1
|
Leih M, Plemel RL, West M, Angers CG, Merz AJ, Odorizzi G. Disordered hinge regions of the AP-3 adaptor complex promote vesicle budding from the late Golgi in yeast. J Cell Sci 2024; 137:jcs262234. [PMID: 39330471 PMCID: PMC11574352 DOI: 10.1242/jcs.262234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Vesicles bud from maturing Golgi cisternae in a programmed sequence. Budding is mediated by adaptors that recruit cargoes and facilitate vesicle biogenesis. In Saccharomyces cerevisiae, the AP-3 adaptor complex directs cargoes from the Golgi to the lysosomal vacuole. The AP-3 core consists of small and medium subunits complexed with two non-identical large subunits, β3 (Apl6) and δ (Apl5). The C-termini of β3 and δ were thought to be flexible hinges linking the core to ear domains that bind accessory proteins involved in vesicular transport. We found by computational modeling that the yeast β3 and δ hinges are intrinsically disordered and lack folded ear domains. When either hinge is truncated, AP-3 is recruited to the Golgi, but vesicle budding is impaired and cargoes normally sorted into the AP-3 pathway are mistargeted. This budding deficiency causes AP-3 to accumulate on ring-like Golgi structures adjacent to GGA adaptors that, in wild-type cells, bud vesicles downstream of AP-3 during Golgi maturation. Thus, each of the disordered hinges of yeast AP-3 has a crucial role in mediating transport vesicle formation at the Golgi.
Collapse
Affiliation(s)
- Mitchell Leih
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Cortney G Angers
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Tojima T, Suda Y, Jin N, Kurokawa K, Nakano A. Spatiotemporal dissection of the Golgi apparatus and the ER-Golgi intermediate compartment in budding yeast. eLife 2024; 13:e92900. [PMID: 38501165 PMCID: PMC10950332 DOI: 10.7554/elife.92900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Cargo traffic through the Golgi apparatus is mediated by cisternal maturation, but it remains largely unclear how the cis-cisternae, the earliest Golgi sub-compartment, is generated and how the Golgi matures into the trans-Golgi network (TGN). Here, we use high-speed and high-resolution confocal microscopy to analyze the spatiotemporal dynamics of a diverse set of proteins that reside in and around the Golgi in budding yeast. We find many mobile punctate structures that harbor yeast counterparts of mammalian endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) proteins, which we term 'yeast ERGIC'. It occasionally exhibits approach and contact behavior toward the ER exit sites and gradually matures into the cis-Golgi. Upon treatment with the Golgi-disrupting agent brefeldin A, the ERGIC proteins form larger aggregates corresponding to the Golgi entry core compartment in plants, while cis- and medial-Golgi proteins are absorbed into the ER. We further analyze the dynamics of several late Golgi proteins to better understand the Golgi-TGN transition. Together with our previous studies, we demonstrate a detailed spatiotemporal profile of the entire cisternal maturation process from the ERGIC to the Golgi and further to the TGN.
Collapse
Grants
- KAKENHI 19K06669 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 19H04764 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 22K06213 Ministry of Education, Culture, Sports, Science and Technology
- CREST JPMJCR21E3 Japan Science and Technology Agency
- KAKENHI 17H06420 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 18H05275 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 23H00382 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
- Laboratory of Molecular Cell Biology, Faculty of Medicine, University of TsukubaTsukubaJapan
| | - Natsuko Jin
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| |
Collapse
|
3
|
Petersen L, Bachmann R, Meinerz S, Tanz A, Fischer von Mollard G. Distinct functional domains of the epsin-related Ent5p, a cargo adaptor for the SNARE Tlg2p in transport between endosomes and Golgi. Traffic 2023; 24:475-488. [PMID: 37434343 DOI: 10.1111/tra.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
The epsin-related adaptor proteins Ent3p and Ent5p participate in budding of clathrin coated vesicles in transport between trans-Golgi network and endosomes in yeast. Transport of the arginine permease Can1p was analyzed, which recycles between plasma membrane and endosomes and can be targeted to the vacuole for degradation. ent3∆ cells accumulate Can1p-GFP in endosomes. Can1p-GFP is transported faster to the vacuole upon induction of degradation in ent5∆ cells than in wild type cells. The C-terminal domain of Ent5p was sufficient to restore recycling of the secretory SNARE GFP-Snc1p between plasma membrane and TGN in ent3∆ ent5∆ cells. The SNARE Tlg2p was identified as interaction partner of the Ent5p ENTH domain by in vitro binding assays and the interaction site on Ent5p was mapped. Tlg2p functions in transport from early endosomes to the trans-Golgi network and in homotypic fusion of these organelles. Tlg2p is partially shifted to denser fractions in sucrose density gradients of organelles from ent5∆ cells while distribution of Kex2p is unaffected demonstrating that Ent5p acts as cargo adaptor for Tlg2p in vivo. Taken together we show that Ent3p and Ent5p have different roles in transport and function as cargo adaptors for distinct SNAREs.
Collapse
Affiliation(s)
- Lara Petersen
- Biochemie III, Fakultät für Chemie, Universitätsstrasse 25, Universität Bielefeld, Bielefeld, Germany
| | - Rimma Bachmann
- Biochemie III, Fakultät für Chemie, Universitätsstrasse 25, Universität Bielefeld, Bielefeld, Germany
| | - Sven Meinerz
- Biochemie III, Fakultät für Chemie, Universitätsstrasse 25, Universität Bielefeld, Bielefeld, Germany
| | - Anne Tanz
- Biochemie III, Fakultät für Chemie, Universitätsstrasse 25, Universität Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
4
|
Date SS, Xu P, Hepowit NL, Diab NS, Best J, Xie B, Du J, Strieter ER, Jackson LP, MacGurn JA, Graham TR. Ubiquitination drives COPI priming and Golgi SNARE localization. eLife 2022; 11:e80911. [PMID: 35904239 PMCID: PMC9374436 DOI: 10.7554/elife.80911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Deciphering mechanisms controlling SNARE localization within the Golgi complex is crucial to understanding protein trafficking patterns within the secretory pathway. SNAREs are also thought to prime coatomer protein I (COPI) assembly to ensure incorporation of these essential cargoes into vesicles, but the regulation of these events is poorly understood. Here, we report roles for ubiquitin recognition by COPI in SNARE trafficking and in stabilizing interactions between Arf, COPI, and Golgi SNAREs in Saccharomyces cerevisiae. The ability of COPI to bind ubiquitin, but not the dilysine motif, through its N-terminal WD repeat domain of β'-COP or through an unrelated ubiquitin-binding domain is essential for the proper localization of Golgi SNAREs Bet1 and Gos1. We find that COPI, the ArfGAP Glo3, and multiple Golgi SNAREs are ubiquitinated. Notably, the binding of Arf and COPI to Gos1 is markedly enhanced by ubiquitination of these components. Glo3 is proposed to prime COPI-SNARE interactions; however, Glo3 is not enriched in the ubiquitin-stabilized SNARE-Arf-COPI complex but is instead enriched with COPI complexes that lack SNAREs. These results support a new model for how posttranslational modifications drive COPI priming events crucial for Golgi SNARE localization.
Collapse
Affiliation(s)
- Swapneeta S Date
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Peng Xu
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Nathaniel L Hepowit
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Nicholas S Diab
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Jordan Best
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Jiale Du
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
5
|
Yamazaki Y, Kono K. Clathrin-mediated trafficking of phospholipid flippases is required for local plasma membrane/cell wall damage repair in budding yeast. Biochem Biophys Res Commun 2022; 606:156-162. [DOI: 10.1016/j.bbrc.2022.03.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
|
6
|
Eising S, Esch B, Wälte M, Vargas Duarte P, Walter S, Ungermann C, Bohnert M, Fröhlich F. A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways. J Cell Biol 2022; 221:213011. [PMID: 35175277 PMCID: PMC8859911 DOI: 10.1083/jcb.202107148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo-receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.
Collapse
Affiliation(s)
- Sebastian Eising
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Bianca Esch
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Mike Wälte
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
| | - Prado Vargas Duarte
- Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Florian Fröhlich
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
7
|
The Chlamydia trachomatis inclusion membrane protein CT006 associates with lipid droplets in eukaryotic cells. PLoS One 2022; 17:e0264292. [PMID: 35192658 PMCID: PMC8863265 DOI: 10.1371/journal.pone.0264292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis causes genital and ocular infections in humans. This bacterial pathogen multiplies exclusively within host cells in a characteristic vacuole (inclusion) and delivers proteins such as inclusion membrane proteins (Incs) into the host cell. Here, we identified CT006 as a novel C. trachomatis protein that when expressed ectopically eukaryotic cells can associate with lipid droplets (LDs). A screen using Saccharomyces cerevisiae identified two Incs causing vacuolar protein sorting defects and seven Incs showing tropism for eukaryotic organelles. Ectopic expression in yeast and mammalian cells of genes encoding different fragments of CT006 revealed tropism for the endoplasmic reticulum and LDs. We identified a LD-targeting region within the first 88 amino acid residues of CT006, and positively charged residues important for this targeting. Comparing with the parental wild-type strain, cells infected by a newly generated C. trachomatis strain overproducing CT006 with a double hemagglutinin tag showed a slight increase in the area occupied by LDs within the inclusion region. However, we could not correlate this effect with the LD-targeting regions within CT006. We further showed that both the amino and carboxy-terminal regions of CT006, flanking the Inc-characteristic bilobed hydrophobic domain, are exposed to the host cell cytosol during C. trachomatis infection, supporting their availability to interact with host cell targets. Altogether, our data suggest that CT006 might participate in the interaction of LDs with C. trachomatis inclusions.
