolysis. The results support that further studies should be performed to characterize changes in equine protein metabolism caused by exercise including underlying molecular mechanisms.
Collapse
Affiliation(s)
- R van den Hoven
- Clinic of Internal Medicine and Clinical Epidemiology of Equids, Clinical Department of Companion Animals and Horses, Institute of Animal Nutrition, Veterinary University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
33
|
Gao YS, Wang Y, Li C, Chen Z, Yan YB, Zhou HM. Dissecting the key residues crucial for the species-specific thermostability of muscle-type creatine kinase. Int J Biol Macromol 2010; 47:366-70. [PMID: 20558199 DOI: 10.1016/j.ijbiomac.2010.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 06/06/2010] [Indexed: 10/19/2022]
Abstract
Species-specific protein thermal stability is closely correlated to the living conditions of the organism, especially to its body temperature. In this research, human and zebrafish muscle-type creatine kinases (MMCKs) were taken as model proteins to investigate the molecular adaptation of proteins in poikilothermal and homoiothermal animals. Both the optimal temperature for catalysis and the thermal stability of human MMCK was much higher than those of zebrafish MMCK. Sequence alignment identified 9 amino acid variations conserved in either the teleost MMCKs or the mammal and electric ray MMCKs. Bidirectional mutations were performed to find the residues with beneficial mutations. The results showed that two residues close to the dimer interface of MMCK, the 46th and 146th residue, were crucial for species-specific thermal stability.
Collapse
Affiliation(s)
- Yan-Song Gao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Muscle tissue may be damaged following intense prolonged training as a consequence of both metabolic and mechanical factors. Serum levels of skeletal muscle enzymes or proteins are markers of the functional status of muscle tissue, and vary widely in both pathological and physiological conditions. Creatine kinase, lactate dehydrogenase, aldolase, myoglobin, troponin, aspartate aminotransferase, and carbonic anhydrase CAIII are the most useful serum markers of muscle injury, but apoptosis in muscle tissues subsequent to strenuous exercise may be also triggered by increased oxidative stress. Therefore, total antioxidant status can be used to evaluate the level of stress in muscle by other markers, such as thiobarbituric acid-reactive substances, malondialdehyde, sulfhydril groups, reduced glutathione, oxidized glutathione, superoxide dismutase, catalase and others. As the various markers provide a composite picture of muscle status, we recommend using more than one to provide a better estimation of muscle stress.
Collapse
Affiliation(s)
- Paola Brancaccio
- Servizio di Medicina dello Sport, Seconda Università di Napoli, Napoli, Italy
| | | | | |
Collapse
|
35
|
Marchand J, Evrard E, Guinand B, Cachot J, Quiniou L, Laroche J. Genetic polymorphism and its potential relation to environmental stress in five populations of the European flounder Platichthys flesus, along the French Atlantic coast. MARINE ENVIRONMENTAL RESEARCH 2010; 70:201-209. [PMID: 20621770 DOI: 10.1016/j.marenvres.2010.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/05/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
In this study, new DNA markers were explored for the flounder Platichthys flesus. cDNA and genomic sequences of the genes encoding the glyceraldehyde-3-phosphate-deshydrogenase (GAPDH), the cytosolic creatine kinase (CK), the prostaglandin D synthase (PGDS) and the betaine homocysteine methyltransferase (BHMT) were characterized. The tumour suppressor p53 gene structure was already described. A PCR-SSCP (Single Strand Conformation Polymorphism) analysis was finally conducted to study the genetic polymorphism of different populations of flounders collected along the French Atlantic coast. Four highly contaminated French estuaries (Seine, Vilaine, Loire and Gironde) were sampled and compared to a reference estuary (Ster) to explore possible selective effect of the environment on specific allelic frequencies. Our results showed that two loci p53 and PGDS, could be potential markers of chemical stress: p53A allele frequency increased in contaminated systems compared to the reference system. In the Vilaine estuary, PGDS polymorphism could be related to pesticide stress.
