1
|
D'Souza-Schorey C, Stahl PD. Resolving the two-body problem: A postulated role for the V0 sector of the V0V1-ATPase in exosome biogenesis and multivesicular body fate. Mol Biol Cell 2025; 36:pe1. [PMID: 39705591 DOI: 10.1091/mbc.e24-09-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase. The V0V1-ATPase participates in the acidification of intracellular compartments, although V0 can function separately from V1 and different V0 isoforms are endowed with membrane binding capabilities that allow the V0V1-ATPase to selectively localize to different endocytic compartments including early and late endosomes and lysosomes. We propose that V0, in collaboration with cholesterol and phosphoinositides, plays a central role in the early endosome as a nucleation center to direct the de novo assembly of an EXO-MVB scaffold. The EXO-MVB scaffold may play multiple roles-operating as an assembly platform, participating in membrane fission as well as providing downstream navigational queues necessary for exosome secretion. Thus, V0 may represent an influential nexus, a starting point, in exosome biogenesis.
Collapse
Affiliation(s)
| | - Philip D Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Zhu M, Jin T, Wu D, Zhang S, Wang A. Transcriptomics Analysis Revealed Key Genes Associated with Macrophage Autophagolysosome in Male ApoE -/- Mice Aortic Atherosclerosis. J Inflamm Res 2023; 16:5125-5144. [PMID: 37965353 PMCID: PMC10642550 DOI: 10.2147/jir.s426155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023] Open
Abstract
Purpose Atherosclerosis (AS) is the most common cause of cardiovascular and cerebrovascular diseases. However, the mechanisms underlying atherosclerotic plaque progression remain unclear. This study aimed to investigate the genes associated with the development of atherosclerosis in the aorta of ApoE-/- male mice, which could serve as novel biomarkers and therapeutic targets in interventions to halt plaque progression. Methods Eight-week-old ApoE-/- mice were fed a normal purified laboratory diet or a Western Diet (WD) for 6 or 22 weeks. High-throughput sequencing technology was used to analyze the transcriptomes of the aortas of four groups of mice that were exposed to different dietary conditions. We retrieved and downloaded the human Arteriosclerosis Disease Chip dataset GSE100927 from the Gene Expression Omnibus (GEO) database and selected 29 cases of carotid atherosclerotic lesions and 12 cases of normal carotid tissues as the experimental and control groups, respectively, to further verify our dataset. In addition, we used quantitative reverse transcription polymerase chain reaction (QT-PCR) to verify the expression levels of the core genes in an atherosclerosis mouse model. Results There were 265 differentially expressed genes (DEGs) between the ApoE-/- Male mice AS22W group and Sham22W group. In addition to the well-known activation of inflammation and immune response, t the autophagy-lysosome system is also an important factor that affects the development of atherosclerosis. We identified five core genes (Atp6ap2, Atp6v0b, Atp6v0d2, Atp6v1a, and Atp6v1d) in the protein-protein interaction (PPI) network that were closely related to autophagosomes. Hub genes were highly expressed in the carotid atherosclerosis group in the GSE100927 dataset (P < 0.001). QT-PCR showed that the RNA level of Atp6v0d2 increased significantly during the development of atherosclerotic plaque in ApoE-/- male mice. Conclusion Five core genes which affect the development of aortic atherosclerosis through the autophagy-lysosome system, especially Atp6v0d2, were screened and identified using bioinformatic techniques.
Collapse
Affiliation(s)
- Meirong Zhu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
- Department of Critical Medicine, Jinan Central Hospital, Jinan, People’s Republic of China
| | - Tongyu Jin
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
| | - Ding Wu
- Vascular Surgery, Jinan Central Hospital, Jinan, People’s Republic of China
| | - Shanchao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
| | - Aihua Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
3
|
Zhang C, Feng Y, Balutowski A, Miner GE, Rivera-Kohr DA, Hrabak MR, Sullivan KD, Guo A, Calderin JD, Fratti RA. The interdependent transport of yeast vacuole Ca 2+ and H + and the role of phosphatidylinositol 3,5-bisphosphate. J Biol Chem 2022; 298:102672. [PMID: 36334632 PMCID: PMC9706634 DOI: 10.1016/j.jbc.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Yeast vacuoles are acidified by the v-type H+-ATPase (V-ATPase) that is comprised of the membrane embedded VO complex and the soluble cytoplasmic V1 complex. The assembly of the V1-VO holoenzyme on the vacuole is stabilized in part through interactions between the VO a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). PI(3,5)P2 also affects vacuolar Ca2+ release through the channel Yvc1 and uptake through the Ca2+ pump Pmc1. Here, we asked if H+ and Ca2+ transport activities were connected through PI(3,5)P2. We found that overproduction of PI(3,5)P2 by the hyperactive fab1T2250A mutant augmented vacuole acidification, whereas the kinase-inactive fab1EEE mutant attenuated the formation of a H+ gradient. Separately, we tested the effects of excess Ca2+ on vacuole acidification. Adding micromolar Ca2+ blocked vacuole acidification, whereas chelating Ca2+ accelerated acidification. The effect of adding Ca2+ on acidification was eliminated when the Ca2+/H+ antiporter Vcx1 was absent, indicating that the vacuolar H+ gradient can collapse during Ca2+ stress through Vcx1 activity. This, however, was independent of PI(3,5)P2, suggesting that PI(3,5)P2 plays a role in submicromolar Ca2+ flux but not under Ca2+ shock. To see if the link between Ca2+ and H+ transport was bidirectional, we examined Ca2+ transport when vacuole acidification was inhibited. We found that Ca2+ transport was inhibited by halting V-ATPase activity with Bafilomycin or neutralizing vacuolar pH with chloroquine. Together, these data show that Ca2+ transport and V-ATPase efficacy are connected but not necessarily through PI(3,5)P2.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Gregory E Miner