Collapse
|
8
|
Fote GM, Geller NR, Efstathiou NE, Hendricks N, Vavvas DG, Reidling JC, Thompson LM, Steffan JS. Isoform-dependent lysosomal degradation and internalization of apolipoprotein E requires autophagy proteins. J Cell Sci 2022; 135:jcs258687. [PMID: 34982109 PMCID: PMC8917355 DOI: 10.1242/jcs.258687] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022] Open
Abstract
The human apolipoprotein E4 isoform (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and lysosomal dysfunction has been implicated in AD pathogenesis. We found, by examining cells stably expressing each APOE isoform, that APOE4 increases lysosomal trafficking, accumulates in enlarged lysosomes and late endosomes, alters autophagic flux and the abundance of autophagy proteins and lipid droplets, and alters the proteomic contents of lysosomes following internalization. We investigated APOE-related lysosomal trafficking further in cell culture, and found that APOE from the post-Golgi compartment is degraded through autophagy. We found that this autophagic process requires the lysosomal membrane protein LAMP2 in immortalized neuron-like and hepatic cells, and in mouse brain tissue. Several macroautophagy-associated proteins were also required for autophagic degradation and internalization of APOE in hepatic cells. The dysregulated autophagic flux and lysosomal trafficking of APOE4 that we observed suggest a possible novel mechanism that might contribute to AD pathogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gianna M. Fote
- UC Irvine Department of Biological Chemistry, 825 Health Sciences Road, Medical Sciences I, Room D240, UC Irvine School of Medicine, Irvine, CA 92697-1700, USA
| | - Nicolette R. Geller
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
| | - Nikolaos E. Efstathiou
- Harvard Medical School Department of Ophthalmology, 243 Charles Street, Boston, MA 02114, USA
| | - Nathan Hendricks
- Institute for Integrative Genome Biology, UC Riverside, Eucalyptus Drive, Riverside, CA 92521, USA
| | - Demetrios G. Vavvas
- Harvard Medical School Department of Ophthalmology, 243 Charles Street, Boston, MA 02114, USA
| | - Jack C. Reidling
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Leslie M. Thompson
- UC Irvine Department of Biological Chemistry, 825 Health Sciences Road, Medical Sciences I, Room D240, UC Irvine School of Medicine, Irvine, CA 92697-1700, USA
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
- UC Irvine Department of Neurobiology and Behavior, 2205 McGaugh Hall, Irvine, CA 92697, USA
| | - Joan S. Steffan
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
| |
Collapse
|
9
|
Casler JC, Johnson N, Krahn AH, Pantazopoulou A, Day KJ, Glick BS. Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling. J Cell Biol 2022; 221:212747. [PMID: 34739034 PMCID: PMC8576872 DOI: 10.1083/jcb.202103199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The pathways of membrane traffic within the Golgi apparatus are not fully known. This question was addressed using the yeast Saccharomyces cerevisiae, in which the maturation of individual Golgi cisternae can be visualized. We recently proposed that the AP-1 clathrin adaptor mediates intra-Golgi recycling late in the process of cisternal maturation. Here, we demonstrate that AP-1 cooperates with the Ent5 clathrin adaptor to recycle a set of Golgi transmembrane proteins, including some that were previously thought to pass through endosomes. This recycling can be detected by removing AP-1 and Ent5, thereby diverting the AP-1/Ent5-dependent Golgi proteins into an alternative recycling loop that involves traffic to the plasma membrane followed by endocytosis. Unexpectedly, various AP-1/Ent5-dependent Golgi proteins show either intermediate or late kinetics of residence in maturing cisternae. We infer that the AP-1/Ent5 pair mediates two sequential intra-Golgi recycling pathways that define two classes of Golgi proteins. This insight can explain the polarized distribution of transmembrane proteins in the Golgi.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Natalie Johnson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Adam H Krahn
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| |
Collapse
|
10
|
Schoppe J, Mari M, Yavavli E, Auffarth K, Cabrera M, Walter S, Fröhlich F, Ungermann C. AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering. EMBO J 2020; 39:e105117. [PMID: 32840906 PMCID: PMC7560216 DOI: 10.15252/embj.2020105117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP-3-coated vesicles involved in Golgi-to-vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP-3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP-3 recruitment, we now show that Vps41 can tether AP-3 vesicles to mitochondria, yet AP-3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase-activating protein (GAP) Age2 at the AP-3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP-3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole.
Collapse
Affiliation(s)
- Jannis Schoppe
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erdal Yavavli
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Margarita Cabrera
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Farba, Barcelona, Spain
| | - Stefan Walter
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany.,Department of Biology/Chemistry, Molecular Membrane Biology Section, University of Osnabrück, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
11
|
Casler JC, Glick BS. A microscopy-based kinetic analysis of yeast vacuolar protein sorting. eLife 2020; 9:56844. [PMID: 32584255 PMCID: PMC7338053 DOI: 10.7554/elife.56844] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Saccharomyces cerevisiae is amenable to studying membrane traffic by live-cell fluorescence microscopy. We used this system to explore two aspects of cargo protein traffic through prevacuolar endosome (PVE) compartments to the vacuole. First, at what point during Golgi maturation does a biosynthetic vacuolar cargo depart from the maturing cisternae? To address this question, we modified a regulatable fluorescent secretory cargo by adding a vacuolar targeting signal. Traffic of the vacuolar cargo requires the GGA clathrin adaptors, which arrive during the early-to-late Golgi transition. Accordingly, the vacuolar cargo begins to exit the Golgi near the midpoint of maturation, significantly before exit of a secretory cargo. Second, how are cargoes delivered from PVE compartments to the vacuole? To address this question, we tracked biosynthetic and endocytic cargoes after they had accumulated in PVE compartments. The results suggest that stable PVE compartments repeatedly deliver material to the vacuole by a kiss-and-run mechanism.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| |
Collapse
|
12
|
Makowski SL, Kuna RS, Field SJ. Induction of membrane curvature by proteins involved in Golgi trafficking. Adv Biol Regul 2019; 75:100661. [PMID: 31668661 PMCID: PMC7056495 DOI: 10.1016/j.jbior.2019.100661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Tojima T, Suda Y, Ishii M, Kurokawa K, Nakano A. Spatiotemporal dissection of the trans-Golgi network in budding yeast. J Cell Sci 2019; 132:jcs.231159. [PMID: 31289195 PMCID: PMC6703704 DOI: 10.1242/jcs.231159] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
The trans-Golgi network (TGN) acts as a sorting hub for membrane traffic. It receives newly synthesized and recycled proteins, and sorts and delivers them to specific targets such as the plasma membrane, endosomes and lysosomes/vacuoles. Accumulating evidence suggests that the TGN is generated from the trans-most cisterna of the Golgi by maturation, but the detailed transition processes remain obscure. Here, we examine spatiotemporal assembly dynamics of various Golgi/TGN-resident proteins in budding yeast by high-speed and high-resolution spinning-disk confocal microscopy. The Golgi–TGN transition gradually proceeds via at least three successive stages: the ‘Golgi stage’ where glycosylation occurs; the ‘early TGN stage’, which receives retrograde traffic; and the ‘late TGN stage’, where transport carriers are produced. During the stage transition periods, earlier and later markers are often compartmentalized within a cisterna. Furthermore, for the late TGN stage, various types of coat/adaptor proteins exhibit distinct assembly patterns. Taken together, our findings characterize the identity of the TGN as a membrane compartment that is structurally and functionally distinguishable from the Golgi. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The TGN displays two sub-stages of maturation: ‘early TGN’, when retrograde traffic is received, and ‘late TGN’, when transport carriers are produced. At the late TGN, various coat/adaptor proteins exhibit distinct assembly dynamics.