Collapse
Affiliation(s)
- J Marchand
- Université du Maine, EA 2160 Mer, Molécule, Santé, UFR Sciences et Techniques, Le Mans F-72085, France.
| | | | | | | | | | | |
Collapse
|
36
|
Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods. Int J Mol Sci 2010; 11:2584-96. [PMID: 20717523 PMCID: PMC2920553 DOI: 10.3390/ijms11072584] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/09/2010] [Accepted: 06/18/2010] [Indexed: 11/16/2022] Open
Abstract
The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.
Collapse
|
37
|
Isoenzyme-specific thermostability of human cytosolic creatine kinase. Int J Biol Macromol 2010; 47:27-32. [PMID: 20381520 DOI: 10.1016/j.ijbiomac.2010.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 11/21/2022]
Abstract
Creatine kinase (CK) is a key enzyme involved in intracellular energy homeostasis. The distinct tissue distribution of muscle CK (MMCK) and brain CK (BBCK) implies that they function under conditions facing dissimilar environmental stresses. We found that MMCK and BBCK were significantly different in their stability and reversibility against heat stress. MMCK was more stable than BBCK, and BBCK was only marginally stable and began to inactivate at temperatures just above normal body temperature. The thermal inactivation of MMCK was fully irreversible, whereas that of BBCK was highly reversible at temperatures below 55 degrees C. These differences in stability were proposed to be closely correlated to the isoenzymes' adaptation to the distinct tissue environments.
Collapse
|
38
|
Sheng Q, Zou HC, Lü ZR, Zou F, Park YD, Yan YB, Yao SJ. Effects of acrylamide on the activity and structure of human brain creatine kinase. Int J Mol Sci 2009; 10:4210-4222. [PMID: 20057941 PMCID: PMC2790104 DOI: 10.3390/ijms10104210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/16/2009] [Accepted: 09/24/2009] [Indexed: 12/02/2022] Open
Abstract
Acrylamide is widely used worldwide in industry and it can also be produced by the cooking and processing of foods. It is harmful to human beings, and human brain CK (HBCK) has been proposed to be one of the important targets of acrylamide. In this research, we studied the effects of acrylamide on HBCK activity, structure and the potential binding sites. Compared to CKs from rabbit, HBCK was fully inactivated at several-fold lower concentrations of acrylamide, and exhibited distinct properties upon acrylamide-induced inactivation and structural changes. The binding sites of acrylamide were located at the cleft between the N- and C-terminal domains of CK, and Glu232 was one of the key binding residues. The effects of acrylamide on CK were proposed to be isoenzyme- and species-specific, and the underlying molecular mechanisms were discussed.
Collapse
Affiliation(s)
- Qing Sheng
- Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
| | - He-Chang Zou
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314050, China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Zhi-Rong Lü
- Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yong-Doo Park
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314050, China
- Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- Authors to whom correspondence should be addressed; E-Mails:
(Y.-B.Y.);
(S.J.Y.); Tel.: +86-10-62783477 (Y.-B.Y.); +86-571-87951982 (S.J.Y.); Fax: +86-10-62771597 (Y.-B.Y.); +86-571-87951015 (S.J.Y.)
| | - Shan-Jing Yao
- Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
- Authors to whom correspondence should be addressed; E-Mails:
(Y.-B.Y.);
(S.J.Y.); Tel.: +86-10-62783477 (Y.-B.Y.); +86-571-87951982 (S.J.Y.); Fax: +86-10-62771597 (Y.-B.Y.); +86-571-87951015 (S.J.Y.)
| |
Collapse
|
39
|
Liu YM, Feng S, Ding XL, Kang CF, Yan YB. Mutation of the conserved Asp122 in the linker impedes creatine kinase reactivation and refolding. Int J Biol Macromol 2009; 44:271-7. [PMID: 19263506 DOI: 10.1016/j.ijbiomac.2008.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Creatine kinase (CK), a key enzyme in maintaining the intracellular energetic homeostasis, contains two domains connected by a long linker. In this research,we found that the mutations of the conserved Asp122 in the linker slightly affected CK activity, structure and stability. The hydrogen bonding and the ion pair contributed 2-5 kJ/mol to the conformational stability of CK. Interestingly, the ability of CK reactivation from the denatured state was completely removed by the mutations. These results suggested that the electrostatic interactions were crucial to the action of the linker in CK reactivation.
