1
|
Hursey MS, Reitz AD, Kihn KC, Deredge DJ, Michel SLJ. Zinc and RNA Binding Is Linked to the Conformational Flexibility of ZRANB2: A CCCC-Type Zinc Finger Protein. Biochemistry 2024. [PMID: 39681856 DOI: 10.1021/acs.biochem.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ran-binding domain-containing protein 2 (ZRANB2) is a zinc finger (ZF) protein that plays a key role in alternative splicing. ZRANB2 is composed of two ZF domains that contain four invariant cysteine residues per domain. ZRANB2 binds RNA targets that contain AGGUAA sequence motifs. Three constructs of ZRANB2, ZRANB2-ZF1 (first ZF domain), ZRANB2-ZF2 (second ZF domain), and ZRANB2-2D (both ZF domains), were isolated in the apo form and shown to bind Zn(II) via UV-visible-monitored competitive titrations with Co(II) as a spectroscopic probe. Zn binding to each construct led to the adoption of a limited secondary structure of each domain, as measured by circular dichroism (CD). Hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) of the two-domain construct, ZRANB2-2D, revealed that both ZF domains adopt a more rigid structure upon Zn binding. Zn binding to the first ZF domain resulted in a greater decrease in the conformational dynamics than Zn binding to the second ZF domain. RNA binding to TRA2B pre-mRNA, a physiological splicing target, was measured by fluorescence anisotropy (FA), and high-affinity RNA binding was found to require Zn coordination to both domains. HDX-MS of ZRANB2-2D with TRA2B RNA as well as two optimized RNA sequences that contain a single and double AGGUAA hexamer revealed additional protection from H/D exchange for ZRANB2 in the presence of RNA. Here, greater protection was observed for the second ZF of ZRANB2-2D, suggesting a larger effect on conformational dynamics. A model for zinc-mediated RNA binding of ZRANB2 is proposed.
Collapse
Affiliation(s)
- Matthew S Hursey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Abigail D Reitz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Kyle C Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
2
|
Liao QQ, Shu X, Sun W, Mandapaka H, Xie F, Zhang Z, Dai T, Wang S, Zhao J, Jiang H, Zhang L, Lin J, Li SW, Coin I, Yang F, Peng J, Li K, Wu H, Zhou F, Yang B. Capturing Protein-Protein Interactions with Acidic Amino Acids Reactive Cross-Linkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308383. [PMID: 38073323 DOI: 10.1002/smll.202308383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Indexed: 05/18/2024]
Abstract
Acidic residues (Asp and Glu) have a high prevalence on protein surfaces, but cross-linking reactions targeting these residues are limited. Existing methods either require high-concentration coupling reagents or have low structural compatibility. Here a previously reported "plant-and-cast" strategy is extended to develop heterobifunctional cross-linkers. These cross-linkers first react rapidly with Lys sidechains and then react with Asp and Glu sidechains, in a proximity-enhanced fashion. The cross-linking reaction proceeds at neutral pH and room temperature without coupling reagents. The efficiency and robustness of cross-linking using model proteins, ranging from small monomeric proteins to large protein complexes are demonstrated. Importantly, it is shown that this type of cross-linkers are efficient at identifying protein-protein interactions involving acidic domains. The Cross-linking mass spectrometry (XL-MS) study with p53 identified 87 putative binders of the C-terminal domain of p53. Among them, SARNP, ZRAB2, and WBP11 are shown to regulate the expression and alternative splicing of p53 target genes. Thus, these carboxylate-reactive cross-linkers will further expand the power of XL-MS in the analysis of protein structures and protein-protein interactions.
Collapse
Affiliation(s)
- Qing-Qing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wei Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hyma Mandapaka
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Feng Xie
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengkui Zhang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tong Dai
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shuai Wang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc, Nanjing, Jiangsu, 210033, China
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103, Leipzig, Germany
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Fangfang Zhou
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
3
|
Benvenuto M, Cesarini S, Severi G, Ambrosini E, Russo A, Seri M, Palumbo P, Palumbo O, Castori M, Panza E, Carella M. Phenotypic Description of A Patient with ODLURO Syndrome and Functional Characterization of the Pathogenetic Role of A Synonymous Variant c.186G>A in KMT2E Gene. Genes (Basel) 2024; 15:430. [PMID: 38674365 PMCID: PMC11049644 DOI: 10.3390/genes15040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant disorder caused by mutations in the KMT2E gene. The clinical phonotype of the affected individuals is typically characterized by global developmental delay, autism, epilepsy, hypotonia, macrocephaly, and very mild dysmorphic facial features. In this report, we describe the case of a 6-year-old boy with ODLURO syndrome who is a carrier of the synonymous mutation c.186G>A (p.Ala62=) in the KMT2E gene, predicted to alter splicing by in silico tools. Given the lack of functional studies on the c.186G>A variant, in order to assess its potential functional effect, we sequenced the patient's cDNA demonstrating its impact on the mechanism of splicing. To the best of our knowledge, our patient is the second to date reported carrying this synonymous mutation, but he is the first whose functional investigation has confirmed the deleterious consequence of the variant, resulting in exon 4 skipping. Additionally, we suggest a potential etiological mechanism that could be responsible for the aberrant splicing mechanism in KMT2E.
Collapse
Affiliation(s)
- Mario Benvenuto
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (M.B.); (P.P.); (O.P.); (M.C.)
- Dipartimento degli Studi Umanistici, Università degli Studi di Foggia, 71122 Foggia, Italy
| | - Sofia Cesarini
- U.O.C. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (G.S.); (E.A.)
| | - Giulia Severi
- U.O.C. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (G.S.); (E.A.)
| | - Enrico Ambrosini
- U.O.C. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (G.S.); (E.A.)
| | - Angelo Russo
- U.O.C. Neuropsichiatria Infantile, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Marco Seri
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.S.); (E.P.)
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (M.B.); (P.P.); (O.P.); (M.C.)
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (M.B.); (P.P.); (O.P.); (M.C.)
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (M.B.); (P.P.); (O.P.); (M.C.)
| | - Emanuele Panza
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.S.); (E.P.)
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40126 Bologna, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (M.B.); (P.P.); (O.P.); (M.C.)
| |
Collapse
|
4
|
Sheshukova EV, Kamarova KA, Ershova NM, Komarova TV. Nicotiana benthamiana Methanol-Inducible Gene (MIG) 21 Encodes a Nucleolus-Localized Protein That Stimulates Viral Intercellular Transport and Downregulates Nuclear Import. PLANTS (BASEL, SWITZERLAND) 2024; 13:279. [PMID: 38256832 PMCID: PMC10819229 DOI: 10.3390/plants13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The mechanical damage of plant tissues leads to the activation of methanol production and its release into the atmosphere. The gaseous methanol or vapors emitted by the damaged plant induce resistance in neighboring intact plants to bacterial pathogens but create favorable conditions for viral infection spread. Among the Nicotiana benthamiana methanol-inducible genes (MIGs), most are associated with plant defense and intercellular transport. Here, we characterize NbMIG21, which encodes a 209 aa protein (NbMIG21p) that does not share any homology with annotated proteins. NbMIG21p was demonstrated to contain a nucleolus localization signal (NoLS). Colocalization studies with fibrillarin and coilin, nucleolus and Cajal body marker proteins, revealed that NbMIG21p is distributed among these subnuclear structures. Our results show that recombinant NbMIG21 possesses DNA-binding properties. Similar to a gaseous methanol effect, an increased NbMIG21 expression leads to downregulation of the nuclear import of proteins with nuclear localization signals (NLSs), as was demonstrated with the GFP-NLS model protein. Moreover, upregulated NbMIG21 expression facilitates tobacco mosaic virus (TMV) intercellular transport and reproduction. We identified an NbMIG21 promoter (PrMIG21) and showed that it is methanol sensitive; thus, the induction of NbMIG21 mRNA accumulation occurs at the level of transcription. Our findings suggest that methanol-activated NbMIG21 might participate in creating favorable conditions for viral reproduction and spread.
Collapse
Affiliation(s)
- Ekaterina V. Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (K.A.K.); (N.M.E.)