Collapse
Affiliation(s)
- Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.,Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Midori Ishii
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Yanguas F, Moscoso-Romero E, Valdivieso MH. Ent3 and GGA adaptors facilitate diverse anterograde and retrograde trafficking events to and from the prevacuolar endosome. Sci Rep 2019; 9:10747. [PMID: 31341193 PMCID: PMC6656748 DOI: 10.1038/s41598-019-47035-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Carboxypeptidases Y (Cpy1) and S (Cps1), the receptor Vps10, and the ATPase subunit Vph1 follow the carboxypeptidase Y (CPY) pathway from the trans-Golgi network (TGN) to the prevacuolar endosome (PVE). Using Schizosaccharomyces pombe quantitative live-cell imaging, biochemical and genetic analyses, we extended the previous knowledge and showed that collaboration between Gga22, the dominant Golgi-localized Gamma-ear-containing ARF-binding (GGA) protein, and Gga21, and between Gga22 and the endosomal epsin Ent3, was required for efficient: i) Vps10 anterograde trafficking from the TGN to the PVE; ii) Vps10 retrograde trafficking from the PVE to the TGN; iii) Cps1 exit from the TGN, and its sorting in the PVE en route to the vacuole; and iv) Syb1/Snc1 recycling to the plasma membrane through the PVE. Therefore, monomeric clathrin adaptors facilitated the trafficking of Vps10 in both directions of the CPY pathway, and facilitated trafficking events of Cps1 in different organelles. By contrast, they were dispensable for Vph1 trafficking. Thus, these adaptors regulated the traffic of some, but not all, of the cargo of the CPY pathway, and regulated the traffic of cargoes that do not follow this pathway. Additionally, this collaboration was required for PVE organization and efficient growth under stress.
Collapse
Affiliation(s)
- Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Esteban Moscoso-Romero
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain. .,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
15
|
von Einem B, Eschbach J, Kiechle M, Wahler A, Thal DR, McLean PJ, Weishaupt JH, Ludolph AC, von Arnim CAF, Danzer KM. The Golgi-localized, gamma ear-containing, ARF-binding (GGA) protein family alters alpha synuclein (α-syn) oligomerization and secretion. Aging (Albany NY) 2018; 9:1677-1697. [PMID: 28722658 PMCID: PMC5559169 DOI: 10.18632/aging.101261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
Several age-related neurodegenerative disorders are associated with protein misfolding and aggregation of toxic peptides. α-synuclein (α-syn) aggregation and the resulting cytotoxicity is a hallmark of Parkinson's disease (PD) as well as dementia with Lewy bodies. Rising evidence points to oligomeric and pre-fibrillar forms as the pathogenic species, and oligomer secretion seems to be crucial for the spreading and progression of PD pathology. Recent studies implicate that dysfunctions in endolysosomal/autophagosomal pathways increase α-syn secretion. Mutation in the retromer-complex protein VPS35, which is involved in endosome to Golgi transport, was suggested to cause familial PD. GGA proteins regulate vesicular traffic between Golgi and endosomes and might work as antagonists for retromer complex mediated transport. To investigate the role of the GGAs in the α-syn oligomerization and/or secretion process we utilized protein-fragment complementation assays (PCA). We here demonstrate that GGAs alter α-syn oligomer secretion and α-syn oligomer-mediated toxicity. Specifically, we determined that GGA3 modifies extracellular α-syn species in an exosome-independent manner. Our data suggest that GGA3 drives α-syn oligomerization in endosomal compartments and thus facilitates α-syn oligomer secretion. Preventing the early events in α-syn oligomer release may be a novel approach to halt disease spreading in PD and other synucleinopathies.
Collapse
Affiliation(s)
| | | | - Martin Kiechle
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | - Anke Wahler
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | - Dietmar R Thal
- Laboratory for Neuropathology - Institute of Pathology, Ulm University, Ulm 89081, Germany
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | - Karin M Danzer
- Department of Neurology, Ulm University, Ulm 89081, Germany
| |
Collapse
|
16
|
Day KJ, Casler JC, Glick BS. Budding Yeast Has a Minimal Endomembrane System. Dev Cell 2018; 44:56-72.e4. [PMID: 29316441 DOI: 10.1016/j.devcel.2017.12.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
The endomembrane system consists of the secretory and endocytic pathways, which communicate by transport to and from the trans-Golgi network (TGN). In mammalian cells, the endocytic pathway includes early, late, and recycling endosomes. In budding yeast, different types of endosomes have been described, but the organization of the endocytic pathway has remained unclear. We performed a spatial and temporal analysis of yeast endosomal markers and endocytic cargoes. Our results indicate that the yeast TGN also serves as an early and recycling endosome. In addition, as previously described, yeast contains a late or prevacuolar endosome (PVE). Endocytic cargoes localize to the TGN shortly after internalization, and manipulations that perturb export from the TGN can slow the passage of endocytic cargoes to the PVE. Yeast apparently lacks a distinct early endosome. Thus, yeast has a simple endocytic pathway that may reflect the ancestral organization of the endomembrane system.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Traffic Through the Trans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast. Genetics 2016; 205:673-690. [PMID: 27974503 DOI: 10.1534/genetics.116.193458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
Abstract
Despite its biological and medical relevance, traffic from the Golgi to the plasma membrane (PM) is one of the least understood steps of secretion. Exomer is a protein complex that mediates the trafficking of certain cargoes from the trans-Golgi network/early endosomes to the PM in budding yeast. Here, we show that in Schizosaccharomyces pombe the Cfr1 and Bch1 proteins constitute the simplest form of an exomer. Cfr1 co-immunoprecipitates with Assembly Polypeptide adaptor 1 (AP-1), AP-2, and Golgi-localized, gamma-adaptin ear domain homology, ARF-binding (GGA) subunits, and cfr1+ interacts genetically with AP-1 and GGA genes. Exomer-defective cells exhibit multiple mild defects, including alterations in the morphology of Golgi stacks and the distribution of the synaptobrevin-like Syb1 protein, carboxypeptidase missorting, and stress sensitivity. S. pombe apm1Δ cells exhibit a defect in trafficking through the early endosomes that is severely aggravated in the absence of exomer. apm1Δ cfr1Δ cells exhibit a dramatic disorganization of intracellular compartments, including massive accumulation of electron-dense tubulovesicular structures. While the trans-Golgi network/early endosomes are severely disorganized in the apm1Δ cfr1Δ strain, gga21Δ gga22Δ cfr1Δ cells exhibit a significant disturbance of the prevacuolar/vacuolar compartments. Our findings show that exomer collaborates with clathrin adaptors in trafficking through diverse cellular compartments, and that this collaboration is important to maintain their integrity. These results indicate that the effect of eliminating exomer is more pervasive than that described to date, and suggest that exomer complexes might participate in diverse steps of vesicle transport in other organisms.
Collapse
|
18
|
Boettner DR, Segarra VA, Moorthy BT, de León N, Creagh J, Collette JR, Malhotra A, Lemmon SK. Creating a chimeric clathrin heavy chain that functions independently of yeast clathrin light chain. Traffic 2016; 17:754-68. [PMID: 27062026 DOI: 10.1111/tra.12401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/20/2023]
Abstract
Clathrin facilitates vesicle formation during endocytosis and sorting in the trans-Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc-YR) , which fused the N-terminus of yeast CHC (1-1312) to the rat CHC residues 1318-1675, including the CHC trimerization region. The novel CHC-YR allele encoded a stable protein that fractionated as a trimer. CHC-YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC-YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc-YR-GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1-GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC-YR, indicating that Chc-YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc-YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non-trimerization roles for the clathrin LC.
Collapse
Affiliation(s)
- Douglas R Boettner
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current address: Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Verónica A Segarra
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current Address: Department of Biology, High Point University, High Point, NC, USA
| | - Balaji T Moorthy
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Nagore de León
- Departamento de Microbiologıa y Genetica/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - John Creagh
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - John R Collette
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current address: Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Sandra K Lemmon
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| |
Collapse
|
19
|
López-Berges MS, Pinar M, Abenza JF, Arst HN, Peñalva MA. TheAspergillus nidulanssyntaxin PepAPep12is regulated by two Sec1/Munc-18 proteins to mediate fusion events at early endosomes, late endosomes and vacuoles. Mol Microbiol 2015; 99:199-216. [DOI: 10.1111/mmi.13226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Manuel S. López-Berges
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Mario Pinar
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Juan F. Abenza
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Herbert N. Arst
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
- Section of Microbiology; Flowers Building; Imperial College; London SW7 2AZ UK
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| |
Collapse
|
20
|
Tewari R, Bachert C, Linstedt AD. Induced oligomerization targets Golgi proteins for degradation in lysosomes. Mol Biol Cell 2015; 26:4427-37. [PMID: 26446839 PMCID: PMC4666137 DOI: 10.1091/mbc.e15-04-0207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
Oligomerization or homotypic clustering diverts Golgi membrane proteins into the canonical GGA1/clathrin-dependent Golgi-to-lysosome pathway revealing the presence of cellular quality control that could be useful for therapies designed to down-regulate specific proteins in the secretory pathway. Manganese protects cells against forms of Shiga toxin by down-regulating the cycling Golgi protein GPP130. Down-regulation occurs when Mn binding causes GPP130 to oligomerize and traffic to lysosomes. To determine how GPP130 is redirected to lysosomes, we tested the role of GGA1 and clathrin, which mediate sorting in the canonical Golgi-to-lysosome pathway. GPP130 oligomerization was induced using either Mn or a self-interacting version of the FKBP domain. Inhibition of GGA1 or clathrin specifically blocked GPP130 redistribution, suggesting recognition of the aggregated GPP130 by the GGA1/clathrin-sorting complex. Unexpectedly, however, GPP130’s cytoplasmic domain was not required, and redistribution also occurred after removal of GPP130 sequences needed for its normal cycling. Therefore, to test whether aggregate recognition might be a general phenomenon rather than one involving a specific GPP130 determinant, we induced homo-oligomerization of two unrelated Golgi-targeted constructs using the FKBP strategy. These were targeted to the cis- and trans-Golgi, respectively, using domains from mannosidase-1 and galactosyltransferase. Significantly, upon oligomerization, each redistributed to peripheral punctae and was degraded. This occurred in the absence of detectable UPR activation. These findings suggest the unexpected presence of quality control in the Golgi that recognizes aggregated Golgi proteins and targets them for degradation in lysosomes.