Collapse
Affiliation(s)
- Yan-Ming Liu
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
40
|
Willis MS, Schisler JC, Li L, Rodríguez JE, Hilliard EG, Charles PC, Patterson C. Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res 2009; 105:80-8. [PMID: 19498199 DOI: 10.1161/circresaha.109.194928] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Muscle ring finger (MuRF)1 is a muscle-specific protein implicated in the regulation of cardiac myocyte size and contractility. MuRF2, a closely related family member, redundantly interacts with protein substrates and heterodimerizes with MuRF1. Mice lacking either MuRF1 or MuRF2 are phenotypically normal, whereas mice lacking both proteins develop a spontaneous cardiac and skeletal muscle hypertrophy, indicating cooperative control of muscle mass by MuRF1 and MuRF2. To identify the unique role that MuRF1 plays in regulating cardiac hypertrophy in vivo, we created transgenic mice expressing increased amounts of cardiac MuRF1. Adult MuRF1 transgenic (Tg(+)) hearts exhibited a nonprogressive thinning of the left ventricular wall and a concomitant decrease in cardiac function. Experimental induction of cardiac hypertrophy by transaortic constriction (TAC) induced rapid failure of MuRF1 Tg(+) hearts. Microarray analysis identified that the levels of genes associated with metabolism (and in particular mitochondrial processes) were significantly altered in MuRF1 Tg(+) hearts, both at baseline and during the development of cardiac hypertrophy. Surprisingly, ATP levels in MuRF1 Tg(+) mice did not differ from wild-type mice despite the depressed contractility following TAC. In comparing the level and activity of creatine kinase (CK) between wild-type and MuRF1 Tg(+) hearts, we found that mCK and CK-M/B protein levels were unaffected in MuRF1 Tg(+) hearts; however, total CK activity was significantly inhibited. We conclude that increased expression of cardiac MuRF1 results in a broad disruption of primary metabolic functions, including alterations in CK activity that leads to increased susceptibility to heart failure following TAC. This study demonstrates for the first time a role for MuRF1 in the regulation of cardiac energetics in vivo.
Collapse
Affiliation(s)
- Monte S Willis
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, 27599-7525, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Nuss JE, Amaning JK, Bailey CE, DeFord JH, Dimayuga VL, Rabek JP, Papaconstantinou J. Oxidative modification and aggregation of creatine kinase from aged mouse skeletal muscle. Aging (Albany NY) 2009; 1:557-72. [PMID: 20195383 PMCID: PMC2830079 DOI: 10.18632/aging.100055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 05/21/2009] [Indexed: 11/25/2022]
Abstract
Creatine kinase catalyzes the reversible transfer of the gamma phosphate from ATP to creatine forming the high energy compound creatine phosphate. Muscle creatine kinase (CKm) activity maintains energetic homeostasis as variations in energy requirements dictate that ATP be readily available. Recent studies suggest that CKm activity is altered during aging. Proteomic analyses have shown that CKm is 3-nitrotyrosine (3-NT) modified and carbonylated in aged rodent skeletal muscle. However, it remains unknown if these modifications affect its structure and activity. To address this we characterized oxidatively modified CKm from the quadriceps of young, middle-aged, and aged mice. Our data indicate that 3-NT modified and carbonylated CKm are found predominantly in aged muscle and that it exists in high molecular weight oligomers and insoluble protein aggregates. CKm from middle-aged and aged mouse quadriceps also exhibits structural instability that may account for its reduction in function. These structural and functional changes correlate with the differential protein modifications. Interestingly, the majority of the age-related changes in enzyme activity and protein stability occurred by middle age. Our studies indicate that the age-associated oxidative and nitrative modification of CKm results in a decrease in its activity and may cause structural changes that promote oligomerization and aggregation.