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
4
|
Zhang C, Balutowski A, Feng Y, Calderin JD, Fratti RA. High throughput analysis of vacuolar acidification. Anal Biochem 2022; 658:114927. [PMID: 36167157 DOI: 10.1016/j.ab.2022.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022]
Abstract
Eukaryotic cells are compartmentalized into membrane-bound organelles, allowing each organelle to maintain the specialized conditions needed for their specific functions. One of the features that change between organelles is lumenal pH. In the endocytic and secretory pathways, lumenal pH is controlled by isoforms and concentration of the vacuolar-type H+-ATPase (V-ATPase). In the endolysosomal pathway, copies of complete V-ATPase complexes accumulate as membranes mature from early endosomes to late endosomes and lysosomes. Thus, each compartment becomes more acidic as maturation proceeds. Lysosome acidification is essential for the breakdown of macromolecules delivered from endosomes as well as cargo from different autophagic pathways, and dysregulation of this process is linked to various diseases. Thus, it is important to understand the regulation of the V-ATPase. Here we describe a high-throughput method for screening inhibitors/activators of V-ATPase activity using Acridine Orange (AO) as a fluorescent reporter for acidified yeast vacuolar lysosomes. Through this method, the acidification of purified vacuoles can be measured in real-time in half-volume 96-well plates or a larger 384-well format. This not only reduces the cost of expensive low abundance reagents, but it drastically reduces the time needed to measure individual conditions in large volume cuvettes.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Wilson ZN, Buysse D, West M, Ahrens D, Odorizzi G. Vacuolar H+-ATPase dysfunction rescues intralumenal vesicle cargo sorting in yeast lacking PI(3,5)P2 or Doa4. J Cell Sci 2021; 134:jcs258459. [PMID: 34342352 PMCID: PMC8353521 DOI: 10.1242/jcs.258459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes undergo a maturation process highlighted by a reduction in lumenal pH, a conversion of surface markers that prime endosome-lysosome fusion and the sequestration of ubiquitylated transmembrane protein cargos within intralumenal vesicles (ILVs). We investigated ILV cargo sorting in mutant strains of the budding yeast Saccharomyces cerevisiae that are deficient for either the lysosomal/vacuolar signaling lipid PI(3,5)P2 or the Doa4 ubiquitin hydrolase that deubiquitylates ILV cargos. Disruption of PI(3,5)P2 synthesis or Doa4 function causes a defect in sorting of a subset of ILV cargos. We show that these cargo-sorting defects are suppressed by mutations that disrupt Vph1, a subunit of vacuolar H+-ATPase (V-ATPase) complexes that acidify late endosomes and vacuoles. We further show that Vph1 dysfunction increases endosome abundance, and disrupts vacuolar localization of Ypt7 and Vps41, two crucial mediators of endosome-vacuole fusion. Because V-ATPase inhibition attenuates this fusion and rescues the ILV cargo-sorting defects in yeast that lack PI(3,5)P2 or Doa4 activity, our results suggest that the V-ATPase has a role in coordinating ILV cargo sorting with the membrane fusion machinery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Sasaki N, Morimoto S, Suda C, Shimizu S, Ichihara A. Urinary soluble (pro)renin receptor excretion is associated with urine pH in humans. PLoS One 2021; 16:e0254688. [PMID: 34310595 PMCID: PMC8312976 DOI: 10.1371/journal.pone.0254688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
The (pro)renin receptor [(P)RR] binds to renin and its precursor prorenin to activate the tissue renin-angiotensin system. It is cleaved to generate soluble (P)RR and M8–9, a residual hydrophobic truncated protein. The (pro)renin receptor also functions as an intracellular accessory protein of vacuolar-type H+-ATPase, which plays an essential role in controlling the intracellular vesicular acid environment. Thus, in the kidney, (P)RR may play a role in transporting H+ to urine in the collecting duct. Although blood soluble (P)RR has been recognized as a biomarker reflecting the status of the tissue renin-angiotensin system and/or tissue (P)RR, the significance of urinary soluble (P)RR excretion has not been determined. Therefore, this study aimed to investigate the characteristics of urinary soluble (P)RR excretion. Urinary soluble (P)RR excretion was measured, and its association with background factors was investigated in 441 patients. Relationships between changes in urine pH due to vitamin C treatment, which reduce urine pH, and urinary soluble (P)RR excretion were investigated in 10 healthy volunteers. Urinary soluble (P)RR excretion was 1.46 (0.44–2.92) ng/gCre. Urine pH showed a significantly positive association with urinary soluble (P)RR excretion, independent of other factors. Changes in urine pH and urinary soluble (P)RR excretion due to vitamin C treatment were significantly and positively correlated (ρ = 0.8182, p = 0.0038). These data showed an association between urinary soluble (P)RR excretion and urine pH in humans, suggesting that (P)RR in the kidney might play a role in urine pH regulation.
Collapse
Affiliation(s)
- Nobukazu Sasaki
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail:
| | - Chikahito Suda
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoru Shimizu
- School of Arts and Sciences, Tokyo Woman’s Christian University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Novel vertebrate- and brain-specific driver of neuronal outgrowth. Prog Neurobiol 2021; 202:102069. [PMID: 33933532 DOI: 10.1016/j.pneurobio.2021.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.