Collapse
Affiliation(s)
- Ritika Tewari
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Collin Bachert
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
21
|
Membrane trafficking in the yeast Saccharomyces cerevisiae model. Int J Mol Sci 2015; 16:1509-25. [PMID: 25584613 PMCID: PMC4307317 DOI: 10.3390/ijms16011509] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.
Collapse
|
22
|
Tong Z, Kim MS, Pandey A, Espenshade PJ. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast. Mol Cell Proteomics 2014; 13:2871-82. [PMID: 25078903 DOI: 10.1074/mcp.m114.040774] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Maintenance of protein homeostasis is essential for cellular survival. Central to this regulation are mechanisms of protein quality control in which misfolded proteins are recognized and degraded by the ubiquitin-proteasome system. One well-studied protein quality control pathway requires endoplasmic reticulum (ER)-resident, multi-subunit E3 ubiquitin ligases that function in ER-associated degradation. Using fission yeast, our lab identified the Golgi Dsc E3 ligase as required for proteolytic activation of fungal sterol regulatory element-binding protein transcription factors. The Dsc E3 ligase contains five integral membrane subunits and structurally resembles ER-associated degradation E3 ligases. Saccharomyces cerevisiae codes for homologs of Dsc E3 ligase subunits, including the Dsc1 E3 ligase homolog Tul1 that functions in Golgi protein quality control. Interestingly, S. cerevisiae lacks sterol regulatory element-binding protein homologs, indicating that novel Tul1 E3 ligase substrates exist. Here, we show that the S. cerevisiae Tul1 E3 ligase consists of Tul1, Dsc2, Dsc3, and Ubx3 and define Tul1 complex architecture. Tul1 E3 ligase function required each subunit as judged by vacuolar sorting of the artificial substrate Pep12D. Genetic studies demonstrated that Tul1 E3 ligase was required in cells lacking the multivesicular body pathway and under conditions of ubiquitin depletion. To identify candidate substrates, we performed quantitative diGly proteomics using stable isotope labeling by amino acids in cell culture to survey ubiquitylation in wild-type and tul1Δ cells. We identified 3116 non-redundant ubiquitylation sites, including 10 sites in candidate substrates. Quantitative proteomics found 4.5% of quantified proteins (53/1172) to be differentially expressed in tul1Δ cells. Correcting the diGly dataset for these differences increased the number of Tul1-dependent ubiquitylation sites. Together, our data demonstrate that the Tul1 E3 ligase functions in protein homeostasis under non-stress conditions and support a role in protein quality control. This quantitative diGly proteomics methodology will serve as a robust platform for screening for stress conditions that require Tul1 E3 ligase activity.
Collapse
Affiliation(s)
- Zongtian Tong
- From the ‡Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Min-Sik Kim
- §McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Akhilesh Pandey
- §McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ¶Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130; **Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana 70130
| | - Peter J Espenshade
- From the ‡Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
23
|
Aoh QL, Hung CW, Duncan MC. Energy metabolism regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell 2013; 24:832-47. [PMID: 23345590 PMCID: PMC3596253 DOI: 10.1091/mbc.e12-10-0750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glucose is a master regulator of cell behavior in the yeast Saccharomyces cerevisiae. It acts as both a metabolic substrate and a potent regulator of intracellular signaling cascades. Glucose starvation induces the transient delocalization and then partial relocalization of clathrin adaptors at the trans-Golgi network and endosomes. Although these localization responses are known to depend on the protein kinase A (PKA) signaling pathway, the molecular mechanism of this regulation is unknown. Here we demonstrate that PKA and the AMP-regulated kinase regulate adaptor localization through changes in energy metabolism. We show that genetic and chemical manipulation of intracellular ATP levels cause corresponding changes in adaptor localization. In permeabilized cells, exogenous ATP is sufficient to induce adaptor localization. Furthermore, we reveal distinct energy-dependent steps in adaptor localization: a step that requires the ADP-ribosylation factor ARF, an ATP-dependent step that requires the phosphatidyl-inositol-4 kinase Pik1, and third ATP-dependent step for which we provide evidence but for which the mechanism is unknown. We propose that these energy-dependent mechanisms precisely synchronize membrane traffic with overall proliferation rates and contribute a crucial aspect of energy conservation during acute glucose starvation.
Collapse
Affiliation(s)
- Quyen L Aoh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
24
|
Hung CW, Aoh QL, Joglekar AP, Payne GS, Duncan MC. Adaptor autoregulation promotes coordinated binding within clathrin coats. J Biol Chem 2012; 287:17398-17407. [PMID: 22457357 PMCID: PMC3366796 DOI: 10.1074/jbc.m112.349035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane traffic is an essential process that allows protein and lipid exchange between the endocytic, lysosomal, and secretory compartments. Clathrin-mediated traffic between the trans-Golgi network and endosomes mediates responses to the environment through the sorting of biosynthetic and endocytic protein cargo. Traffic through this pathway is initiated by the controlled assembly of a clathrin-adaptor protein coat on the cytosolic surface of the originating organelle. In this process, clathrin is recruited by different adaptor proteins that act as a bridge between clathrin and the transmembrane cargo proteins to be transported. Interactions between adaptors and clathrin and between different types of adaptors lead to the formation of a densely packed protein network within the coat. A key unresolved issue is how the highly complex adaptor-clathrin interaction and adaptor-adaptor interaction landscape lead to the correct spatiotemporal assembly of the clathrin coat. Here we report the discovery of a new autoregulatory motif within the clathrin adaptor Gga2 that drives synergistic binding of Gga2 to clathrin and the adaptor Ent5. This autoregulation influences the temporal and/or spatial location of the Gga2-Ent5 interaction. We propose that this synergistic binding provides built-in regulation to ensure the correct assembly of clathrin coats.
Collapse
Affiliation(s)
- Chao-Wei Hung
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599
| | - Quyen L Aoh
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599
| | - Ajit P Joglekar
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gregory S Payne
- Department of Biological Chemistry, The David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Mara C Duncan
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
25
|
Daboussi L, Costaguta G, Payne GS. Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network. Nat Cell Biol 2012; 14:239-48. [PMID: 22344030 PMCID: PMC4855891 DOI: 10.1038/ncb2427] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/03/2011] [Indexed: 11/30/2022]
Abstract
Clathrin coated vesicles mediate endocytosis and transport between the trans Golgi network (TGN) and endosomes in eukaryotic cells. Clathrin adaptors play central roles in coat assembly, interacting with clathrin, cargo, and membranes. Two major types of clathrin adaptors act in TGN-endosome traffic, Gga proteins and the AP-1 complex. Here we characterize the relationship between Gga proteins, AP-1, and other TGN clathrin adaptors using live cell and superresolution microscopy in yeast. We present evidence that Gga proteins and AP-1 are recruited sequentially in two waves of coat assembly at the TGN. Mutations that decrease phosphatidylinositol 4-phosphate (PI4P) levels at the TGN slow or uncouple AP-1 coat assembly from Gga coat assembly. Conversely, enhanced PI4P synthesis shortens the time between adaptor waves. Gga2p binds directly to the TGN PI4-kinase Pik1p and contributes to Pik1p recruitment. These results identify a PI4P-based mechanism for regulating progressive assembly of adaptor-specific clathrin coats at the TGN.