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (K.A.K.); (N.M.E.)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (K.A.K.); (N.M.E.)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (K.A.K.); (N.M.E.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
6
|
A Data-Mining Approach to Identify NF-kB-Responsive microRNAs in Tissues Involved in Inflammatory Processes: Potential Relevance in Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24065123. [PMID: 36982191 PMCID: PMC10049099 DOI: 10.3390/ijms24065123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The nuclear factor NF-kB is the master transcription factor in the inflammatory process by modulating the expression of pro-inflammatory genes. However, an additional level of complexity is the ability to promote the transcriptional activation of post-transcriptional modulators of gene expression as non-coding RNA (i.e., miRNAs). While NF-kB’s role in inflammation-associated gene expression has been extensively investigated, the interplay between NF-kB and genes coding for miRNAs still deserves investigation. To identify miRNAs with potential NF-kB binding sites in their transcription start site, we predicted miRNA promoters by an in silico analysis using the PROmiRNA software, which allowed us to score the genomic region’s propensity to be miRNA cis-regulatory elements. A list of 722 human miRNAs was generated, of which 399 were expressed in at least one tissue involved in the inflammatory processes. The selection of “high-confidence” hairpins in miRbase identified 68 mature miRNAs, most of them previously identified as inflammamiRs. The identification of targeted pathways/diseases highlighted their involvement in the most common age-related diseases. Overall, our results reinforce the hypothesis that persistent activation of NF-kB could unbalance the transcription of specific inflammamiRNAs. The identification of such miRNAs could be of diagnostic/prognostic/therapeutic relevance for the most common inflammatory-related and age-related diseases.
Collapse
|
7
|
Bastick JC, Banerjee M, States JC. Zinc supplementation prevents arsenic-induced dysregulation of ZRANB2 splice function. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103921. [PMID: 35764259 PMCID: PMC9945473 DOI: 10.1016/j.etap.2022.103921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Environmentally relevant (100 nM) inorganic arsenic (iAs) exposure displaces zinc from zinc fingers of upstream splice regulator ZRANB2 disrupting the splicing of its target TRA2B. Excess zinc displaced iAs from ZRANB2 zinc fingers in cell free system. Thus, the hypothesis that zinc supplementation could prevent iAs-mediated disruption of ZRANB2 splice function in human keratinocytes was tested. The data show that zinc supplementation prevented iAs-induced dysregulation of TRA2B splicing by ZRANB2 as well as the induction of ZRANB2 protein expression. These results provide additional support for the hypothesis that zinc supplementation could prevent iAs-mediated disease in iAs-exposed populations.
Collapse
Affiliation(s)
- Jonathan C Bastick
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
8
|
HLA-DQB1-AS1 Promotes Cell Proliferation, Inhibits Apoptosis, and Binds with ZRANB2 Protein in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7130634. [PMID: 35602293 PMCID: PMC9117035 DOI: 10.1155/2022/7130634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Major histocompatibility complex, class II, DQ beta 1 antisense RNA 1 (HLA-DQB1-AS1) conferred the susceptibility to hepatocellular carcinoma. Sustaining cell growth and resisting apoptosis are two hallmarks of hepatocellular carcinoma. The present study explored the role of HLA-DQB1-AS1 in the proliferation and apoptosis of hepatocellular carcinoma cells and investigated its downstream pathway. Colony formation assay was performed to assess cell proliferation. Cell apoptosis was assessed with the TdT-mediated dUTP nick end labeling method. HLA-DQB1-AS1 deficiency exerts antiproliferative and proapoptotic effects on hepatocellular carcinoma cells. Moreover, based on bioinformatic analysis combined with the results of RNA immunoprecipitation assay, HLA-DQB1-AS1 was revealed to bind with zinc finger RANBP2-type containing 2 (ZRANB2) protein. ZRANB2 was upregulated in hepatocellular carcinoma at a clinical and cellular level. HLA-DQB1-AS1 caused no significant effects on ZRANB2 mRNA and protein expression. ZRANB2 knockdown suppressed cell proliferation and enhanced cell apoptosis of hepatocellular carcinoma. Moreover, ZRANB2 overexpression rescued the anticancer effect of silenced HLA-DQB1-AS1 in hepatocellular carcinoma cells. In conclusion, HLA-DQB1-AS1 promotes cell proliferation and inhibits apoptosis in hepatocellular carcinoma by the interaction with ZRANB2 protein.
Collapse
|
9
|
Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines 2021; 9:biomedicines9091268. [PMID: 34572454 PMCID: PMC8465124 DOI: 10.3390/biomedicines9091268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introns span only a quarter of the human genome, yet they host around 60% of all known microRNAs. Emerging evidence indicates the adaptive advantage of microRNAs residing within introns is attributed to their complex co-regulation with transcription and alternative splicing of their host genes. Intronic microRNAs are often co-expressed with their host genes, thereby providing functional synergism or antagonism that is exploited or decoupled in cancer. Additionally, intronic microRNA biogenesis and the alternative splicing of host transcript are co-regulated and intertwined. The importance of intronic microRNAs is under-recognized in relation to the pathogenesis of cancer.
Collapse
|
10
|
Bentolila S, Gipson AB, Kehl AJ, Hamm LN, Hayes ML, Mulligan RM, Hanson MR. A RanBP2-type zinc finger protein functions in intron splicing in Arabidopsis mitochondria and is involved in the biogenesis of respiratory complex I. Nucleic Acids Res 2021; 49:3490-3506. [PMID: 33660772 PMCID: PMC8034646 DOI: 10.1093/nar/gkab066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
The RanBP2 zinc finger (Znf) domain is a prevalent domain that mediates protein interaction and RNA binding. In Arabidopsis, a clade of four RanBP2 Znf-containing proteins, named the Organelle Zinc (OZ) finger family, are known or predicted to be targeted to either the mitochondria or the plastids. Previously we reported that OZ1 is absolutely required for the editing of 14 sites in chloroplasts. We now have investigated the function of OZ2, whose null mutation is embryo lethal. We rescued the null mutant by expressing wild-type OZ2 under the control of the seed-specific ABSCISIC ACID-INSENSITIVE3 (ABI3) promoter. Rescued mutant plants exhibit severely delayed development and a distinctive morphological phenotype. Genetic and biochemical analyses demonstrated that OZ2 promotes the splicing of transcripts of several mitochondrial nad genes and rps3. The splicing defect of nad transcripts results in the destabilization of complex I, which in turn affects the respiratory ability of oz2 mutants, turning on the alternative respiratory pathway, and impacting the plant development. Protein-protein interaction assays demonstrated binding of OZ2 to several known mitochondrial splicing factors targeting the same splicing events. These findings extend the known functional repertoire of the RanBP2 zinc finger domain in nuclear splicing to include plant organelle splicing.
Collapse
Affiliation(s)
- Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew B Gipson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Alexander J Kehl
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Lauren N Hamm
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - R Michael Mulligan
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 90032, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Wagner RE, Frye M. Noncanonical functions of the serine-arginine-rich splicing factor (SR) family of proteins in development and disease. Bioessays 2021; 43:e2000242. [PMID: 33554347 DOI: 10.1002/bies.202000242] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Members of the serine/arginine (SR)-rich protein family of splicing factors play versatile roles in RNA processing steps and are often essential for normal development. Dynamic changes in RNA processing and turnover allow fast cellular adaptions to a changing microenvironment and thereby closely cooperate with transcription factor networks that establish cell identity within tissues. SR proteins play fundamental roles in the processing of pre-mRNAs by regulating constitutive and alternative splicing. More recently, SR proteins have also been implicated in other aspects of RNA metabolism such as mRNA stability, transport and translation. The- emerging noncanonical functions highlight the multifaceted functions of these SR proteins and identify them as important coordinators of gene expression programmes. Accordingly, most SR proteins are essential for normal cell function and their misregulation contributes to human diseases such as cancer.