Collapse
|
9
|
Miner GE, Sullivan KD, Zhang C, Rivera-Kohr D, Guo A, Hurst LR, Ellis EC, Starr ML, Jones BC, Fratti RA. Phosphatidylinositol 3,5-bisphosphate regulates Ca 2+ transport during yeast vacuolar fusion through the Ca 2+ ATPase Pmc1. Traffic 2021; 21:503-517. [PMID: 32388897 DOI: 10.1111/tra.12736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
The transport of Ca2+ across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+ stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol-3-phosphate (PI3P) by the PI3P-5-kinase Fab1 to produce transient PI(3,5)P2 pools. Ca2+ is also released during vacuole fusion upon trans-SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2 on Ca2+ flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2 were required for Ca2+ uptake into the vacuole, increased concentrations abolished Ca2+ efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2 or increased endogenous production of by the hyperactive fab1T2250A mutant. In contrast, the lack of PI(3,5)P2 on vacuoles from the kinase dead fab1EEE mutant showed delayed and decreased Ca2+ uptake. The effects of PI(3,5)P2 were linked to the Ca2+ pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2 . Experiments with Verapamil inhibited Ca2+ uptake when added at the start of the assay, while adding it after Ca2+ had been taken up resulted in the rapid expulsion of Ca2+ . Vacuoles lacking both Pmc1 and the H+ /Ca2+ exchanger Vcx1 lacked the ability to take up Ca2+ and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2 can modulate which path predominates.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chi Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David Rivera-Kohr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ez C Ellis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brandon C Jones
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Inhibiting ATP6V0D2 Aggravates Liver Ischemia-Reperfusion Injury by Promoting NLRP3 Activation via Impairing Autophagic Flux Independent of Notch1/Hes1. J Immunol Res 2021; 2021:6670495. [PMID: 33860063 PMCID: PMC8024071 DOI: 10.1155/2021/6670495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
At present, liver ischemia-reperfusion (IR) injury is still a great challenge for clinical liver partial resection and liver transplantation. The innate immunity regulated by liver macrophages orchestrates the cascade of IR inflammation and acts as a bridge. As a specific macrophage subunit of vacuolar ATPase, ATP6V0D2 (V-ATPase D2 subunit) has been shown to promote the formation of autophagolysosome in vitro. Our research fills a gap which has existed in the study of inflammatory stress about the V-ATPase subunit ATP6V0D2 in liver macrophages. We first found that the expression of specific ATP6V0D2 in liver macrophages was upregulated with the induction of inflammatory cascade after liver IR surgery, and knockdown of ATP6V0D2 resulted in increased secretion of proinflammatory factors and chemokines, which enhanced activation of NLRP3 and aggravation of liver injury. Further studies found that the exacerbated activation of NLRP3 was related to the autophagic flux regulated by ATP6V0D2. Knocking down ATP6V0D2 impaired the formation of autophagolysosome and aggravated liver IR injury through nonspecific V-ATPase activation independent of V-ATPase-Notchl-Hesl signal axis. In general, we illustrated that the expression of ATP6V0D2 in liver macrophages was upregulated after liver IR, and by gradually promoting the formation of autophagolysosomes to increase autophagy flux to limit the activation of liver inflammation, this regulation is independent of the Notch1-Hes1 signal axis.
Collapse
|
11
|
Morimoto S, Morishima N, Watanabe D, Kato Y, Shibata N, Ichihara A. Immunohistochemistry for (Pro)renin Receptor in Humans. Int J Endocrinol 2021; 2021:8828610. [PMID: 34367278 PMCID: PMC8337151 DOI: 10.1155/2021/8828610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/16/2021] [Indexed: 12/27/2022] Open
Abstract
The (pro)renin receptor is a multifunctional protein with roles in angiotensin-II-dependent and -independent intracellular cell signaling and roles as an intracellular accessory protein for the vacuolar H+-ATPase, including hormone secretion. While (pro)renin receptor mRNA is widely expressed in various human tissues, localization of (pro)renin receptor protein expression has not yet been systemically determined. Therefore, this study localized (pro)renin receptor protein expression in human organs. Systemic immunohistochemical examination of (pro)renin receptor expression was performed in whole body organs of autopsy cases. (Pro)renin receptor immunostaining was observed in the cytoplasm of cells in almost all human organs. It was observed in thyroid follicular epithelial cells, hepatic cells, pancreatic duct epithelial cells, zona glomerulosa and zona reticularis of the cortex and medulla of the adrenal gland, proximal and distal tubules and collecting ducts of the kidney, cardiomyocytes, and skeletal muscle cells. In the brain, (pro)renin receptor staining was detected in neurons throughout all areas, especially in the medulla oblongata, paraventricular nucleus and supraoptic nucleus of the hypothalamus, cerebrum, granular layer of the hippocampus, Purkinje cell layer of the cerebellum, and the pituitary anterior and posterior lobes. In the anterior lobe of the pituitary gland, all types of anterior pituitary hormone-positive cells showed double staining with (pro)renin receptor. These data showed that (pro)renin receptor protein was expressed in almost all organs of the human body. Its expression pattern was not uniform, and cell-specific expression pattern was observed, supporting the notion that (pro)renin receptor plays numerous physiological roles in each human organ.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriko Morishima
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Daisuke Watanabe
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichiro Kato
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Alexander AJT, Muñoz A, Marcos JF, Read ND. Calcium homeostasis plays important roles in the internalization and activities of the small synthetic antifungal peptide PAF26. Mol Microbiol 2020; 114:521-535. [PMID: 32898933 DOI: 10.1111/mmi.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/01/2020] [Accepted: 05/17/2020] [Indexed: 01/22/2023]
Abstract
Fungal diseases are responsible for the deaths of over 1.5 million people worldwide annually. Antifungal peptides represent a useful source of antifungals with novel mechanisms-of-action, and potentially provide new methods of overcoming resistance. Here we investigate the mode-of-action of the small, rationally designed synthetic antifungal peptide PAF26 using the model fungus Neurospora crassa. Here we show that the cell killing activity of PAF26 is dependent on extracellular Ca2+ and the presence of fully functioning fungal Ca2+ homeostatic/signaling machinery. In a screen of mutants with deletions in Ca2+ -signaling machinery, we identified three mutants more tolerant to PAF26. The Ca2+ ATPase NCA-2 was found to be involved in the initial interaction of PAF26 with the cell envelope. The vacuolar Ca2+ channel YVC-1 was shown to be essential for its accumulation and concentration within the vacuolar system. The Ca2+ channel CCH-1 was found to be required to prevent the translocation of PAF26 across the plasma membrane. In the wild type, Ca2+ removal from the medium resulted in the peptide remaining trapped in small vesicles as in the Δyvc-1 mutant. It is, therefore, apparent that cell killing by PAF26 is complex and unusually dependent on extracellular Ca2+ and components of the Ca2+ -regulatory machinery.