Collapse
Affiliation(s)
- Lydia Daboussi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
26
|
Schuh AL, Audhya A. Phosphoinositide signaling during membrane transport in Saccharomyces cerevisiae. Subcell Biochem 2012; 59:35-63. [PMID: 22374087 DOI: 10.1007/978-94-007-3015-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphatidylinositol (PI) is distinct from other phospholipids, possessing a head group that can be modified by phosphorylation at multiple positions to generate unique signaling molecules collectively known as phosphoinositides. The set of kinases and phosphatases that regulate PI metabolism are conserved throughout eukaryotic evolution, and numerous studies have demonstrated that phosphoinositides regulate a diverse spectrum of cellular processes, including vesicle transport, cell proliferation, and cytoskeleton organization. Over the past two decades, nearly all PI derivatives have been shown to interact directly with cellular proteins to affect their localization and/or activity. Additionally, there is growing evidence, which suggests that phosphoinositides may also affect local membrane topology. Here, we focus on the role of phosphoinositides in membrane trafficking and underscore the significant role that yeast has played in the field.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, WI, 53706, Madison, USA
| | | |
Collapse
|
27
|
Eissenberg JC, Ilvarsonn AM, Sly WS, Waheed A, Krzyzanek V, Pohlmann R, Waschkau D, Kretzschmar D, Dennes AC. Drosophila GGA model: an ultimate gateway to GGA analysis. Traffic 2011; 12:1821-38. [PMID: 21923734 PMCID: PMC3601743 DOI: 10.1111/j.1600-0854.2011.01285.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Golgi-localized, γ-ear-containing, ADP ribosylation factor-binding (GGA) proteins are monomeric adaptors implicated in clathrin-mediated vesicular transport between the trans Golgi network and endosomes, characterized mainly from cell culture analysis of lysosomal sorting. To provide the first demonstration of GGA's role in vivo, we used Drosophila which has a single GGA and a single lysosomal sorting receptor, lysosomal enzyme receptor protein (LERP). Using RNAi knockdowns, we show that the Drosophila GGA is required for lysosomal sorting. We further identified authentic components of the Drosophila lysosomal sorting system--the sorting receptor LERP, the sorting adaptor GGA and the lysosomal cargo cathepsins B1, D and L--to show that GGA depletion results in lysosomal dysfunction. Abnormal lysosomal morphology, missorting of lysosomal cathepsins and impaired lysosomal proteolysis show disturbed LERP trafficking after GGA depletion. GGA is highly expressed in the mushroom bodies and the pigment cells of the retina, and increasing or decreasing the levels of GGA in the eyes leads to retinal defects. Reduced GGA levels also enhance an eye defect caused by overexpression of the autophagy-associated protein Blue cheese (Bchs), implicating GGA in autophagic processes. This shows that Drosophila provides an excellent whole-animal model to gain new insights into the function of GGA in the physiological environment of a multicellular organism.
Collapse
Affiliation(s)
- Joel C. Eissenberg
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - Anne M. Ilvarsonn
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - William S. Sly
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - Vladislav Krzyzanek
- Institute of Medical Physics and Biophysics University of Muenster, 48149 Muenster, Germany
| | - Regina Pohlmann
- UKM, Institute of Physiological Chemistry and Pathobiochemistry, 48149 Münster, Germany
| | - Daniela Waschkau
- UKM, Institute of Physiological Chemistry and Pathobiochemistry, 48149 Münster, Germany
| | | | - André C. Dennes
- UKM, Institute of Physiological Chemistry and Pathobiochemistry, 48149 Münster, Germany
| |
Collapse
|
28
|
Aoh QL, Graves LM, Duncan MC. Glucose regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell 2011; 22:3671-83. [PMID: 21832155 PMCID: PMC3183021 DOI: 10.1091/mbc.e11-04-0309] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Traffic at the trans-Golgi network (TGN) and endosomes is regulated by glucose via an unknown mechanism that depends on protein kinase A (PKA). TGN–endosomal clathrin adaptors exhibit specific responses to glucose starvation that likely are coordinated with other cell behaviors regulated by PKA. Glucose is a rich source of energy and the raw material for biomass increase. Many eukaryotic cells remodel their physiology in the presence and absence of glucose. The yeast Saccharomyces cerevisiae undergoes changes in transcription, translation, metabolism, and cell polarity in response to glucose availability. Upon glucose starvation, translation initiation and cell polarity are immediately inhibited, and then gradually recover. In this paper, we provide evidence that, as in cell polarity and translation, traffic at the trans-Golgi network (TGN) and endosomes is regulated by glucose via an unknown mechanism that depends on protein kinase A (PKA). Upon glucose withdrawal, clathrin adaptors exhibit a biphasic change in localization: they initially delocalize from the membrane within minutes and later partially recover onto membranes. Additionally, the removal of glucose induces changes in posttranslational modifications of adaptors. Ras and Gpr1 signaling pathways, which converge on PKA, are required for changes in adaptor localization and changes in posttranslational modifications. Acute inhibition of PKA demonstrates that inhibition of PKA prior to glucose withdrawal prevents several adaptor responses to starvation. This study demonstrates that PKA activity prior to glucose starvation primes membrane traffic at the TGN and endosomes in response to glucose starvation.
Collapse
Affiliation(s)
- Quyen L Aoh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
29
|
Hosomi A, Nakase M, Takegawa K. Schizosaccharomyces pombe Pep12p is required for vacuolar protein transport and vacuolar homotypic fusion. J Biosci Bioeng 2011; 112:309-14. [PMID: 21757403 DOI: 10.1016/j.jbiosc.2011.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/14/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
In eukaryotic cells, SNARE proteins are essential for intracellular vesicle trafficking. Several SNARE proteins are required for vacuolar protein transport and vacuolar biogenesis in Saccharomyces cerevisiae. Previously we demonstrated that one of the fission yeast SNARE proteins, Pep12p, is not required for vacuolar fusion process in Schizosaccharomyces pombe. We have re-examined the function of S. pombe Pep12p using the newly created pep12(+) deletion strain. Deletion of the fission yeast pep12(+) gene results in pleiotropic phenotypes consistent with the absence of normal vacuoles, including missorting of vacuolar carboxypeptidase Y-and various ion- and drug-sensitivities. GFP-Pep12 fusion protein is mostly localized at the vacuolar membrane and the prevacuolar compartment. The S. pombe pep12Δ mutation phenocopies that of vps33Δ, suggesting that both Pep12p and Vps33p act at the same membrane fusion step in S. pombe, and both mutations cause vacuolar deficiency.
Collapse
Affiliation(s)
- Akira Hosomi
- Department of Life Sciences, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | |
Collapse
|
30
|
Hirst J, Carmichael J. A potential role for the clathrin adaptor GGA in Drosophila spermatogenesis. BMC Cell Biol 2011; 12:22. [PMID: 21599933 PMCID: PMC3127973 DOI: 10.1186/1471-2121-12-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/20/2011] [Indexed: 12/01/2022] Open
Abstract
Background GGAs (Golgi-localised, γ-ear containing, ADP ribosylation factor-binding) are a family of clathrin adaptors that sort a number of biologically important transmembrane proteins into clathrin-coated vesicles. Knockout and knockdown studies to determine GGA function are confounded by the fact that there are 3 GGA genes in mammalian cells. Thus Drosophila melanogaster is a useful model system to study tissue expression profiles and knockdown phenotypes as there is a single GGA ortholog. Results Here we have quantified protein expression in Drosophila and show that there is >3-fold higher expression of GGA in male flies relative to female flies. In female flies the majority of GGA expression is in the head. In male flies GGA is not only expressed at high levels in the head but there is a gender specific increased expression which is due to the abundant expression of GGA in the testes. Using a highly specific antibody we have localised endogenous GGA protein in testes squashes, and visualised it in somatic and germ line cells. We show that GGA is expressed during multiple stages of sperm development, and co-stains with a marker of the trans-Golgi Network. This is most striking at the acroblast of early spermatids. In spite of the high expression of GGA in testes, knocking down its expression by >95% using transgenic RNAi fly lines did not affect male fertility. Therefore spermatogenesis in the male flies appears to progress normally with <5% GGA, most likely because alternative adaptors may be able to substitute partially or completely for the function of GGA. We also identify 'cueball' as a novel cargo for GGA, and mutants of cueball have been shown to have a male sterility phenotype. Conclusion In Drosophila we have uncovered a potential role for GGA in the testes of male flies. The gender specific higher expression of GGA, its specific enrichment in testes and its localisation to developing spermatocytes and at the acroblast of spermatids supports a role for GGA function in Drosophila spermatogenesis, even though spermatogenesis still occurs when GGA expression is depleted to <5% of control.
Collapse
Affiliation(s)
- Jennifer Hirst
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| | | |
Collapse
|
31
|
Forsmark A, Rossi G, Wadskog I, Brennwald P, Warringer J, Adler L. Quantitative proteomics of yeast post-Golgi vesicles reveals a discriminating role for Sro7p in protein secretion. Traffic 2011; 12:740-53. [PMID: 21477180 DOI: 10.1111/j.1600-0854.2011.01186.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We here report the first comparative proteomics of purified yeast post-Golgi vesicles (PGVs). Vesicle samples isolated from PGV-accumulating sec6-4 mutants were treated with isobaric tags (iTRAQ) for subsequent quantitative tandem mass spectrometric analysis of protein content. After background subtraction, a total of 66 vesicle-associated proteins were identified, including known or assumed vesicle residents as well as a fraction not previously known to be PGV associated. Vesicles isolated from cells lacking the polarity protein Sro7p contained essentially the same catalogue of proteins but showed a reduced content of a subset of cargo proteins, in agreement with a previously shown selective role for Sro7p in cargo sorting.