Collapse
Affiliation(s)
- Rebecca E Wagner
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Michaela Frye
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Banerjee M, Ferragut Cardoso AP, Lykoudi A, Wilkey DW, Pan J, Watson WH, Garbett NC, Rai SN, Merchant ML, States JC. Arsenite Exposure Displaces Zinc from ZRANB2 Leading to Altered Splicing. Chem Res Toxicol 2020; 33:1403-1417. [PMID: 32274925 DOI: 10.1021/acs.chemrestox.9b00515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 μM, 0-72 h; or 0-5 μM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Daniel W Wilkey
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Nichola C Garbett
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States.,Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky 40202, United States
| | - Michael L Merchant
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States.,Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| |
Collapse
|
13
|
Gipson AB, Giloteaux L, Hanson MR, Bentolila S. Arabidopsis RanBP2-Type Zinc Finger Proteins Related to Chloroplast RNA Editing Factor OZ1. PLANTS 2020; 9:plants9030307. [PMID: 32121603 PMCID: PMC7154859 DOI: 10.3390/plants9030307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
OZ1, an RNA editing factor that controls the editing of 14 cytidine targets in Arabidopsis chloroplasts, contains two RanBP2-type zinc finger (Znf) domains. The RanBP2 Znf is a C4-type member of the broader zinc finger family with unique functions and an unusually diverse distribution in plants. The domain can mediate interactions with proteins or RNA and appears in protein types such as proteases, RNA editing factors, and chromatin modifiers; however, few characterized Arabidopsis proteins containing RanBP2 Znfs have been studied specifically with the domain in mind. In humans, RanBP2 Znf-containing proteins are involved in RNA splicing, transport, or transcription initiation. We present a phylogenetic overview of Arabidopsis RanBP2 Znf proteins and the functional niches that these proteins occupy in plants. OZ1 and its four-member family represent a branch of this family with major impact on the RNA biology of chloroplasts and mitochondria in Arabidopsis. We discuss what is known about other plant proteins carrying the RanBP2 Znf domain and point out how phylogenetic information can provide clues to functions of uncharacterized Znf proteins.
Collapse
|
14
|
Miao M, Yu F, Wang D, Tong Y, Yang L, Xu J, Qiu Y, Zhou X, Zhao X. Proteomics Profiling of Host Cell Response via Protein Expression and Phosphorylation upon Dengue Virus Infection. Virol Sin 2019; 34:549-562. [PMID: 31134586 DOI: 10.1007/s12250-019-00131-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) infection is a worldwide public health threat. To date, the knowledge about the pathogenesis and progression of DENV infection is still limited. Combining global profiling based on proteomic analysis together with functional verification analysis is a powerful strategy to investigate the interplay between the virus and host cells. In the present study, quantitative proteomics has been applied to evaluate host responses (as indicated by altered proteins and modifications) in human cells (using K562 cell line) upon DENV-2 infection, as DENV-2 spreads most widely among all DENV serotypes. Comparative analysis was performed to define differentially expressed proteins in the infected cells compared to the mock-control, and it revealed critical pathogen-induced changes covering a broad spectrum of host cellular compartments and processes. We also discovered more dramatic changes (> 20%, 160 regulated phosphoproteins) in protein phosphorylation compared to protein expression (14%, 321 regulated proteins). Most of these proteins/phosphoproteins were involved in transcription regulation, RNA splicing and processing, immune system, cellular response to stimulus, and macromolecule biosynthesis. Western blot analysis was also performed to confirm the proteomic data. Potential roles of these altered proteins were discussed. The present study provides valuable large-scale protein-related information for elucidating the functional emphasis of host cell proteins and their post-translational modifications in virus infection, and also provides insight and protein evidence for understanding the general pathogenesis and pathology of DENV.
Collapse
Affiliation(s)
- Meng Miao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Danya Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongjia Tong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liuting Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiuyue Xu
- Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Yang Qiu
- Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China.
| | - Xiaolu Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
15
|
Wang X, Zhang J, Zhao X, Wei W, Zhao J. Imaging and proteomic study of a clickable iridium complex. Metallomics 2019; 11:1344-1352. [DOI: 10.1039/c9mt00134d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized a clickable iridium complex 2-N3 which can be imaged via click reaction in cells. Quantitative proteomic analysis revealed that ECM–receptor interaction pathway was activated and a series of celluar process was affected by 2-N3.
Collapse
Affiliation(s)
- Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry
- Institute of Chemistry and Biomedical Sciences
- School of Life Sciences
- Nanjing University
- Nanjing 210023
| | - Jingyi Zhang
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry
- Institute of Chemistry and Biomedical Sciences
- School of Life Sciences
- Nanjing University
- Nanjing 210023
| | - Jing Zhao
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
16
|
Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods Cell Biol 2016; 135:259-88. [PMID: 27443930 DOI: 10.1016/bs.mcb.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
From a fixed number of genes carried in all cells, organisms create considerable diversity in cellular phenotype through differential regulation of gene expression. One prevalent source of transcriptome diversity is alternative pre-mRNA splicing, which is manifested in many different forms. Zebrafish models of splicing dysfunction due to mutated spliceosome components provide opportunity to link biochemical analyses of spliceosome structure and function with whole organism phenotypic outcomes. Drawing from experience with two zebrafish mutants: cephalophŏnus (a prpf8 mutant, isolated for defects in granulopoiesis) and caliban (a rnpc3 mutant, isolated for defects in digestive organ development), we describe the use of glycerol gradient sedimentation and native gel electrophoresis to resolve components of aberrant splicing complexes. We also describe how RNAseq can be employed to examine relatively rare alternative splicing events including intron retention. Such experimental approaches in zebrafish can promote understanding of how splicing variation and dysfunction contribute to phenotypic diversity and disease pathogenesis.
Collapse
|
17
|
Wang X, Du X, Li H, Zhang S. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections. J Biol Chem 2016; 291:4019-34. [PMID: 26740623 DOI: 10.1074/jbc.m115.679167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 11/06/2022] Open
Abstract
Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11-37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals.
Collapse
Affiliation(s)
- Xia Wang
- From the Institute of Evolution and Marine Biodiversity and the Department of Marine Biology, Ocean University of China, Qingdao 266003, China and
| | - Xiaoyuan Du
- From the Institute of Evolution and Marine Biodiversity and the Department of Marine Biology, Ocean University of China, Qingdao 266003, China and
| | - Hongyan Li
- From the Institute of Evolution and Marine Biodiversity and the Department of Marine Biology, Ocean University of China, Qingdao 266003, China and
| | - Shicui Zhang
- From the Institute of Evolution and Marine Biodiversity and the Department of Marine Biology, Ocean University of China, Qingdao 266003, China and the Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
18
|
Hong JS, Kim NH, Choi CY, Lee JS, Na D, Chun T, Lee YS. Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins. Vet Res 2015; 46:39. [PMID: 25885539 PMCID: PMC4391141 DOI: 10.1186/s13567-015-0172-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome, which leads to serious economic losses in the pig industry worldwide. While the molecular basis of PCV2 replication and pathogenicity remains elusive, it is increasingly apparent that the microRNA (miRNA) pathway plays a key role in controlling virus-host interactions, in addition to a wide range of cellular processes. Here, we employed Solexa deep sequencing technology to determine which cellular miRNAs were differentially regulated after expression of each of three PCV2-encoded open reading frames (ORFs) in porcine kidney epithelial (PK15) cells. We identified 51 ORF1-regulated miRNAs, 74 ORF2-regulated miRNAs, and 32 ORF3-regulated miRNAs that differed in abundance compared to the control. Gene ontology analysis of the putative targets of these miRNAs identified transcriptional regulation as the most significantly enriched biological process, while KEGG pathway analysis revealed significant enrichment for several pathways including MAPK signaling, which is activated during PCV2 infection. Among the potential target genes of ORF-regulated miRNAs, two genes encoding proteins that are known to interact with PCV2-encoded proteins, zinc finger protein 265 (ZNF265) and regulator of G protein signaling 16 (RGS16), were selected for further analysis. We provide evidence that ZNF265 and RGS16 are direct targets of miR-139-5p and let-7e, respectively, which are both down-regulated by ORF2. Our data will initiate further studies to elucidate the roles of ORF-regulated cellular miRNAs in PCV2-host interactions.
Collapse
Affiliation(s)
- Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Nam-Hoon Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Chang-Yong Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Jun-Seong Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea. .,Present address: Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W1R7, Canada.