Collapse
Affiliation(s)
- Jonathan E Nuss
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0643, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Mitochondrial kinases and their molecular interaction with cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2032-47. [PMID: 19409873 DOI: 10.1016/j.bbamem.2009.04.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/24/2009] [Indexed: 11/22/2022]
Abstract
Mitochondrial isoforms of creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D) are not phylogenetically related but share functionally important properties. They both use mitochondrially generated ATP with the ultimate goal of maintaining proper nucleotide pools, are located in the intermembrane/cristae space, have symmetrical oligomeric structures, and show high affinity binding to anionic phospholipids, in particular cardiolipin. The structural basis and functional consequences of the cardiolipin interaction have been studied and are discussed in detail in this review. They mainly result in a functional interaction of MtCK and NDPK-D with inner membrane adenylate translocator, probably by forming proteolipid complexes. These interactions allow for privileged exchange of metabolites (channeling) that ultimately regulate mitochondrial respiration. Further functions of the MtCK/membrane interaction include formation of cardiolipin membrane patches, stabilization of mitochondria and a role in apoptotic signaling, as well as in case of both kinases, a role in facilitating lipid transfer between two membranes. Finally, disturbed cardiolipin interactions of MtCK, NDPK-D and other proteins like cytochrome c and truncated Bid are discussed more generally in the context of apoptosis and necrosis.
Collapse
|
43
|
Eimre M, Paju K, Pelloux S, Beraud N, Roosimaa M, Kadaja L, Gruno M, Peet N, Orlova E, Remmelkoor R, Piirsoo A, Saks V, Seppet E. Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:514-24. [PMID: 18423391 DOI: 10.1016/j.bbabio.2008.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 03/15/2008] [Accepted: 03/18/2008] [Indexed: 12/18/2022]
Abstract
Expression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells. The HL-1 cells also exhibited deficient complex I of the respiratory chain. In conclusion, contrary to cardiomyocytes where mitochondria and CaMgATPases are organized into tight complexes which ensure effective energy transfer and feedback signaling between these structures via specialized pathways mediated by CK and AK isoforms and direct adenine nucleotide channeling, these complexes do not exist in HL-1 cells due to less organized energy metabolism.
Collapse
Affiliation(s)
- Margus Eimre
- Department of Pathophysiology, Centre of Molecular and Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Brancaccio P, Maffulli N, Buonauro R, Limongelli FM. Serum Enzyme Monitoring in Sports Medicine. Clin Sports Med 2008; 27:1-18, vii. [DOI: 10.1016/j.csm.2007.09.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U, Wallimann T, Aliev M, Vendelin M. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell Biochem 2007; 46:27-65. [PMID: 18652071 DOI: 10.1007/978-1-4020-6486-9_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, we summarize the main structural and functional data on the role of the phosphocreatine (PCr)--creatine kinase (CK) pathway for compartmentalized energy transfer in cardiac cells. Mitochondrial creatine kinase, MtCK, fixed by cardiolipin molecules in the vicinity of the adenine nucleotide translocator, is a key enzyme in this pathway. Direct transfer of ATP and ADP between these proteins has been revealed both in experimental studies on the kinetics of the regulation of mitochondrial respiration and by mathematical modelling as a main mechanism of functional coupling of PCr production to oxidative phosphorylation. In cells in vivo or in permeabilized cells in situ, this coupling is reinforced by limited permeability of the outer membrane of the mitochondria for adenine nucleotides due to the contacts with cytoskeletal proteins. Due to these mechanisms, at least 80% of total energy is exported from mitochondria by PCr molecules. Mathematical modelling of intracellular diffusion and energy transfer shows that the main function of the PCr-CK pathway is to connect different pools (compartments) of ATP and, by this way, to overcome the local restrictions and diffusion limitation of adenine nucleotides due to the high degree of structural organization of cardiac cells.