Collapse
Affiliation(s)
- Annabelle Forsmark
- Department of Cell and Molecular Biology, Microbiology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Dissecting Ent3p: the ENTH domain binds different SNAREs via distinct amino acid residues while the C-terminus is sufficient for retrograde transport from endosomes. Biochem J 2010; 431:123-34. [PMID: 20658963 DOI: 10.1042/bj20100693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ENTH (epsin N-terminal homology) domain protein Ent3p and the ANTH [AP (adaptor protein)-180 N-terminal homology] domain protein Ent5p serve as partially redundant adaptors in vesicle budding from the TGN (trans-Golgi network) in Saccharomyces cerevisiae. They interact with phosphoinositides, clathrin, adaptor proteins and cargo such as chitin synthase Chs3p and SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors). In the present study, we show that ent3Δent5Δ cells displayed defects in cell separation and bud site selection. Ent3p and Ent5p were also involved in retrograde transport from early endosomes to the TGN because GFP (green fluorescent protein)-Snc1p shifted from a plasma membrane to an intracellular localization in ent3Δent5Δ cells. The C-terminal part of Ent3p was sufficient to restore retrograde transport from early endosomes to the TGN in ent3Δent5Δ cells. In contrast, the ENTH domain and the C-terminus were required for transport from the TGN to late endosomes, demonstrating that both functions are distinct. The ENTH domain of Ent3p is known to bind the N-terminal domains of the SNAREs Vti1p, Pep12p and Syn8p, which are required for fusion with late endosomes. The interaction surface between the Ent3p-related mammalian epsinR and vti1b is known. In the present paper, we show that Vti1p bound to the homologous surface patch of Ent3p. Pep12p and Syn8p interacted with the same surface area of Ent3p. However, different amino acid residues in Ent3p were crucial for the interaction with these SNAREs in two-hybrid assays. This provides the necessary flexibility to bind three SNAREs with little sequence homology but maintains the specificity of the interaction.
Collapse
|
33
|
Lamb CA, McCann RK, Stöckli J, James DE, Bryant NJ. Insulin-regulated trafficking of GLUT4 requires ubiquitination. Traffic 2010; 11:1445-54. [PMID: 20854370 PMCID: PMC3152195 DOI: 10.1111/j.1600-0854.2010.01113.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A major consequence of insulin binding its receptor on fat and muscle cells is translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the cell surface where it serves to clear glucose from the bloodstream. Sorting of GLUT4 into its insulin-sensitive store requires the GGA [Golgi-localized, γ-ear-containing, ADP ribosylation factor (ARF)-binding] adaptor proteins, but the signal on GLUT4 to direct this sorting step is unknown. Here, we have identified a role for ubiquitination of GLUT4 in this process. We demonstrate that GLUT4 is ubiquitinated in 3T3-L1 adipocytes, and that a ubiquitin-resistant version fails to translocate to the cell surface of these cells in response to insulin. Our data support a model in which ubiquitination acts as a signal for the trafficking of GLUT4 from the endosomal/trans-Golgi network (TGN) system into its intracellular storage compartment, from where it is mobilized to the cell surface in response to insulin.
Collapse
Affiliation(s)
- Christopher A Lamb
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Kametaka S, Sawada N, Bonifacino JS, Waguri S. Functional characterization of protein-sorting machineries at the trans-Golgi network in Drosophila melanogaster. J Cell Sci 2010; 123:460-71. [PMID: 20067992 DOI: 10.1242/jcs.055103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeting of proteins to their final destination is a prerequisite for living cells to maintain their homeostasis. Clathrin functions as a coat that forms transport carriers called clathrin-coated vesicles (CCVs) at the plasma membrane and post-Golgi compartments. In this study, we established an experimental system using Schneider S2 cells derived from the fruit fly, Drosophila melanogaster, as a model system to study the physiological roles of clathrin adaptors, and to dissect the processes of CCV formation. We found that a clathrin adaptor Drosophila GGA (dGGA), a homolog of mammalian GGA proteins, localizes to the trans-Golgi network (TGN) and is capable of recruiting clathrin from the cytosol onto TGN membranes. dGGA itself is recruited from the cytosol to the TGN in an ARF1 small GTPase (dARF79F)-dependent manner. dGGA recognizes the cytoplasmic acidic-cluster-dileucine (ACLL) sorting signal of Lerp (lysosomal enzyme receptor protein), a homolog of mammalian mannose 6-phosphate receptors. Moreover, both dGGA and another type of TGN-localized clathrin adaptor, AP-1 (adaptor protein-1 complex), are shown to be involved in the trafficking of Lerp from the TGN to endosomes and/or lysosomes. Taken together, our findings indicate that the protein-sorting machinery in fly cells is well conserved relative to that in mammals, enabling the use of fly cells to dissect CCV biogenesis and clathrin-dependent protein trafficking at the TGN of higher eukaryotes.
Collapse
Affiliation(s)
- Satoshi Kametaka
- Department of Anatomy and Histology, Fukushima Medical University, Fukushima 960-1295, Japan
| | | | | | | |
Collapse
|
35
|
Deng Y, Guo Y, Watson H, Au WC, Shakoury-Elizeh M, Basrai MA, Bonifacino JS, Philpott CC. Gga2 mediates sequential ubiquitin-independent and ubiquitin-dependent steps in the trafficking of ARN1 from the trans-Golgi network to the vacuole. J Biol Chem 2009; 284:23830-41. [PMID: 19574226 DOI: 10.1074/jbc.m109.030015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sorted to the plasma membrane in cells lacking Gga2p, a monomeric clathrin-adaptor protein involved in vesicular transport from the TGN. Although Ggas have been characterized as ubiquitin receptors, we show here that ubiquitin binding by Gga2 was not required for the TGN-to-endosome trafficking of Arn1, but it was required for subsequent sorting of Arn1 into the multivesicular body. In a ubiquitin-binding mutant of Gga2, Arn1p accumulated on the vacuolar membrane in a ubiquitinated form. The yeast epsins Ent3p and Ent4p were also involved in TGN-to-vacuole sorting of Arn1p. Amino-terminal sequences of Arn1p were required for vacuolar protein sorting, as mutation of ubiquitinatable lysine residues resulted in accumulation on the vacuolar membrane, and mutation of either a THN or YGL sequence resulted in mis-sorting to the plasma membrane. These studies suggest that Gga2 is involved in sorting at both the TGN and multivesicular body and that the first step can occur without ubiquitin binding.
Collapse
Affiliation(s)
- Yi Deng
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Muthusamy BP, Raychaudhuri S, Natarajan P, Abe F, Liu K, Prinz WA, Graham TR. Control of protein and sterol trafficking by antagonistic activities of a type IV P-type ATPase and oxysterol binding protein homologue. Mol Biol Cell 2009; 20:2920-31. [PMID: 19403696 DOI: 10.1091/mbc.e08-10-1036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The oxysterol binding protein homologue Kes1p has been implicated in nonvesicular sterol transport in Saccharomyces cerevisiae. Kes1p also represses formation of protein transport vesicles from the trans-Golgi network (TGN) through an unknown mechanism. Here, we show that potential phospholipid translocases in the Drs2/Dnf family (type IV P-type ATPases [P4-ATPases]) are downstream targets of Kes1p repression. Disruption of KES1 suppresses the cold-sensitive (cs) growth defect of drs2Delta, which correlates with an enhanced ability of Dnf P4-ATPases to functionally substitute for Drs2p. Loss of Kes1p also suppresses a drs2-ts allele in a strain deficient for Dnf P4-ATPases, suggesting that Kes1p antagonizes Drs2p activity in vivo. Indeed, Drs2-dependent phosphatidylserine translocase (flippase) activity is hyperactive in TGN membranes from kes1Delta cells and is potently attenuated by addition of recombinant Kes1p. Surprisingly, Drs2p also antagonizes Kes1p activity in vivo. Drs2p deficiency causes a markedly increased rate of cholesterol transport from the plasma membrane to the endoplasmic reticulum (ER) and redistribution of endogenous ergosterol to intracellular membranes, phenotypes that are Kes1p dependent. These data suggest a homeostatic feedback mechanism in which appropriately regulated flippase activity in the Golgi complex helps establish a plasma membrane phospholipid organization that resists sterol extraction by a sterol binding protein.