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, 156-756, Korea.
| | - Taehoon Chun
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| |
Collapse
|
19
|
Kupfer SS, Skol AD, Hong E, Ludvik A, Kittles RA, Keku TO, Sandler RS, Ellis NA. Shared and independent colorectal cancer risk alleles in TGFβ-related genes in African and European Americans. Carcinogenesis 2014; 35:2025-30. [PMID: 24753543 DOI: 10.1093/carcin/bgu088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies (GWAS) in colorectal cancer (CRC) identified five regions near transforming growth factor β-related genes BMP4, GREM1, CDH1, SMAD7 and RPHN2. The true risk alleles remain to be identified in these regions, and their role in CRC risk in non-European populations has been understudied. Our previous work noted significant genetic heterogeneity between African Americans (AAs) and European Americans (EAs) for single nucleotide polymorphisms (SNPs) identified in GWAS. We hypothesized that associations may not have been replicated in AAs due to differential or independent genetic structures. In order to test this hypothesis, we genotyped 195 tagging SNPs across these five gene regions in 1194 CRC cases (795 AAs and 399 EAs) and 1352 controls (985 AAs and 367 EAs). Imputation was performed, and association testing of genotyped and imputed SNPs included ancestry, age and sex as covariates. In two of the five genes originally associated with CRC, we found evidence for association in AAs including rs1862748 in CDH1 (OR(Add) = 0.82, P = 0.02) and in GREM1 the SNPs rs10318 (OR(Rec) = 60.1, P = 0.01), rs11632715 (OR(Rec) = 2.36; P = 0.004) and rs12902616 (OR(Rec) = 1.28, P = 0.005), the latter which is in linkage disequilibrium with the previously identified SNP rs4779584. Testing more broadly for associations in these gene regions in AAs, we noted three statistically significant association peaks in GREM1 and RHPN2 that were not identified in EAs. We conclude that some CRC risk alleles are shared between EAs and AAs and others are population specific.
Collapse
Affiliation(s)
- Sonia S Kupfer
- Department of Medicine, University of Chicago Medicine, 900 E. 57th Street, MB #9, Chicago, IL 60637, USA, Department of Medicine, University of Illinois Chicago, 900 S. Ashland Avenue, MC 767, Chicago, IL 60607, USA, Department of Medicine, University of North Carolina, 130 Mason Farm Road, Bioinformatics Building CB# 7080, Chapel Hill, NC 27599, USA and Department of Cellular and Molecular Medicine, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Andrew D Skol
- Department of Medicine, University of Chicago Medicine, 900 E. 57th Street, MB #9, Chicago, IL 60637, USA, Department of Medicine, University of Illinois Chicago, 900 S. Ashland Avenue, MC 767, Chicago, IL 60607, USA, Department of Medicine, University of North Carolina, 130 Mason Farm Road, Bioinformatics Building CB# 7080, Chapel Hill, NC 27599, USA and Department of Cellular and Molecular Medicine, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Ellie Hong
- Department of Medicine, University of Chicago Medicine, 900 E. 57th Street, MB #9, Chicago, IL 60637, USA, Department of Medicine, University of Illinois Chicago, 900 S. Ashland Avenue, MC 767, Chicago, IL 60607, USA, Department of Medicine, University of North Carolina, 130 Mason Farm Road, Bioinformatics Building CB# 7080, Chapel Hill, NC 27599, USA and Department of Cellular and Molecular Medicine, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Anton Ludvik
- Department of Medicine, University of Chicago Medicine, 900 E. 57th Street, MB #9, Chicago, IL 60637, USA, Department of Medicine, University of Illinois Chicago, 900 S. Ashland Avenue, MC 767, Chicago, IL 60607, USA, Department of Medicine, University of North Carolina, 130 Mason Farm Road, Bioinformatics Building CB# 7080, Chapel Hill, NC 27599, USA and Department of Cellular and Molecular Medicine, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Rick A Kittles
- Department of Medicine, University of Illinois Chicago, 900 S. Ashland Avenue, MC 767, Chicago, IL 60607, USA
| | - Temitope O Keku
- Department of Medicine, University of North Carolina, 130 Mason Farm Road, Bioinformatics Building CB# 7080, Chapel Hill, NC 27599, USA and
| | - Robert S Sandler
- Department of Medicine, University of North Carolina, 130 Mason Farm Road, Bioinformatics Building CB# 7080, Chapel Hill, NC 27599, USA and
| | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ 85724, USA
| |
Collapse
|
20
|
Ashton-Beaucage D, Udell CM, Gendron P, Sahmi M, Lefrançois M, Baril C, Guenier AS, Duchaine J, Lamarre D, Lemieux S, Therrien M. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila. PLoS Biol 2014; 12:e1001809. [PMID: 24643257 PMCID: PMC3958334 DOI: 10.1371/journal.pbio.1001809] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
A global RNAi screening approach in Drosophila cells identifies a large group of transcription and splicing factors that modulate RAS/MAPK signaling by altering the expression of MAPK. The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also specifically impact alternative splicing. The RAS/MAPK pathway is a cornerstone of the cell proliferation signaling apparatus. It has a notable involvement in cancer as mutations in the components of the pathway are associated with aberrant proliferation. Previous work has focused predominantly on post-translational regulation of RAS/MAPK signaling such that a large and intricate network of factors is now known to act on core pathway components. However, regulation at the pre-translational level has not been examined nearly as extensively and is comparatively poorly understood. In this study, we used an unbiased and global screening approach to survey the Drosophila genome—using Drosophila cultured cells—for novel regulators of this pathway. Surprisingly, a majority of our hits were associated to either transcription or mRNA splicing. We used a series of secondary screening assays to determine which part of the RAS/MAPK pathway these candidates target. We found that these factors were not equally distributed along the pathway, but rather converged predominantly on mapk mRNA expression and processing. Our findings raise the intriguing possibility that regulation of mapk transcript production is a key step for a diverse set of regulatory inputs, and may play an important part in RAS/MAPK signaling dynamics.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Christian M. Udell
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Sophie Guenier
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Antoniou A, Mastroyiannopoulos NP, Uney JB, Phylactou LA. miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem 2014; 289:3923-35. [PMID: 24385428 DOI: 10.1074/jbc.m113.507343] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex process of skeletal muscle differentiation is organized by the myogenic regulatory factors (MRFs), Myf5, MyoD, Myf6, and myogenin, where myogenin plays a critical role in the regulation of the final stage of muscle differentiation. In an effort to investigate the role microRNAs (miRNAs) play in regulating myogenin, a bioinformatics approach was used and six miRNAs (miR-182, miR-186, miR-135, miR-491, miR-329, and miR-96) were predicted to bind the myogenin 3'-untranslated region (UTR). However, luciferase assays showed only miR-186 inhibited translation and 3'-UTR mutagenesis analysis confirmed this interaction was specific. Interestingly, the expression of miR-186 mirrored that of its host gene, ZRANB2, during development. Functional studies demonstrated that miR-186 overexpression inhibited the differentiation of C2C12 and primary muscle cells. Our findings therefore identify miR-186 as a novel regulator of myogenic differentiation.
Collapse
Affiliation(s)
- Antonis Antoniou
- From the Department of Molecular Genetics, Function, and Therapy, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus and
| | | | | | | |
Collapse
|
22
|
Bianchi M, Crinelli R, Giacomini E, Carloni E, Radici L, Magnani M. Yin Yang 1 intronic binding sequences and splicing elicit intron-mediated enhancement of ubiquitin C gene expression. PLoS One 2013; 8:e65932. [PMID: 23776572 PMCID: PMC3680475 DOI: 10.1371/journal.pone.0065932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/02/2013] [Indexed: 12/28/2022] Open
Abstract
In a number of organisms, introns affect expression of the gene in which they are contained. Our previous studies revealed that the 5′-UTR intron of human ubiquitin C (UbC) gene is responsible for the boost of reporter gene expression and is able to bind, in vitro, Yin Yang 1 (YY1) trans-acting factor. In this work, we demonstrate that intact YY1 binding sequences are required for maximal promoter activity and YY1 silencing causes downregulation of luciferase mRNA levels. However, YY1 motifs fail to enhance gene expression when the intron is moved upstream of the proximal promoter, excluding the typical enhancer hypothesis and supporting a context-dependent action, like intron-mediated enhancement (IME). Yet, almost no expression is seen in the construct containing an unspliceable version of UbC intron, indicating that splicing is essential for promoter activity. Moreover, mutagenesis of YY1 binding sites and YY1 knockdown negatively affect UbC intron removal from both endogenous and reporter transcripts. Modulation of splicing efficiency by YY1 cis-elements and protein factor may thus be part of the mechanism(s) by which YY1 controls UbC promoter activity. Our data highlight the first evidence of the involvement of a sequence-specific DNA binding factor in IME.