Collapse
Affiliation(s)
- Akira J T Alexander
- Institute of Infection, Immunity & Inflammation, The University of Glasgow, Glasgow, Scotland
| | - Alberto Muñoz
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA) , Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Nick D Read
- Manchester Fungal Infection Group, Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Vidal-Domènech F, Riquelme G, Pinacho R, Rodriguez-Mias R, Vera A, Monje A, Ferrer I, Callado LF, Meana JJ, Villén J, Ramos B. Calcium-binding proteins are altered in the cerebellum in schizophrenia. PLoS One 2020; 15:e0230400. [PMID: 32639965 PMCID: PMC7343173 DOI: 10.1371/journal.pone.0230400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Alterations in the cortico-cerebellar-thalamic-cortical circuit might underlie the diversity of symptoms in schizophrenia. However, molecular changes in cerebellar neuronal circuits, part of this network, have not yet been fully determined. Using LC-MS/MS, we screened altered candidates in pooled grey matter of cerebellum from schizophrenia subjects who committed suicide (n = 4) and healthy individuals (n = 4). Further validation by immunoblotting of three selected candidates was performed in two cohorts comprising schizophrenia (n = 20), non-schizophrenia suicide (n = 6) and healthy controls (n = 21). We found 99 significantly altered proteins, 31 of them previously reported in other brain areas by proteomic studies. Transport function was the most enriched category, while cell communication was the most prevalent function. For validation, we selected the vacuolar proton pump subunit 1 (VPP1), from transport, and two EF-hand calcium-binding proteins, calmodulin and parvalbumin, from cell communication. All candidates showed significant changes in schizophrenia (n = 7) compared to controls (n = 7). VPP1 was altered in the non-schizophrenia suicide group and increased levels of parvalbumin were linked to antipsychotics. Further validation in an independent cohort of non-suicidal chronic schizophrenia subjects (n = 13) and non-psychiatric controls (n = 14) showed that parvalbumin was increased, while calmodulin was decreased in schizophrenia. Our findings provide evidence of calcium-binding protein dysregulation in the cerebellum in schizophrenia, suggesting an impact on normal calcium-dependent synaptic functioning of cerebellar circuits. Our study also links VPP1 to suicide behaviours, suggesting a possible impairment in vesicle neurotransmitter refilling and release in these phenotypes.
Collapse
Affiliation(s)
- Francisco Vidal-Domènech
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gemma Riquelme
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Raquel Pinacho
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Ricard Rodriguez-Mias
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - América Vera
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Alfonso Monje
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Isidre Ferrer
- Departamento de Patologia y Terapeutica Experimental, Universidad de Barcelona, Senior consultant Servicio Anatomia Patológica, Hospital Universitario de Bellvitge-IDIBELL, CIBERNED, Hospital de Llobregat, Barcelona, Spain
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, CIBERSAM, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - J. Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, CIBERSAM, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Judit Villén
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Belén Ramos
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, CIBERSAM, Spain
- * E-mail:
| |
Collapse
|
14
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Galkina SI, Fedorova NV, Golenkina EA, Stadnichuk VI, Sud’ina GF. Cytonemes Versus Neutrophil Extracellular Traps in the Fight of Neutrophils with Microbes. Int J Mol Sci 2020; 21:ijms21020586. [PMID: 31963289 PMCID: PMC7014225 DOI: 10.3390/ijms21020586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils can phagocytose microorganisms and destroy them intracellularly using special bactericides located in intracellular granules. Recent evidence suggests that neutrophils can catch and kill pathogens extracellularly using the same bactericidal agents. For this, live neutrophils create a cytoneme network, and dead neutrophils provide chromatin and proteins to form neutrophil extracellular traps (NETs). Cytonemes are filamentous tubulovesicular secretory protrusions of living neutrophils with intact nuclei. Granular bactericides are localized in membrane vesicles and tubules of which cytonemes are composed. NETs are strands of decondensed DNA associated with histones released by died neutrophils. In NETs, bactericidal neutrophilic agents are adsorbed onto DNA strands and are not covered with a membrane. Cytonemes and NETs occupy different places in protecting the body against infections. Cytonemes can develop within a few minutes at the site of infection through the action of nitric oxide or actin-depolymerizing alkaloids of invading microbes. The formation of NET in vitro occurs due to chromatin decondensation resulting from prolonged activation of neutrophils with PMA (phorbol 12-myristate 13-acetate) or other stimuli, or in vivo due to citrullination of histones with peptidylarginine deiminase 4. In addition to antibacterial activity, cytonemes are involved in cell adhesion and communications. NETs play a role in autoimmunity and thrombosis.
Collapse
Affiliation(s)
- Svetlana I. Galkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| | - Natalia V. Fedorova
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | - Ekaterina A. Golenkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | | | - Galina F. Sud’ina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| |
Collapse
|
16
|
de Araujo MEG, Liebscher G, Hess MW, Huber LA. Lysosomal size matters. Traffic 2019; 21:60-75. [PMID: 31808235 PMCID: PMC6972631 DOI: 10.1111/tra.12714] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Lysosomes are key cellular catabolic centers that also perform fundamental metabolic, signaling and quality control functions. Lysosomes are not static and they respond dynamically to intra‐ and extracellular stimuli triggering changes in organelle numbers, size and position. Such physical changes have a strong impact on lysosomal activity ultimately influencing cellular homeostasis. In this review, we summarize the current knowledge on lysosomal size regulation, on its physiological role(s) and association to several disease conditions.