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U 884, Joseph Fourier University, 2280, Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abnous K, Storey KB. Regulation of skeletal muscle creatine kinase from a hibernating mammal. Arch Biochem Biophys 2007; 467:10-9. [PMID: 17888865 DOI: 10.1016/j.abb.2007.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/09/2007] [Accepted: 07/22/2007] [Indexed: 01/19/2023]
Abstract
Control over skeletal muscle energetics is critical in hibernation to sustain viability over weeks of cold torpor and to support shivering thermogenesis during arousal. Creatine kinase (CK) has a key role in muscle energetics and this study analyzes muscle CK from ground squirrels, Spermophilus richardsonii. CK activity was approximately 20% lower during hibernation than in euthermia, as was CK protein whereas CK mRNA was reduced by approximately 70%. Hibernator CK showed reduced affinity for ATP and creatine, compared with euthermic CK. Incubations that promoted endogenous protein kinase or phosphatase action, coupled with ion exchange chromatography to separate high and low phosphate forms, showed that soluble CK from euthermic squirrels was a mix of phosphorylated and dephosphorylated forms whereas only phospho-CK was detected in hibernating animals. High and low phosphate CK forms had different affinities for ATP and creatine substrates but did not differ in stability to urea denaturation. About 20-25% of CK was bound to the insoluble fraction of muscle and bound CK showed different kinetic responses to kinase and phosphatase treatments.
Collapse
Affiliation(s)
- Khalil Abnous
- Institute of Biochemistry and Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6
| | | |
Collapse
|
47
|
Zurmanova J, Difato F, Malacova D, Mejsnar J, Stefl B, Zahradnik I. Creatine kinase binds more firmly to the M-band of rabbit skeletal muscle myofibrils in the presence of its substrates. Mol Cell Biochem 2007; 305:55-61. [PMID: 17578655 DOI: 10.1007/s11010-007-9527-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Creatine kinase (CK) (E.C. 2.7.3.2) buffers cellular ATP concentration during fluctuating ATP turnover. Muscle cytosolic CK isoform interacts with various subcellular structures where it is functionally coupled with relevant ATPases. However, how this interaction affects its activity is not known. We have therefore studied the interaction of CK with myofibrils and the role of different conformational states of CK molecule induced by ATP, phosphocreatine, ADP and the ATP-creatine pair. Purified rabbit psoas myofibrils with CK specific activity of 0.4+/-0.02 IU/mg were used. The exchange rates between the myofibrillar M-band and its surroundings were measured with fluorofore conjugated CK (IAF) by the Fluorescence Lost in Photobleaching (FLIP) method within a very narrow pH range 7.1-7.15. For CK-IAF without docked substrates, the time derivative of the initial loss of the fluorescent signal within the M-band equalled -3.26 at the fifth second and the decrease reached 82% by the 67th second. For CK-IAF with added substrates, the derivatives fell into the range of -0.95 to -1.30, with respective decreases from 16 to 46% at the 67th second. The results show that the substrates slowed down the exchange rate. This indicates that the strength of the bond between CK and the M-band of myofibrils increased.