Collapse
Affiliation(s)
- Marzia Bianchi
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section, University of Urbino Carlo Bo, Urbino, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
ZRANB2 localizes to supraspliceosomes and influences the alternative splicing of multiple genes in the transcriptome. Mol Biol Rep 2013; 40:5381-95. [DOI: 10.1007/s11033-013-2637-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 05/01/2013] [Indexed: 11/27/2022]
|
24
|
Ohte S, Kokabu S, Iemura SI, Sasanuma H, Yoneyama K, Shin M, Suzuki S, Fukuda T, Nakamura Y, Jimi E, Natsume T, Katagiri T. Identification and functional analysis of Zranb2 as a novel Smad-binding protein that suppresses BMP signaling. J Cell Biochem 2012; 113:808-14. [PMID: 22021003 DOI: 10.1002/jcb.23408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Smads 1/5/8 transduce the major intracellular signaling of bone morphogenetic proteins (BMPs). In the present study, we analyzed Smad1-binding proteins in HEK293T cells using a proteomic technique and identified the protein, zinc-finger, RAN-binding domain-containing protein 2 (ZRANB2). Zranb2 interacted strongly with Smad1, Smad5, and Smad8 and weakly with Smad4. The overexpression of Zranb2 inhibited BMP activities in C2C12 myoblasts in vitro, and the injection of Zranb2 mRNA into zebrafish embryos induced weak dorsalization. Deletion analyses of Zranb2 indicated that the serine/arginine-rich (SR) domain and the glutamine-rich domain were required for the inhibition of BMP activity and the interaction with Smad1, respectively. Zranb2 was found to be localized in the nucleus; however, the SR domain-deleted mutant localized to the cytoplasm. The knockdown of endogenous Zranb2 in C2C12 cells enhanced BMP activity. Zranb2 suppressed Smad transcriptional activity without affecting Smad phosphorylation, nuclear localization, or DNA binding. Taken together, these findings suggested that Zranb2 is a novel BMP suppressor that forms a complex with Smads in the nucleus.
Collapse
Affiliation(s)
- Satoshi Ohte
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Intron Retention and TE Exonization Events in ZRANB2. Comp Funct Genomics 2012; 2012:170208. [PMID: 22778693 PMCID: PMC3384923 DOI: 10.1155/2012/170208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/17/2022] Open
Abstract
The Zinc finger, RAN-binding domain-containing protein 2 (ZRANB2), contains arginine/serine-rich (RS) domains that mediate its function in the regulation of alternative splicing. The ZRANB2 gene contains 2 LINE elements (L3b, Plat_L3) between the 9th and 10th exons. We identified the exonization event of a LINE element (Plat_L3). Using genomic PCR, RT-PCR amplification, and sequencing of primate DNA and RNA samples, we analyzed the evolutionary features of ZRANB2 transcripts. The results indicated that 2 of the LINE elements were integrated in human and all of the tested primate samples (hominoids: 3 species; Old World monkey: 8 species; New World monkey: 6 species; prosimian: 1 species). Human, rhesus monkey, crab-eating monkey, African-green monkey, and marmoset harbor the exon derived from LINE element (Plat_L3). RT-PCR amplification revealed the long transcripts and their differential expression patterns. Intriguingly, these long transcripts were abundantly expressed in Old World monkey lineages (rhesus, crab-eating, and African-green monkeys) and were expressed via intron retention (IR). Thus, the ZRANB2 gene produces 3 transcript variants in which the Cterminus varies by transposable elements (TEs) exonization and IR mechanisms. Therefore, ZRANB2 is valuable for investigating the evolutionary mechanisms of TE exonization and IR during primate evolution.
Collapse
|
26
|
Bendak K, Loughlin FE, Cheung V, O'Connell MR, Crossley M, Mackay JP. A rapid method for assessing the RNA-binding potential of a protein. Nucleic Acids Res 2012; 40:e105. [PMID: 22492509 PMCID: PMC3413103 DOI: 10.1093/nar/gks285] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, evidence has emerged for the existence of many diverse types of RNA, which play roles in a wide range of biological processes in all kingdoms of life. These molecules generally do not, however, act in isolation, and identifying which proteins partner with RNA is a major challenge. Many methods, in vivo and in vitro, have been used to address this question, including combinatorial or high-throughput approaches, such as systematic evolution of ligands, cross-linking and immunoprecipitation and RNA immunoprecipitation combined with deep sequencing. However, most of these methods are not trivial to pursue and often require substantial optimization before results can be achieved. Here, we demonstrate a simple technique that allows one to screen proteins for RNA-binding properties in a gel-shift experiment and can be easily implemented in any laboratory. This assay should be a useful first-pass tool for assessing whether a protein has RNA- or DNA-binding properties, prior to committing resources to more complex procedures.
Collapse
Affiliation(s)
- K Bendak
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Mankertz A. Molecular interactions of porcine circoviruses type 1 and type 2 with its host. Virus Res 2012; 164:54-60. [DOI: 10.1016/j.virusres.2011.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/19/2023]
|
28
|
Michaelson-Richie ED, Ming X, Codreanu SG, Loeber RL, Liebler DC, Campbell C, Tretyakova NY. Mechlorethamine-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. J Proteome Res 2011; 10:2785-96. [PMID: 21486066 DOI: 10.1021/pr200042u] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antitumor nitrogen mustards, such as bis(2-chloroethyl)methylamine (mechlorethamine), are useful chemotherapeutic agents with a long history of clinical application. The antitumor effects of nitrogen mustards are attributed to their ability to induce DNA-DNA and DNA-protein cross-links (DPCs) that block DNA replication. In the present work, a mass spectrometry-based methodology was employed to characterize in vivo DNA-protein cross-linking following treatment of human fibrosarcoma (HT1080) cells with cytotoxic concentrations of mechlorethamine. A combination of mass spectrometry-based proteomics and immunological detection was used to identify 38 nuclear proteins that were covalently cross-linked to chromosomal DNA following treatment with mechlorethamine. Isotope dilution HPLC-ESI(+)-MS/MS analysis of total proteolytic digests revealed a concentration-dependent formation of N-[2-(S-cysteinyl)ethyl]-N-[2-(guan-7-yl)ethyl]methylamine (Cys-N7G-EMA) conjugates, indicating that mechlorethamine cross-links cysteine thiols within proteins to N-7 positions of guanine in DNA.
Collapse
Affiliation(s)
- Erin D Michaelson-Richie
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Brian J. Morris
- From the Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
Nguyen CD, Mansfield RE, Leung W, Vaz PM, Loughlin FE, Grant RP, Mackay JP. Characterization of a family of RanBP2-type zinc fingers that can recognize single-stranded RNA. J Mol Biol 2011; 407:273-83. [PMID: 21256132 DOI: 10.1016/j.jmb.2010.12.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/24/2010] [Accepted: 12/28/2010] [Indexed: 11/17/2022]
Abstract
The recognition of single-stranded RNA (ssRNA) is an important aspect of gene regulation, and a number of different classes of protein domains that recognize ssRNA in a sequence-specific manner have been identified. Recently, we demonstrated that the RanBP2-type zinc finger (ZnF) domains from the human splicing factor ZnF Ran binding domain-containing protein 2 (ZRANB2) can bind to a sequence containing the consensus AGGUAA. Six other human proteins, namely, Ewing's sarcoma (EWS), translocated in liposarcoma (TLS)/FUS, RNA-binding protein 56 (RBP56), RNA-binding motif 5 (RBM5), RNA-binding motif 10 (RBM10) and testis-expressed sequence 13A (TEX13A), each contains a single ZnF with homology to the ZRANB2 ZnFs, and several of these proteins have been implicated in the regulation of mRNA processing. Here, we show that all of these ZnFs are able to bind with micromolar affinities to ssRNA containing a GGU motif. NMR titration data reveal that binding is mediated by the corresponding surfaces on each ZnF, and we also show that sequence selectivity is largely limited to the GGU core motif and that substitution of the three flanking adenines that were selected in our original selection experiment has a minimal effect on binding affinity. These data establish a subset of RanBP2-type ZnFs as a new family of ssRNA-binding motifs.