Collapse
Affiliation(s)
- Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gudrun Liebscher
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Austrian Drug Screening Institute, ADSI, Innsbruck, Austria
| |
Collapse
|
17
|
Aufschnaiter A, Büttner S. The vacuolar shapes of ageing: From function to morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:957-970. [PMID: 30796938 DOI: 10.1016/j.bbamcr.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Cellular ageing results in accumulating damage to various macromolecules and the progressive decline of organelle function. Yeast vacuoles as well as their counterpart in higher eukaryotes, the lysosomes, emerge as central organelles in lifespan determination. These acidic organelles integrate enzymatic breakdown and recycling of cellular waste with nutrient sensing, storage, signalling and mobilization. Establishing physical contact with virtually all other organelles, vacuoles serve as hubs of cellular homeostasis. Studies in Saccharomyces cerevisiae contributed substantially to our understanding of the ageing process per se and the multifaceted roles of vacuoles/lysosomes in the maintenance of cellular fitness with progressing age. Here, we discuss the multiple roles of the vacuole during ageing, ranging from vacuolar dynamics and acidification as determinants of lifespan to the function of this organelle as waste bin, recycling facility, nutrient reservoir and integrator of nutrient signalling.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden.
| |
Collapse
|
18
|
Chromophore-Assisted Light Inactivation of the V-ATPase V0c Subunit Inhibits Neurotransmitter Release Downstream of Synaptic Vesicle Acidification. Mol Neurobiol 2018; 56:3591-3602. [PMID: 30155790 DOI: 10.1007/s12035-018-1324-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Synaptic vesicle proton V-ATPase is an essential component in synaptic vesicle function. Active acidification of synaptic vesicles, triggered by the V-ATPase, is necessary for neurotransmitter storage. Independently from its proton transport activity, an additional important function of the membrane-embedded sector of the V-ATPase has been uncovered over recent years. Subunits a and c of the membrane sector of this multi-molecular complex have been shown to interact with SNARE proteins and to be involved in modulating neurotransmitter release. The c-subunit interacts with the v-SNARE VAMP2 and facilitates neurotransmission. In this study, we used chromophore-assisted light inactivation and monitored the consequences on neurotransmission on line in CA3 pyramidal neurons. We show that V-ATPase c-subunit V0c is a key element in modulating neurotransmission and that its specific inactivation rapidly inhibited neurotransmission.
Collapse
|
19
|
Zhao H, Wang J, Wang T. The V-ATPase V1 subunit A1 is required for rhodopsin anterograde trafficking in Drosophila. Mol Biol Cell 2018; 29:1640-1651. [PMID: 29742016 PMCID: PMC6080656 DOI: 10.1091/mbc.e17-09-0546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthesis and maturation of the light sensor, rhodopsin, are critical for the maintenance of light sensitivity and for photoreceptor homeostasis. In Drosophila, the main rhodopsin, Rh1, is synthesized in the endoplasmic reticulum and transported to the rhabdomere through the secretory pathway. In an unbiased genetic screen for factors involved in rhodopsin homeostasis, we identified mutations in vha68-1, which encodes the vacuolar proton-translocating ATPase (V-ATPase) catalytic subunit A isoform 1 of the V1 component. Loss of vha68-1 in photoreceptor cells disrupted post-Golgi anterograde trafficking of Rh1, reduced light sensitivity, increased secretory vesicle pH, and resulted in incomplete Rh1 deglycosylation. In addition, vha68-1 was required for activity-independent photoreceptor cell survival. Importantly, vha68-1 mutants exhibited phenotypes similar to those exhibited by mutations in the V0 component of V-ATPase, vha100-1. These data demonstrate that the V1 and V0 components of V-ATPase play key roles in post-Golgi trafficking of Rh1 and that Drosophila may represent an important animal model system for studying diseases associated with V-ATPase dysfunction.
Collapse
Affiliation(s)
- Haifang Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Jing Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
20
|
A mouse model of autism implicates endosome pH in the regulation of presynaptic calcium entry. Nat Commun 2018; 9:330. [PMID: 29362376 PMCID: PMC5780507 DOI: 10.1038/s41467-017-02716-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/19/2017] [Indexed: 11/21/2022] Open
Abstract
Psychoactive compounds such as chloroquine and amphetamine act by dissipating the pH gradient across intracellular membranes, but the physiological mechanisms that normally regulate organelle pH remain poorly understood. Interestingly, recent human genetic studies have implicated the endosomal Na+/H+ exchanger NHE9 in both autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Plasma membrane NHEs regulate cytosolic pH, but the role of intracellular isoforms has remained unclear. We now find that inactivation of NHE9 in mice reproduces behavioral features of ASD including impaired social interaction, repetitive behaviors, and altered sensory processing. Physiological characterization reveals hyperacidic endosomes, a cell-autonomous defect in glutamate receptor expression and impaired neurotransmitter release due to a defect in presynaptic Ca2+ entry. Acute inhibition of synaptic vesicle acidification rescues release but without affecting the primary defect due to loss of NHE9. The Na+/H+ exchanger NHE9 is proposed to regulate the H+ electrochemical gradient across endosomal membranes. Here, the authors find that NHE9 knockout mice show autism spectrum disorder-like behaviors and disrupted synaptic vesicle exocytosis due to impaired presynaptic calcium entry.