Collapse
|
37
|
Muthusamy BP, Natarajan P, Zhou X, Graham TR. Linking phospholipid flippases to vesicle-mediated protein transport. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:612-9. [PMID: 19286470 DOI: 10.1016/j.bbalip.2009.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/16/2022]
Abstract
Type IV P-type ATPases (P4-ATPases) are a large family of putative phospholipid translocases (flippases) implicated in the generation of phospholipid asymmetry in biological membranes. P4-ATPases are typically the largest P-type ATPase subgroup found in eukaryotic cells, with five members in Saccharomyces cerevisiae, six members in Caenorhabditis elegans, 12 members in Arabidopsis thaliana and 14 members in humans. In addition, many of the P4-ATPases require interaction with a noncatalytic subunit from the CDC50 gene family for their transport out of the endoplasmic reticulum (ER). Deficiency of a P4-ATPase (Atp8b1) causes liver disease in humans, and studies in a variety of model systems indicate that P4-ATPases play diverse and essential roles in membrane biogenesis. In addition to their proposed role in establishing and maintaining plasma membrane asymmetry, P4-ATPases are linked to vesicle-mediated protein transport in the exocytic and endocytic pathways. Recent studies have also suggested a role for P4-ATPases in the nonvesicular intracellular trafficking of sterols. Here, we discuss the physiological requirements for yeast P4-ATPases in phospholipid translocase activity, transport vesicle budding and ergosterol metabolism, with an emphasis on Drs2p and its noncatalytic subunit, Cdc50p.
Collapse
|
38
|
Abazeed ME, Fuller RS. Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 2008; 19:4826-36. [PMID: 18784256 DOI: 10.1091/mbc.e07-05-0442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN-PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the beta subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Delta membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Delta mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome.
Collapse
Affiliation(s)
- Mohamed E Abazeed
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
39
|
Holst MI, Maercker C, Pintea B, Masseroli M, Liebig C, Jankowski J, Miething A, Martini J, Schwaller B, Oberdick J, Schilling K, Baader SL. Engrailed-2 regulates genes related to vesicle formation and transport in cerebellar Purkinje cells. Mol Cell Neurosci 2008; 38:495-504. [DOI: 10.1016/j.mcn.2008.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 11/25/2022] Open
|
40
|
Liu K, Surendhran K, Nothwehr SF, Graham TR. P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol Biol Cell 2008; 19:3526-35. [PMID: 18508916 DOI: 10.1091/mbc.e08-01-0025] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Delta cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN.
Collapse
Affiliation(s)
- Ke Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | |
Collapse
|
41
|
Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touzé N. Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1. Traffic 2008; 9:1372-91. [PMID: 18489705 DOI: 10.1111/j.1600-0854.2008.00766.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic plasma membrane transporters are subjected to a tightly regulated intracellular trafficking. The yeast siderophore iron transporter1 (Sit1) displays substrate-regulated trafficking. It is targeted to the plasma membrane or to a vacuolar degradative pathway when synthesized in the presence or absence of external substrate, respectively. Sorting of Sit1 to the vacuolar pathway is dependent on the clathrin adaptor Gga2, and more specifically on its C-GAT subdomain. Plasma membrane undergoes substrate-induced ubiquitylation dependent on the Rsp5 ubiquitin protein ligase. Sit1 is also ubiquitylated in an Rsp5-dependent manner in internal compartments when expressed in the absence of substrate. In several rsp5 mutants including cells deleted for RSP5, Sit1 expressed in the absence of substrate is correctly targeted to the endosomal pathway but its sorting to multivesicular bodies (MVBs) is impaired. Consequently, it displays endosome to plasma membrane targeting, with kinetics similar to those observed in vps mutants defective for MVB sorting. Plasma membrane Sit1 is modified by Lys63-linked ubiquitin chains. We also show for the first time in yeast that modification by this latter type of ubiquitin chains is required directly or indirectly for efficient MVB sorting, as it is for efficient internalization at the plasma membrane.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Département de Biologie Cellulaire, Laboratoire Trafic Intracellulaire des Protéines dans la Levure, Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 6 et 7, 75251 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
42
|
Demmel L, Gravert M, Ercan E, Habermann B, Müller-Reichert T, Kukhtina V, Haucke V, Baust T, Sohrmann M, Kalaidzidis Y, Klose C, Beck M, Peter M, Walch-Solimena C. The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 2008; 19:1991-2002. [PMID: 18287542 DOI: 10.1091/mbc.e06-10-0937] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol 4-phosphate (PI(4)P) is a key regulator of membrane transport required for the formation of transport carriers from the trans-Golgi network (TGN). The molecular mechanisms of PI(4)P signaling in this process are still poorly understood. In a search for PI(4)P effector molecules, we performed a screen for synthetic lethals in a background of reduced PI(4)P and found the gene GGA2. Our analysis uncovered a PI(4)P-dependent recruitment of the clathrin adaptor Gga2p to the TGN during Golgi-to-endosome trafficking. Gga2p recruitment to liposomes is stimulated both by PI(4)P and the small GTPase Arf1p in its active conformation, implicating these two molecules in the recruitment of Gga2p to the TGN, which ultimately controls the formation of clathrin-coated vesicles. PI(4)P binding occurs through a phosphoinositide-binding signature within the N-terminal VHS domain of Gga2p resembling a motif found in other clathrin interacting proteins. These data provide an explanation for the TGN-specific membrane recruitment of Gga2p.
Collapse
Affiliation(s)
- Lars Demmel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, D-01307, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chidambaram S, Zimmermann J, von Mollard GF. ENTH domain proteins are cargo adaptors for multiple SNARE proteins at the TGN endosome. J Cell Sci 2008; 121:329-38. [DOI: 10.1242/jcs.012708] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ENTH and ANTH domain proteins are involved in budding of clathrin-coated vesicles. SNAREs are fusogenic proteins that function in the targeting and fusion of transport vesicles. In mammalian and yeast cells, ENTH domain proteins (epsinR and Ent3p) interact with SNAREs of the vti1 family (Vti1b or Vti1p). This interaction indicates that ENTH proteins could function in cargo sorting, which prompted us to search for additional SNAREs as potential cargo for Ent3p and epsinR. We carried out specific yeast two-hybrid assays, which identified interactions between epsinR and the mammalian late endosomal SNAREs syntaxin 7 and syntaxin 8 as well as between Ent3p and the endosomal SNAREs Pep12p and Syn8p from yeast. Lack of Ent3p affected the trafficking of Pep12p. Ent3p binding to Pep12p required the FSD late endosomal sorting signal in Pep12p. Inactivation of the sorting signal had a similar effect to removal of Ent3p on Pep12p stability indicating that Ent3p acts as a cargo adaptor for Pep12p by binding to the sorting signal. As Vti1p, Pep12p and Syn8p participate in a SNARE complex whereas Vti1b, syntaxin 7 and syntaxin 8 are mammalian SNARE partners, we propose that ENTH domain proteins at the TGN-endosome are cargo adaptors for these endosomal SNAREs.
Collapse
Affiliation(s)
- Subbulakshmi Chidambaram
- Biochemie III, Fakultät für Chemie, Universitätstrasse 25, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Jana Zimmermann
- Biochemie III, Fakultät für Chemie, Universitätstrasse 25, Universität Bielefeld, 33615 Bielefeld, Germany
| | | |
Collapse
|
44
|
Abstract
Coat proteins are recruited onto membranes to form vesicles that transport cargo from one compartment to another, but the extent to which the cargo helps to recruit the coat proteins is still unclear. Here we have examined the role of cargo in the recruitment of Golgi-localized, γ-ear-containing, ADP ribosylation factor (ARF)-binding proteins (GGAs) onto membranes in HeLa cells. Moderate overexpression of CD8 chimeras with cytoplasmic tails containing DXXLL-sorting signals, which bind to GGAs, increased the localization of all three GGAs to perinuclear membranes, as observed by immunofluorescence. GGA2 was also expressed at approximately twofold higher levels in these cells because it was degraded more slowly. However, this difference only partially accounted for the increase in membrane localization because there was a approximately fivefold increase in GGA2 associated with crude membranes and a ∼12-fold increase in GGA2 associated with clathrin-coated vesicles (CCVs) in cells expressing CD8-DXXLL chimeras. The effect of cargo proteins on GGA recruitment was reconstituted in vitro using permeabilized control and CD8-DXXLL-expressing cells incubated with cytosol containing recombinant GGA2 constructs. Together, these results demonstrate that cargo proteins contribute to the recruitment of GGAs onto membranes and to the formation of GGA-positive CCVs.