Collapse
Affiliation(s)
- Cuong D Nguyen
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Solier S, Barb J, Zeeberg BR, Varma S, Ryan MC, Kohn KW, Weinstein JN, Munson PJ, Pommier Y. Genome-wide analysis of novel splice variants induced by topoisomerase I poisoning shows preferential occurrence in genes encoding splicing factors. Cancer Res 2010; 70:8055-65. [PMID: 20817775 DOI: 10.1158/0008-5472.can-10-2491] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA splicing is required to remove introns from pre-mRNA, and alternative splicing generates protein diversity. Topoisomerase I (Top1) has been shown to be coupled with splicing by regulating serine/arginine-rich splicing proteins. Prior studies on isolated genes also showed that Top1 poisoning by camptothecin (CPT), which traps Top1 cleavage complexes (Top1cc), can alter RNA splicing. Here, we tested the effect of Top1 inhibition on splicing at the genome-wide level in human colon carcinoma HCT116 and breast carcinoma MCF7 cells. The RNA of HCT116 cells treated with CPT for various times was analyzed with ExonHit Human Splice Array. Unlike other exon array platforms, the ExonHit arrays include junction probes that allow the detection of splice variants with high sensitivity and specificity. We report that CPT treatment preferentially affects the splicing of splicing-related factors, such as RBM8A, and generates transcripts coding for inactive proteins lacking key functional domains. The splicing alterations induced by CPT are not observed with cisplatin or vinblastine and are not simply due to reduced Top1 activity, as Top1 downregulation by short interfering RNA did not alter splicing like CPT treatment. Inhibition of RNA polymerase II (Pol II) hyperphosphorylation by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) blocked the splicing alteration induced by CPT, which suggests that the rapid Pol II hyperphosphorylation induced by CPT interferes with normal splicing. The preferential effect of CPT on genes encoding splicing factors may explain the abnormal splicing of a large number of genes in response to Top1cc.
Collapse
Affiliation(s)
- Stéphanie Solier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009; 16:369-77. [PMID: 19878869 PMCID: PMC4369769 DOI: 10.1016/j.ccr.2009.09.024] [Citation(s) in RCA: 464] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/30/2009] [Accepted: 09/22/2009] [Indexed: 02/08/2023]
Abstract
Inherently disparate cell growth and division, which are intimately coupled through a delicate network of intracellular and extracellular signaling, require ribosomal biogenesis. A number of events imparting instability to ribosomal biogenesis can cause nucleolar stress. In response to this stress, several ribosomal proteins bind to MDM2 and block MDM2-mediated p53 ubiquitination and degradation, resulting in p53-dependent cell cycle arrest. By doing so, the ribosomal proteins play a crucial role in connecting deregulated cell growth with inhibition of cell division. The ribosomal protein-MDM2-p53 signaling pathway provides a molecular switch that may constitute a surveillance network monitoring the integrity of ribosomal biogenesis.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Radiation Oncology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5' splice site-like sequences. Proc Natl Acad Sci U S A 2009; 106:5581-6. [PMID: 19304800 DOI: 10.1073/pnas.0802466106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The alternative splicing of mRNA is a critical process in higher eukaryotes that generates substantial proteomic diversity. Many of the proteins that are essential to this process contain arginine/serine-rich (RS) domains. ZRANB2 is a widely-expressed and highly-conserved RS-domain protein that can regulate alternative splicing but lacks canonical RNA-binding domains. Instead, it contains 2 RanBP2-type zinc finger (ZnF) domains. We demonstrate that these ZnFs recognize ssRNA with high affinity and specificity. Each ZnF binds to a single AGGUAA motif and the 2 domains combine to recognize AGGUAA(N(x))AGGUAA double sites, suggesting that ZRANB2 regulates alternative splicing via a direct interaction with pre-mRNA at sites that resemble the consensus 5' splice site. We show using X-ray crystallography that recognition of an AGGUAA motif by a single ZnF is dominated by side-chain hydrogen bonds to the bases and formation of a guanine-tryptophan-guanine "ladder." A number of other human proteins that function in RNA processing also contain RanBP2 ZnFs in which the RNA-binding residues of ZRANB2 are conserved. The ZnFs of ZRANB2 therefore define another class of RNA-binding domain, advancing our understanding of RNA recognition and emphasizing the versatility of ZnF domains in molecular recognition.
Collapse
|
34
|
Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology 2009; 386:122-31. [DOI: 10.1016/j.virol.2008.12.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/02/2008] [Accepted: 12/26/2008] [Indexed: 01/08/2023]
|
35
|
Finsterbusch T, Mankertz A. Porcine circoviruses--small but powerful. Virus Res 2009; 143:177-83. [PMID: 19647885 DOI: 10.1016/j.virusres.2009.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/15/2009] [Indexed: 01/31/2023]
Abstract
When porcine circovirus type 1 (PCV1) was isolated more than 40 years ago as a non-pathogenic contaminant of a porcine kidney cell line, enthusiasm and curiosity kept within reasonable limits. Virologists became more interested, when a second variant was isolated and termed PCV2, because PCV2 is linked to postweaning multisystemic wasting disease (PMWS), a new emerging multifactorial disease in swine. Both PCV1 and PCV2 are small and rather simply organized and express only few proteins. Therefore, it was expected that the factor(s) triggering PMWS should be easily identified, but more than one decade of PCV research has not yet singled out a molecule inducing the disease onset. Unravelling the molecular features of PCV and the channels through which the virus interacts with its host are key to manage, prevent and treat PMWS and other PCV-associated diseases. Since we have learned many aspects of the molecular biology of PCV in the last years, it is time for a résumé!
Collapse
Affiliation(s)
- Tim Finsterbusch
- Division of Viral Infections (FG12), Robert Koch-Institute, 13353 Berlin, Germany
| | | |
Collapse
|
36
|
Loughlin FE, Lee M, Guss JM, Mackay JP. Crystallization of a ZRANB2-RNA complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1175-7. [PMID: 19052380 DOI: 10.1107/s1744309108036993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/10/2008] [Indexed: 11/10/2022]
Abstract
ZRANB2 is a zinc-finger protein that has been shown to influence alternative splice-site selection. The protein comprises a C-terminal arginine/serine-rich domain that interacts with spliceosomal proteins and two N-terminal RanBP2-type zinc fingers that have been implicated in RNA recognition. The second zinc finger bound to a six-nucleotide single-stranded RNA target sequence crystallized in the hexagonal space group P6(5)22 or P6(1)22, with unit-cell parameters a = 54.52, b = 54.52, c = 48.07 A; the crystal contains one monomeric complex per asymmetric unit. This crystal form has a solvent content of 39% and diffracted to 1.4 A resolution using synchrotron radiation.