Collapse
|
21
|
Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J, Jia N, Jiang Y. Requirement for Ergosterol in Berberine Tolerance Underlies Synergism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans Isolates. Front Cell Infect Microbiol 2017; 7:491. [PMID: 29238700 PMCID: PMC5712545 DOI: 10.3389/fcimb.2017.00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Candida albicans is one of the most common fungal pathogens. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant C. albicans in vitro and BBR had a major antifungal effect in the synergism, while FLC played a role of increasing the intracellular BBR concentration. Since the antifungal activity of BBR alone is very weak (MIC > 128 μg/mL), it was assumed that FLC-resistant C. albicans was naturally tolerant to BBR, and this tolerance could be reversed by FLC. The present study aimed to elucidate the mechanism underlying BBR tolerance in FLC-resistant C. albicans and its disruption by FLC. The ergosterol quantitative analysis showed that the BBR monotreatment could increase the content of cellular ergosterol. Real-time RT-PCR revealed a global upregulation of ergosterol synthesis genes in response to BBR exposure. In addition, exogenous ergosterol could decrease intracellular BBR concentration and increase the expression of drug efflux pump genes, further reducing the susceptibility of C. albicans to BBR. Similar to FLC, other antifungal agents acting on ergosterol were able to synergize with BBR against FLC-resistant C. albicans. However, the antifungal agents not acting on ergosterol were not synergistic with BBR. These results suggested that ergosterol was required for BBR tolerance, and FLC could enhance the susceptibility of FLC-resistant C. albicans to BBR by inhibiting ergosterol synthesis.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Hua Quan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Pudong Institute for Food and Drug Control, Shanghai, China
| | - Yan Wang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hua Zhong
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Sun
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Jianjiang Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Nuan Jia
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Yuanying Jiang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 2017; 13:823-832. [DOI: 10.1038/nchembio.2429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022]
|
23
|
Kissing S, Rudnik S, Damme M, Lüllmann-Rauch R, Ichihara A, Kornak U, Eskelinen EL, Jabs S, Heeren J, De Brabander JK, Haas A, Saftig P. Disruption of the vacuolar-type H +-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy 2017; 13:670-685. [PMID: 28129027 DOI: 10.1080/15548627.2017.1280216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The vacuolar-type H+-translocating ATPase (v-H+-ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H+-ATPase and MTORC1, we destablilized v-H+-ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H+-ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H+-ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H+-ATPase-mediated regulation of MTORC1.
Collapse
Affiliation(s)
- Sandra Kissing
- a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Germany
| | - Sönke Rudnik
- a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Germany
| | - Markus Damme
- a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Germany
| | | | - Atsuhiro Ichihara
- c Department of Medicine II , Tokyo Women´s Medical University , Japan
| | - Uwe Kornak
- d Institut für Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin , Berlin , Germany
| | - Eeva-Liisa Eskelinen
- e Department of Biosciences , Division of Biochemistry and Biotechnology, University of Helsinki , Finland
| | - Sabrina Jabs
- f Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC) , Berlin , Germany
| | - Jörg Heeren
- g Institut für Biochemie und Molekulare Zellbiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf , Germany
| | - Jef K De Brabander
- h Department of Biochemistry , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Albert Haas
- i Institut für Zellbiologie, Friedrich-Wilhelms Universität Bonn , Germany
| | - Paul Saftig
- a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Germany
| |
Collapse
|
24
|
Mattie S, McNally EK, Karim MA, Vali H, Brett CL. How and why intralumenal membrane fragments form during vacuolar lysosome fusion. Mol Biol Cell 2017; 28:309-321. [PMID: 27881666 PMCID: PMC5231899 DOI: 10.1091/mbc.e15-11-0759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 11/11/2022] Open
Abstract
Lysosomal membrane fusion mediates the last step of the autophagy and endocytosis pathways and supports organelle remodeling and biogenesis. Because fusogenic proteins and lipids concentrate in a ring at the vertex between apposing organelle membranes, the encircled area of membrane can be severed and internalized within the lumen as a fragment upon lipid bilayer fusion. How or why this intralumenal fragment forms during fusion, however, is not entirely clear. To better understand this process, we studied fragment formation during homotypic vacuolar lysosome membrane fusion in Saccharomyces cerevisiae Using cell-free fusion assays and light microscopy, we find that GTPase activation and trans-SNARE complex zippering have opposing effects on fragment formation and verify that this affects the morphology of the fusion product and regulates transporter protein degradation. We show that fragment formwation is limited by stalk expansion, a key intermediate of the lipid bilayer fusion reaction. Using electron microscopy, we present images of hemifusion diaphragms that form as stalks expand and propose a model describing how the fusion machinery regulates fragment formation during lysosome fusion to control morphology and protein lifetimes.
Collapse
Affiliation(s)
- Sevan Mattie
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Erin K McNally
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Mahmoud A Karim
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Christopher L Brett
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
25
|
Organelle acidification negatively regulates vacuole membrane fusion in vivo. Sci Rep 2016; 6:29045. [PMID: 27363625 PMCID: PMC4929563 DOI: 10.1038/srep29045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector.
Collapse
|
26
|
Desfougères Y, Neumann H, Mayer A. Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion. J Cell Sci 2016; 129:2817-28. [PMID: 27252384 DOI: 10.1242/jcs.184382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/26/2016] [Indexed: 11/20/2022] Open
Abstract
Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.