Collapse
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY, UK
| | - Matthew N J Seaman
- Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY, UK
| | - Sonja I Buschow
- Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY, UK
- Current address: Department of Biochemistry and Cell Biology, University of UtrechtUtrecht 3508 TD, The Netherlands
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY, UK
- *Corresponding author: Margaret S. Robinson;
| |
Collapse
|
45
|
Kuratsu M, Taura A, Shoji JY, Kikuchi S, Arioka M, Kitamoto K. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 2007; 44:1310-23. [PMID: 17590362 DOI: 10.1016/j.fgb.2007.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
In spite of their great importance for both applied and basic biology, studies on vesicular trafficking in filamentous fungi have been so far very limited. Here, we identified 21 genes, which might be a total set, encoding putative SNARE proteins that are key factors for vesicular trafficking, taking advantage of available whole genome sequence in the filamentous fungus Aspergillus oryzae. The subsequent systematic analysis to determine the localization of putative SNAREs using EGFP-fused chimeras revealed that most putative SNAREs show similar subcellular distribution to their counterparts in the budding yeast. However, there existed some characteristic features of SNAREs in A. oryzae, such as SNARE localization at/near the septum and the presence of apparently non-redundant plasma membrane Qa-SNAREs. Overall, this analysis allowed us to provide an overview of vesicular trafficking and organelle distribution in A. oryzae.
Collapse
Affiliation(s)
- Masahiro Kuratsu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Froissard M, Belgareh-Touzé N, Dias M, Buisson N, Camadro JM, Haguenauer-Tsapis R, Lesuisse E. Trafficking of siderophore transporters in Saccharomyces cerevisiae and intracellular fate of ferrioxamine B conjugates. Traffic 2007; 8:1601-16. [PMID: 17714436 PMCID: PMC2171038 DOI: 10.1111/j.1600-0854.2007.00627.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.
Collapse
Affiliation(s)
- Marine Froissard
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Naïma Belgareh-Touzé
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Marylène Dias
- Chimie, Ingénierie Moléculaire et Matériaux d’Angers (CIMMA)Unité Mixte de Recherche 6200 CNRS, Université d’Angers, France
| | - Nicole Buisson
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Jean-Michel Camadro
- Laboratoire d’Ingénierie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Rosine Haguenauer-Tsapis
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Emmanuel Lesuisse
- Laboratoire d’Ingénierie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
- Emmanuel Lesuisse,
| |
Collapse
|
47
|
Daicho K, Maruyama H, Suzuki A, Ueno M, Uritani M, Ushimaru T. The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1681-90. [PMID: 17531951 DOI: 10.1016/j.bbamem.2007.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 03/13/2007] [Accepted: 03/15/2007] [Indexed: 11/29/2022]
Abstract
Ergosterol is the yeast functional equivalent of cholesterol in mammalian cells. Deletion of the ERG6 gene, which encodes an enzyme catalyzing a late step of ergosterol biosynthesis, impedes targeting of the tryptophan permease Tat2p to the plasma membrane, but does not promote vacuolar degradation. It is unknown whether similar features appear when other steps of ergosterol biogenesis are inhibited. We show herein that the ergosterol biosynthesis inhibitor zaragozic acid (ZA) evoked massive vacuolar degradation of Tat2p, accompanied by a decrease in tryptophan uptake. ZA inhibits squalene synthetase (SQS, EC 2.5.1.21), which catalyzes the first committed step in the formation of cholesterol/ergosterol. The degradation of Tat2p was dependent on the Rsp5p-mediated ubiquitination of Tat2p and was not suppressed by deletions of VPS1, VPS27, VPS45 or PEP12. We will discuss ZA-mediated Tat2p degradation in the context of lipid rafts.
Collapse
Affiliation(s)
- Katsue Daicho
- Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Čopič A, Starr TL, Schekman R. Ent3p and Ent5p exhibit cargo-specific functions in trafficking proteins between the trans-Golgi network and the endosomes in yeast. Mol Biol Cell 2007; 18:1803-15. [PMID: 17344475 PMCID: PMC1855026 DOI: 10.1091/mbc.e06-11-1000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The phosphoinositide-binding proteins Ent3p and Ent5p are required for protein transport from the trans-Golgi network (TGN) to the vacuole in Saccharomyces cerevisiae. Both proteins interact with the monomeric clathrin adaptor Gga2p, but Ent5p also interacts with the clathrin adaptor protein 1 (AP-1) complex, which facilitates retention of proteins such as Chs3p at the TGN. When both ENT3 and ENT5 are mutated, Chs3p is diverted from an intracellular reservoir to the cell surface. However, Ent3p and Ent5p are not required for the function of AP-1, but rather they seem to act in parallel with AP-1 to retain proteins such as Chs3p at the TGN. They have all the properties of clathrin adaptors, because they can both bind to clathrin and to cargo proteins. Like AP-1, Ent5p binds to Chs3p, whereas Ent3p facilitates the interaction between Gga2p and the endosomal syntaxin Pep12p. Thus, Ent3p has an additional function in Gga-dependent transport to the late endosome. Ent3p also facilitates the association between Gga2p and clathrin; however, Ent5p can partially substitute for this function. We conclude that the clathrin adaptors AP-1, Ent3p, Ent5p, and the Ggas cooperate in different ways to sort proteins between the TGN and the endosomes.
Collapse
Affiliation(s)
- Alenka Čopič
- *Howard Hughes Medical Institute and Department of Molecular and Cell Biology, and
| | - Trevor L. Starr
- *Howard Hughes Medical Institute and Department of Molecular and Cell Biology, and
- Graduate Group in Microbiology, University of California at Berkeley, Berkeley, CA 94720
| | - Randy Schekman
- *Howard Hughes Medical Institute and Department of Molecular and Cell Biology, and
| |
Collapse
|
49
|
Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K. Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. Mol Biol Cell 2006; 18:295-312. [PMID: 17093059 PMCID: PMC1751321 DOI: 10.1091/mbc.e06-05-0461] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phospholipid translocases (PLTs) have been implicated in the generation of phospholipid asymmetry in membrane bilayers. In budding yeast, putative PLTs are encoded by the DRS2 gene family of type 4 P-type ATPases. The homologous proteins Cdc50p, Lem3p, and Crf1p are potential noncatalytic subunits of Drs2p, Dnf1p and Dnf2p, and Dnf3p, respectively; these putative heteromeric PLTs share an essential function for cell growth. We constructed temperature-sensitive mutants of CDC50 in the lem3Delta crf1Delta background (cdc50-ts mutants). Screening for multicopy suppressors of cdc50-ts identified YPT31/32, two genes that encode Rab family small GTPases that are involved in both the exocytic and endocytic recycling pathways. The cdc50-ts mutants did not exhibit major defects in the exocytic pathways, but they did exhibit those in endocytic recycling; large membranous structures containing the vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptor Snc1p intracellularly accumulated in these mutants. Genetic results suggested that the YPT31/32 effector RCY1 and CDC50 function in the same signaling pathway, and simultaneous overexpression of CDC50, DRS2, and GFP-SNC1 restored growth as well as the plasma membrane localization of GFP-Snc1p in the rcy1Delta mutant. In addition, Rcy1p coimmunoprecipitated with Cdc50p-Drs2p. We propose that the Ypt31p/32p-Rcy1p pathway regulates putative phospholipid translocases to promote formation of vesicles destined for the trans-Golgi network from early endosomes.
Collapse
Affiliation(s)
- Nobumichi Furuta
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo, 060-0815, Japan
| | - Konomi Fujimura-Kamada
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo, 060-0815, Japan
| | - Koji Saito
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo, 060-0815, Japan
| | - Takaharu Yamamoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo, 060-0815, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo, 060-0815, Japan
| |
Collapse
|
50
|
Phelan JP, Millson SH, Parker PJ, Piper PW, Cooke FT. Fab1p and AP-1 are required for trafficking of endogenously ubiquitylated cargoes to the vacuole lumen in S. cerevisiae. J Cell Sci 2006; 119:4225-34. [PMID: 17003107 DOI: 10.1242/jcs.03188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In S. cerevisiae synthesis of phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] by Fab1p is required for several cellular events, including an as yet undefined step in the ubiquitin-dependent trafficking of some integral membrane proteins from the trans-Golgi network to the vacuole lumen. AP-1 is a heterotetrameric clathrin adaptor protein complex that binds cargo proteins and clathrin coats, and regulates bi-directional protein trafficking between the trans-Golgi network and the endocytic/secretory pathway. Like fab1Δ cells, AP-1 complex component mutants have lost the ability to traffic ubiquitylated cargoes to the vacuole lumen – the first demonstration that AP-1 is required for this process. Deletion mutants of AP-1 complex components are compromised in their ability to synthesize PtdIns(3,5)P2, indicating that AP-1 is required for correct in vivo activation of Fab1p. Furthermore, wild-type protein sorting can be restored in AP-1 mutants by overexpression of Fab1p, implying that the protein-sorting defect in these cells is as a result of disruption of PtdIns(3,5)P2 synthesis. Finally, we show that Fab1p and Vac14p, an activator of Fab1p, are also required for another AP-1-dependent process: chitin-ring deposition in chs6Δ cells. Our data imply that AP-1 is required for some Fab1p and PtdIns(3,5)P2-dependent processes.
Collapse
Affiliation(s)
- John P Phelan
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|