Collapse
Affiliation(s)
- Fionna E Loughlin
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
37
|
Rylski M, Amborska R, Zybura K, Konopacki FA, Wilczynski GM, Kaczmarek L. Yin Yang 1 Expression in the Adult Rodent Brain. Neurochem Res 2008; 33:2556-64. [DOI: 10.1007/s11064-008-9757-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 05/19/2008] [Indexed: 11/24/2022]
|
38
|
Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci U S A 2007; 104:17494-9. [PMID: 17954908 DOI: 10.1073/pnas.0708572104] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer is a leading cause of deaths, yet many aspects of the biology of the disease and a routine means of its detection are lacking. We have used protein microarrays and autoantibodies from cancer patients to identify proteins that are aberrantly expressed in ovarian tissue. Sera from 30 cancer patients and 30 healthy individuals were used to probe microarrays containing 5,005 human proteins. Ninety-four antigens were identified that exhibited enhanced reactivity from sera in cancer patients relative to control sera. The differential reactivity of four antigens was tested by using immunoblot analysis and tissue microarrays. Lamin A/C, SSRP1, and RALBP1 were found to exhibit increased expression in the cancer tissue relative to controls. The combined signals from multiple antigens proved to be a robust test to identify cancerous ovarian tissue. These antigens were also reactive with tissue from other types of cancer and thus are not specific to ovarian cancer. Overall our studies identified candidate tissue marker proteins for ovarian cancer and demonstrate that protein microarrays provide a powerful approach to identify proteins aberrantly expressed in disease states.
Collapse
|
39
|
Li J, Chen XH, Xiao PJ, Li L, Lin WM, Huang J, Xu P. Expression pattern and splicing function of mouse ZNF265. Neurochem Res 2007; 33:483-9. [PMID: 17805964 DOI: 10.1007/s11064-007-9461-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/26/2007] [Indexed: 11/27/2022]
Abstract
ZNF265 is a newly identified arginine/serine-rich (SR) protein and has two transcript isoforms (ZNF265-1 and ZNF265-2) that autoregulate between each other. Previous studies have shown that ZNF265 regulates the Tra2 beta isoform splicing. Here, we demonstrate that two ZNF-265 transcript isoforms are expressed in various mouse tissues and that ZNF265-1 is a major isoform. The ZNF265-1 protein level in the cerebral cortex is significantly lower in relative to other tissues. The recombinant proteins of both isoforms are nuclear, in consistent with its functions as pre-mRNA splicing regulators. Splicing analysis with GluR-B and SMN2 minigenes demonstrates that ZNF265-1 inhibits the Flop exon and exon 7 usages in the splicing of two minigenes, respectively. The regulation of GluR-B and SMN2 pre-mRNA splicing by ZNF265 implies this newly identified SR protein may play important roles in maintaining normal neuronal function and SMA pathogenesis.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Medical Neurobiology and Laboratory of Genomic Physiology, Brain Research Center, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Przkora R, Haslbeck M, Jeschke MG, Heyde C, Ertel W, Herndon DN, Bolder U. Heat stress modulates hepatocyte membrane proteins during endotoxemia. Burns 2007; 33:628-33. [PMID: 17374454 DOI: 10.1016/j.burns.2006.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 08/15/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatic failure following sepsis is one of the important features of burns. Studies have shown that in septic rats, heat stress (HS) has a protective effect on bile acid transporters in hepatocyte membranes. This study investigates the influence of HS on hepatocyte membrane proteins during endotoxemia using 2D gel electrophoresis. METHODS Endotoxemia in rats was induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (n=24), while control rats (n=24) received saline. Twelve rats from each group were exposed to HS 2h prior to LPS or saline injection by external warming to 42 degrees C for 10 min and 12 rats in each group were exposed to ambient temperature 2h prior to LPS or saline injection. Membrane fractions were extracted 12, 24 and 72 h after LPS or saline treatment. Extracted proteins were separated using 2D gel electrophoresis. The most dominant spots were analyzed by MALDI-TOF-MS. RESULTS Two-dimensional gel electrophoresis differentially identified expressed proteins in all treatment groups. The majority of the spots developed 24h after injection. Membrane proteins; Wnt 13, ribosomal protein L14, VLCAD, BHMT and HIT-40 were found only in HS-LPS. Protein profiles of the groups returned to normal after 72 h. CONCLUSION We propose that HS during endotoxemia changes hepatic membrane proteins expression, which are involved in metabolism.
Collapse
Affiliation(s)
- Rene Przkora
- Shriners Hospital for Children and Department of Surgery, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lin S, Fu XD. SR proteins and related factors in alternative splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:107-22. [PMID: 18380343 DOI: 10.1007/978-0-387-77374-2_7] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
SR proteins are a family of RNA binding proteins that contain a signature RS domain enriched with serine/arginine repeats. The RS domain is also found in many other proteins, which are collectively referred to as SR-related proteins. Several prototypical SR proteins are essential splicing factors, but the majority of RS domain-containing factors are characterized by their ability to alter splice site selection in vitro or in transfected cells. SR proteins and SR-related proteins are generally believed to modulate splice site selection via RNA recognition motif-mediated binding to exonic splicing enhancers and RS domain-mediated protein-protein and protein-RNA interactions during spliceosome assembly. However, the biological function of individual RS domain-containing splicing regulators is complex because of redundant as well as competitive functions, context-dependent effects and regulation by cotranscriptional and post-translational events. This chapter will focus on our current mechanistic understanding of alternative splicing regulation by SR proteins and SR-related proteins and will discuss some of the questions that remain to be addressed in future research.
Collapse
Affiliation(s)
- Shengrong Lin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
42
|
Wang CC, Chen JJW, Yang PC. Multifunctional transcription factor YY1: a therapeutic target in human cancer? Expert Opin Ther Targets 2006; 10:253-66. [PMID: 16548774 DOI: 10.1517/14728222.10.2.253] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The multifunctional transcription factor Yin Yang 1 (YY1) is a complex protein that has been shown to play pivotal roles in development, differentiation, cellular proliferation and apoptosis. It can act as a transcriptional repressor, an activator, or an initiator element binding protein that directs and initiates transcription of numerous cellular and viral genes. Because the expression and function of YY1 are known to be intimately associated with cell-cycle progression, the physiological significance of YY1 activity has recently been applied to models of cancer biology. Several lines of evidence imply that YY1 expression and/or activation is associated with tumourigenesis, in addition to its regulatory roles in normal biological processes. However, controversial results also raised and indicated that further studies are still needed to piece all of the seemingly contradictory data into a complete picture. On the basis of YY1 regulations and functions, novel drugs and specific treatment strategies may be developed with new therapeutic applications for tumour patients in the future.
Collapse
Affiliation(s)
- Chi-Chung Wang
- National Taiwan University College of Medicine, NTU Center for Genomic Medicine, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
43
|
Mangs AH, Speirs HJ, Goy C, Adams DJ, Markus MA, Morris BJ. XE7: a novel splicing factor that interacts with ASF/SF2 and ZNF265. Nucleic Acids Res 2006; 34:4976-86. [PMID: 16982639 PMCID: PMC1635291 DOI: 10.1093/nar/gkl660] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pre-mRNA splicing is performed by the spliceosome. SR proteins in this macromolecular complex are essential for both constitutive and alternative splicing. By using the SR-related protein ZNF265 as bait in a yeast two-hybrid screen, we pulled out the uncharacterized human protein XE7, which is encoded by a pseudoautosomal gene. XE7 had been identified in a large-scale proteomic analysis of the human spliceosome. It consists of two different isoforms produced by alternative splicing. The arginine/serine (RS)-rich region in the larger of these suggests a role in mRNA processing. Herein we show for the first time that XE7 is an alternative splicing regulator. XE7 interacts with ZNF265, as well as with the essential SR protein ASF/SF2. The RS-rich region of XE7 dictates both interactions. We show that XE7 localizes in the nucleus of human cells, where it colocalizes with both ZNF265 and ASF/SF2, as well as with other SR proteins, in speckles. We also demonstrate that XE7 influences alternative splice site selection of pre-mRNAs from CD44, Tra2-beta1 and SRp20 minigenes. We have thus shown that the spliceosomal component XE7 resembles an SR-related splicing protein, and can influence alternative splicing.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian J. Morris
- To whom correspondence should be addressed. Tel: +61-2-93513688; Fax: +61-2-93512227;
| |
Collapse
|
44
|
Lee MJ, Ayaki H, Goji J, Kitamura K, Nishio H. Cadmium restores in vitro splicing activity inhibited by zinc-depletion. Arch Toxicol 2006; 80:638-43. [PMID: 16645842 DOI: 10.1007/s00204-006-0104-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 03/30/2006] [Indexed: 11/28/2022]
Abstract
Zinc (Zn)-depletion inhibits the second step of RNA splicing, namely exon-ligation. To investigate the effects of cadmium (Cd) and other metal ions on RNA splicing inhibited by Zn-depletion, we measured in vitro splicing activities in the presence of these metals. Zn-depletion in the splicing reaction mixture was achieved by addition of a Zn-chelator, 1,10-phenanthroline. Cd(II) at 1, 5 and 10 microM restored the splicing activity to 2, 24 and 72% of that in the control reaction mixture, while higher concentrations of Cd(II) decreased the splicing activity, and more than 50 microM Cd(II) showed a complete absence of spliced products. Hg(II) also restored the splicing activity, albeit to a lesser extent, since 5 and 10 microM Hg(II) restored the splicing activity to 3 and 4% of the control value. The other metal ions examined in this study, Co(II), Cu(II), Mg(II) and Mn(II), did not show any restoration of the splicing activity. We concluded that Cd(II) could restore the in vitro splicing activity inhibited by Zn-depletion, although higher concentrations of Cd(II) prevented progress of the RNA splicing reaction. These results suggest that Cd(II) has a bifunctional property regarding RNA splicing, and is stimulatory at low concentrations and inhibitory at high concentrations.