Collapse
Affiliation(s)
- Yann Desfougères
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, Epalinges 1066, Switzerland
| | - Heinz Neumann
- GZMB, Institut für Molekulare Strukturbiologie, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, Epalinges 1066, Switzerland
| |
Collapse
|
27
|
Siek M, Marg B, M. Ehring C, Kirasi D, Liebthal M, Seidel T. Interplay of vacuolar transporters for coupling primary and secondary active transport. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
28
|
Zhu S, Rea SL, Cheng T, Feng HT, Walsh JP, Ratajczak T, Tickner J, Pavlos N, Xu HZ, Xu J. Bafilomycin A1 Attenuates Osteoclast Acidification and Formation, Accompanied by Increased Levels of SQSTM1/p62 Protein. J Cell Biochem 2015; 117:1464-70. [PMID: 27043248 DOI: 10.1002/jcb.25442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
Vacuolar proton pump H(+)-adenosine triphosphatases (V-ATPases) play an important role in osteoclast function. Further understanding of the cellular and molecular mechanisms of V-ATPase inhibition is vital for the development of anti-resorptive drugs specifically targeting osteoclast V-ATPases. In this study, we observed that bafilomycin A1, a naturally-occurring inhibitor of V-ATPases, increased the protein level of SQSTM1/p62, a known negative regulator of osteoclast formation. Consistently, we found that bafilomycin A1 diminishes the intracellular accumulation of the acidotropic probe lysotracker in osteoclast-like cells; indicative of reduced acidification. Further, bafilomycin A1 inhibits osteoclast formation with attenuation of cell fusion and multi-nucleation of osteoclast-like cells during osteoclast differentiation. Taken together, these data indicate that bafilomycin A1 attenuates osteoclast differentiation in part via increased levels of SQSTM1/p62 protein, providing further mechanistic insight into the effect of V-ATPase inhibition in osteoclasts.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Sarah L Rea
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and UWA Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Taksum Cheng
- School of Surgery, Centre of Orthopaedic Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hao Tian Feng
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA, Australia
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Thomas Ratajczak
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and UWA Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Nathan Pavlos
- School of Surgery, Centre of Orthopaedic Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hua-Zi Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
29
|
Stauffer B, Powers T. Target of rapamycin signaling mediates vacuolar fission caused by endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:4618-30. [PMID: 26466677 PMCID: PMC4678019 DOI: 10.1091/mbc.e15-06-0344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/07/2015] [Indexed: 01/15/2023] Open
Abstract
The yeast vacuole is equivalent to the mammalian lysosome and, in response to diverse physiological and environmental stimuli, undergoes alterations both in size and number. Here we demonstrate that vacuoles fragment in response to stress within the endoplasmic reticulum (ER) caused by chemical or genetic perturbations. We establish that this response does not involve known signaling pathways linked previously to ER stress but instead requires the rapamycin-sensitive TOR Complex 1 (TORC1), a master regulator of cell growth, together with its downstream effectors, Tap42/Sit4 and Sch9. To identify additional factors required for ER stress-induced vacuolar fragmentation, we conducted a high-throughput, genome-wide visual screen for yeast mutants that are refractory to ER stress-induced changes in vacuolar morphology. We identified several genes shown previously to be required for vacuolar fusion and/or fission, validating the utility of this approach. We also identified a number of new components important for fragmentation, including a set of proteins involved in assembly of the V-ATPase. Remarkably, we find that one of these, Vph2, undergoes a change in intracellular localization in response to ER stress and, moreover, in a manner that requires TORC1 activity. Together these results reveal a new role for TORC1 in the regulation of vacuolar behavior.
Collapse
Affiliation(s)
- Bobbiejane Stauffer
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616 )
| |
Collapse
|
30
|
Nikolova LS, Metzstein MM. Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment. Development 2015; 142:3964-73. [PMID: 26428009 DOI: 10.1242/dev.127902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
Cellular tubes have diverse morphologies, including multicellular, unicellular and subcellular architectures. Subcellular tubes are found prominently within the vertebrate vasculature, the insect breathing system and the nematode excretory apparatus, but how such tubes form is poorly understood. To characterize the cellular mechanisms of subcellular tube formation, we have refined methods of high pressure freezing/freeze substitution to prepare Drosophila larvae for transmission electron microscopic (TEM) analysis. Using our methods, we have found that subcellular tube formation may proceed through a previously undescribed multimembrane intermediate composed of vesicles bound within a novel subcellular compartment. We have also developed correlative light/TEM procedures to identify labeled cells in TEM-fixed larval samples. Using this technique, we have found that Vacuolar ATPase (V-ATPase) and the V-ATPase regulator Rabconnectin-3 are required for subcellular tube formation, probably in a step resolving the intermediate compartment into a mature lumen. In general, our ultrastructural analysis methods could be useful for a wide range of cellular investigations in Drosophila larvae.
Collapse
Affiliation(s)
- Linda S Nikolova
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
31
|
Maxson ME, Grinstein S. The vacuolar-type H⁺-ATPase at a glance - more than a proton pump. J Cell Sci 2015; 127:4987-93. [PMID: 25453113 DOI: 10.1242/jcs.158550] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) has long been appreciated to function as an electrogenic H(+) pump. By altering the pH of intracellular compartments, the V-ATPase dictates enzyme activity, governs the dissociation of ligands from receptors and promotes the coupled transport of substrates across membranes, a role often aided by the generation of a transmembrane electrical potential. In tissues where the V-ATPase is expressed at the plasma membrane, it can serve to acidify the extracellular microenvironment. More recently, however, the V-ATPase has been implicated in a bewildering variety of additional roles that seem independent of its ability to translocate H(+). These non-canonical functions, which include fusogenicity, cytoskeletal tethering and metabolic sensing, are described in this Cell Science at a Glance article and accompanying poster, together with a brief overview of the conventional functions of the V-ATPase.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| |
Collapse
|
32
|
Morel N, Poëa-Guyon S. The membrane domain of vacuolar H(+)ATPase: a crucial player in neurotransmitter exocytotic release. Cell Mol Life Sci 2015; 72:2561-73. [PMID: 25795337 PMCID: PMC11113229 DOI: 10.1007/s00018-015-1886-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022]
Abstract
V-ATPases are multimeric enzymes made of two sectors, a V1 catalytic domain and a V0 membrane domain. They accumulate protons in various intracellular organelles. Acidification of synaptic vesicles by V-ATPase energizes the accumulation of neurotransmitters in these storage organelles and is therefore required for efficient synaptic transmission. In addition to this well-accepted role, functional studies have unraveled additional hidden roles of V0 in neurotransmitter exocytosis that are independent of the transport of protons. V0 interacts with SNAREs and calmodulin, and perturbing these interactions affects neurotransmitter release. Here, we discuss these data in relation with previous results obtained in reconstituted membranes and on yeast vacuole fusion. We propose that V0 could be a sensor of intra-vesicular pH that controls the exocytotic machinery, probably regulating SNARE complex assembly during the synaptic vesicle priming step, and that, during the membrane fusion step, V0 might favor lipid mixing and fusion pore stability.