Collapse
Affiliation(s)
- Jitka Zurmanova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague 2, 128 00, Czech Republic.
| | | | | | | | | | | |
Collapse
|
48
|
Zhao TJ, Yan YB, Liu Y, Zhou HM. The generation of the oxidized form of creatine kinase is a negative regulation on muscle creatine kinase. J Biol Chem 2007; 282:12022-9. [PMID: 17303563 DOI: 10.1074/jbc.m610363200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscle creatine kinase (CK) is a crucial enzyme in energy metabolism, and it exists in two forms, the reduced form (R-CK) and the oxidized form (O-CK). In contrast with R-CK, O-CK contained an intrachain disulfide bond in each subunit. Here we explored the properties of O-CK and its regulatory role on muscle CK. The intrachain disulfide bond in O-CK was demonstrated to be formed between Cys(74) and Cys(146) by site-directed mutagenesis. Biophysical analysis indicated that O-CK showed decreased catalytic activity and that it might be structurally unstable. Further assays through guanidine hydrochloride denaturation and proteolysis by trypsin and protease K revealed that the tertiary structure of O-CK was more easily disturbed than that of R-CK. Surprisingly, O-CK, unlike R-CK, cannot interact with the M-line protein myomesin through biosensor assay, indicating that O-CK might have no role in muscle contraction. Through in vitro ubiquitination assay, CK was demonstrated to be a specific substrate of muscle ring finger protein 1 (MURF-1). O-CK can be rapidly ubiquitinated by MURF-1, while R-CK can hardly be ubiquitinated, implying that CK might be degraded by the ATP-ubiquitin-proteasome pathway through the generation of O-CK. The results above were further confirmed by molecular modeling of the structure of O-CK. Therefore, it can be concluded that the generation of O-CK was a negative regulation of R-CK and that O-CK might play essential roles in the molecular turnover of MM-CK.
Collapse
Affiliation(s)
- Tong-Jin Zhao
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
49
|
Feng S, Zhao TJ, Zhou HM, Yan YB. Effects of the single point genetic mutation D54G on muscle creatine kinase activity, structure and stability. Int J Biochem Cell Biol 2007; 39:392-401. [PMID: 17030001 DOI: 10.1016/j.biocel.2006.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/23/2006] [Accepted: 09/10/2006] [Indexed: 11/30/2022]
Abstract
Aberrant folding of important proteins caused by genetic mutations is closely correlated to many diseases. Due to the important physiological role in excitable cells, the activity and level of creatine kinase (CK) play a crucial role in maintaining body functions. Muscle CK deficiency disease was identified by an unusual CK activity decrease in an acute myocardial infarction patient caused by the single point mutation D54G. In this research, it was found that the D54G mutant had substantially decreased activity, substrate binding affinity and stability. Spectroscopic experiments indicated that the mutation impaired the structure of CK, which resulted in a partially unfolded state with more hydrophobic exposure and exposed Trp residues. The inability to fold to the functional compact state made the mutant be prone to aggregate upon microenvironmental stresses, and might gradually decrease the CK level of the patient.
Collapse
Affiliation(s)
- Shan Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
50
|
Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol 2006; 41:389-405. [PMID: 16879835 DOI: 10.1016/j.yjmcc.2006.06.009] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/08/2006] [Accepted: 06/14/2006] [Indexed: 12/21/2022]
Abstract
Cardiotoxic side-effects represent a serious complication of anticancer therapy with anthracyclines, in particular with doxorubicin (DXR) being the leading drug of the group. Different hypotheses, accentuating various mechanisms and/or targets, have been proposed to explain DXR-induced cardiotoxicity. This review focuses on the myocardial energetic network as a target of DXR toxic action in heart and highlights the recent advances in understanding its role in development of the DXR related cardiac dysfunction. We present a survey of DXR-induced defects in different steps of cardiac energy metabolism, including reduction of oxidative capacity of mitochondria, changes in the profile of energy substrate utilization, disturbance of energy transfer between sites of energy production and consumption, as well as defects in energy signaling. Considering the wide spectrum and diversity of the changes reported, we attempt to integrate these facts into a common framework and to discuss important functional and temporal relationships between DXR-induced events and the possible underlying molecular mechanisms.
Collapse
|