Collapse
Affiliation(s)
- Myeong Jin Lee
- Department of Public Health, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | | | |
Collapse
|
45
|
Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE. TDP-43 Binds Heterogeneous Nuclear Ribonucleoprotein A/B through Its C-terminal Tail. J Biol Chem 2005; 280:37572-84. [PMID: 16157593 DOI: 10.1074/jbc.m505557200] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TDP-43 is a highly conserved nuclear factor of yet unknown function that binds to ug-repeated sequences and is responsible for cystic fibrosis transmembrane conductance regulator exon 9 splicing inhibition. We have analyzed TDP-43 interactions with other splicing factors and identified the critical regions for the protein/protein recognition events that determine this biological function. We show here that the C-terminal region of TDP-43 is capable of binding directly to several proteins of the heterogeneous nuclear ribonucleoprotein (hnRNP) family with well known splicing inhibitory activity, in particular, hnRNP A2/B1 and hnRNP A1. Mutational analysis showed that TDP-43 proteins lacking the C-terminal region could not inhibit splicing probably because they were unable to form the hnRNP-rich complex involved in splicing inhibition. Finally, through splicing complex analysis, we show that splicing inhibition mediated by TDP-43 occurs at the earliest stages of spliceosomal assembly.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Uematsu F, Takahashi M, Yoshida M, Igarashi M, Watanabe N, Suzuki N, Abe M, Rusyn I, Floyd RA, Nakae D. Distinct patterns of gene expression in hepatocellular carcinomas and adjacent non-cancerous, cirrhotic liver tissues in rats fed a choline-deficient, L-amino acid-defined diet. Cancer Sci 2005; 96:414-24. [PMID: 16053513 PMCID: PMC11158728 DOI: 10.1111/j.1349-7006.2005.00069.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gene expression profiles of HCC and surrounding non-cancerous tissues in rats fed a CDAA diet for 70 weeks, as well as normal liver tissues, were explored using an oligonucleotide microarray for 3757 genes. A total of 146 genes were identified as differentially expressed; the affected functions including metabolism, apoptosis, cell cycling, RNA splicing, Wnt signaling, reactive oxygen species-induced stress, and fibro/cirrhogenesis. The genes were found to fit into four distinct expression patterns after classification by hierarchical and k-means clustering procedures. Notably, genes within the same functional category tended to be found within the same cluster, thus gene functions appeared to be related to their expression patterns. For example, genes encoding receptors (Fisher's exact test, P < 0.01) and cytokines (Fisher's exact test, P < 0.05) were both enriched in a cluster characterized by low expression in HCC compared to their surrounding tissues. While some of the receptors in this cluster had cell-proliferative potential, others are known to be growth-suppressive. It was noted, however, that four of the 10 receptor genes encode G-protein-coupled receptors, for which growth-suppressive potential has been reported. The seven growth factors in the same cluster included two fibroblast growth factors. The current findings suggest the possibility that genes differentially expressed in this multistep carcinogenic model may be classified into relatively few clusters according to their expression patterns, and that these clusters may be associated with gene functional categories.
Collapse
Affiliation(s)
- Fumiyuki Uematsu
- Department of Pathology, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Adams DJ, van der Weyden L, Gergely FV, Arends MJ, Ng BL, Tannahill D, Kanaar R, Markus A, Morris BJ, Bradley A. BRCTx is a novel, highly conserved RAD18-interacting protein. Mol Cell Biol 2005; 25:779-88. [PMID: 15632077 PMCID: PMC543416 DOI: 10.1128/mcb.25.2.779-788.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BRCT domain is a highly conserved module found in many proteins that participate in DNA damage checkpoint regulation, DNA repair, and cell cycle control. Here we describe the cloning, characterization, and targeted mutagenesis of Brctx, a novel gene with a BRCT motif. Brctx was found to be expressed ubiquitously in adult tissues and during development, with the highest levels found in testis. Brctx-deficient mice develop normally, show no pathological abnormalities, and are fertile. BRCTx binds to the C terminus of hRAD18 in yeast two-hybrid and immunoprecipitation assays and colocalizes with this protein in the nucleus. Despite this, Brctx-deficient murine embryonic fibroblasts (MEFs) do not show overt sensitivity to DNA-damaging agents. MEFs from Brctx-deficient embryos grow at a similar rate to wild-type MEF CD4/CD8 expressions, and the cell cycle parameters of thymocytes from wild-type and Brctx knockout animals are indistinguishable. Intriguingly, the BRCT domain of BRCTx is responsible for mediating its localization to the nucleus and centrosome in interphase cells. We conclude that, although highly conserved, Brctx is not essential for the above-mentioned processes and may be redundant.
Collapse
Affiliation(s)
- David J Adams
- The Wellcome Trust Sanger Institute Hinxton, Cambs CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Maita H, Kitaura H, Keen TJ, Inglehearn CF, Ariga H, Iguchi-Ariga SMM. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor. Exp Cell Res 2004; 300:283-96. [PMID: 15474994 DOI: 10.1016/j.yexcr.2004.07.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/26/2004] [Indexed: 12/20/2022]
Abstract
PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene.
Collapse
Affiliation(s)
- Hiroshi Maita
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Maita H, Kitaura H, Ariga H, Iguchi-Ariga SMM. CIR, a corepressor of CBF1, binds to PAP-1 and effects alternative splicing. Exp Cell Res 2004; 303:375-87. [PMID: 15652350 DOI: 10.1016/j.yexcr.2004.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 10/05/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
We have reported that PAP-1, a product of a causative gene for autosomal retinitis pigmentosa, plays a role in splicing. In this study, CIR, a protein originally identified as a CBF1-interacting protein and reported to act as a transcriptional corepressor, was identified as a PAP-1 binding protein and its function as a splicing factor was investigated. In addition to a basic lysine and acidic serine-rich (BA) domain and a zinc knuckle-like motif, CIR has an arginine/serine dipeptide repeat (RS) domain in its C terminal region. The RS domain has been reported to be present in the superfamily of SR proteins, which are involved in splicing reactions. We generated CIR mutants with deletions of each BA and RS domain and studied their subcellular localizations and interactions with PAP-1 and other SR proteins, including SC35, SF2/ASF, and U2AF35. CIR was found to interact with U2AF35 through the BA domain, with SC35 and SF2/ASF through the RS domain, and with PAP-1 outside the BA domain in vivo and in vitro. CIR was found to be colocalized with SC35 and PAP-1 in nuclear speckles. Then the effect of CIR on splicing was investigated using the E1a minigene as a reporter in HeLa cells. Ectopic expression of CIR with the E1a minigene changed the ratio of spliced isoforms of E1a that were produced by alternative selection of 5'-splice sites. These results indicate that CIR is a member of the family of SR-related proteins and that CIR plays a role in splicing regulation.
Collapse
Affiliation(s)
- Hiroshi Maita
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
50
|
Establishment and application of minigene models for studying pre-mRNA alternative splicing. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf03182765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|