Collapse
Affiliation(s)
- Nicolas Morel
- Centre de Neurosciences Paris-Sud, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8195 and Université Paris-Sud, 91405, Orsay, France,
| | | |
Collapse
|
33
|
Sun-Wada GH, Wada Y. Role of vacuolar-type proton ATPase in signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1166-72. [PMID: 26072192 DOI: 10.1016/j.bbabio.2015.06.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
The vacuolar H(+)-ATPase (V-ATPase) was first identified as an electrogenic proton pump that acidifies the lumen of intra- and extracellular compartments. The acidic pH generated by V-ATPase is important for a wide range of cellular processes as well as acidification-independent processes such as secretion and membrane fusion. In addition to these housekeeping functions, recent studies implicate V-ATPase in the direct regulation and function of signaling pathways. In this review, we describe recent findings on the functions of V-ATPase in growth regulation and tissue physiology.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto 610-0395, Japan.
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
34
|
Regulation of growth hormone secretion by (pro)renin receptor. Sci Rep 2015; 5:10878. [PMID: 26039928 PMCID: PMC4454151 DOI: 10.1038/srep10878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/07/2015] [Indexed: 11/25/2022] Open
Abstract
(Pro)renin receptor (PRR) has a single transmembrane domain that co-purifies with the vacuolar H+-ATPase (V-ATPase). In addition to its role in cellular acidification, V-ATPase has been implicated in membrane fusion and exocytosis via its Vo domain. Results from the present study show that PRR is expressed in pituitary adenoma cells and regulates growth hormone (GH) release via V-ATPase-induced cellular acidification. Positive PRR immunoreactivity was detected more often in surgically resected, growth hormone-producing adenomas (GHomas) than in nonfunctional pituitary adenomas. GHomas strongly expressing PRR showed excess GH secretion, as evidenced by distinctly high plasma GH and insulin-like growth factor-1 levels, as well as an elevated nadir GH in response to the oral glucose tolerance test. Suppression of PRR expression in rat GHoma-derived GH3 cells using PRR siRNA resulted in reduced GH secretion and significantly enhanced intracellular GH accumulation. GH3 treatment with bafilomycin A1, a V-ATPase inhibitor, also blocked GH release, indicating mediation via impaired cellular acidification of V-ATPase. PRR knockdown decreased Atp6l, a subunit of the Vo domain that destabilizes V-ATPase assembly, increased intracellular GH, and decreased GH release. To our knowledge, this is the first report demonstrating a pivotal role for PRR in a pituitary hormone release mechanism.
Collapse
|
35
|
Balakrishna AM, Manimekalai MSS, Grüber G. Protein-protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:84-93. [PMID: 26033199 DOI: 10.1016/j.pbiomolbio.2015.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/27/2022]
Abstract
The V1VO-ATPase (V-ATPase) is the important proton-pump in eukaryotic cells, responsible for pH-homeostasis, pH-sensing and amino acid sensing, and therefore essential for cell growths and metabolism. ATP-cleavage in the catalytic A3B3-hexamer of V1 has to be communicated via several so-called central and peripheral stalk units to the proton-pumping VO-part, which is membrane-embedded. A unique feature of V1VO-ATPase regulation is its reversible disassembly of the V1 and VO domain. Actin provides a network to hold the V1 in proximity to the VO, enabling effective V1VO-assembly to occur. Besides binding to actin, the 14-subunit V-ATPase interacts with multi-subunit machineries to form cellular sensors, which regulate the pH in cellular compartments or amino acid signaling in lysosomes. Here we describe a variety of subunit-subunit interactions within the V-ATPase enzyme during catalysis and its protein-protein assembling with key cellular machineries, essential for cellular function.
Collapse
Affiliation(s)
- Asha Manikkoth Balakrishna
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Malathy Sony Subramanian Manimekalai
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
36
|
Francis D, Ghabrial AS. Compensatory branching morphogenesis of stalk cells in the Drosophila trachea. Development 2015; 142:2048-57. [PMID: 25977367 DOI: 10.1242/dev.119602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/16/2015] [Indexed: 01/11/2023]
Abstract
Tubes are essential for nutrient transport and gas exchange in multicellular eukaryotes, but how connections between different tube types are maintained over time is unknown. In the Drosophila tracheal system, mutations in oak gall (okg) and conjoined (cnj) confer identical defects, including late onset blockage near the terminal cell-stalk cell junction and the ectopic extension of autocellular, seamed tubes into the terminal cell. We determined that okg and cnj encode the E and G subunits of the vacuolar ATPase (vATPase) and showed that both the V0 and V1 domains are required for terminal cell morphogenesis. Remarkably, the ectopic seamed tubes running along vATPase-deficient terminal cells belonged to the neighboring stalk cells. All vATPase-deficient tracheal cells had reduced apical domains and terminal cells displayed mislocalized apical proteins. Consistent with recent reports that the mTOR and vATPase pathways intersect, we found that mTOR pathway mutants phenocopied okg and cnj. Furthermore, terminal cells depleted for the apical determinants Par6 or aPKC had identical ectopic seamed tube defects. We thus identify a novel mechanism of compensatory branching in which stalk cells extend autocellular tubes into neighboring terminal cells with undersized apical domains. This compensatory branching also occurs in response to injury, with damaged terminal cells being rapidly invaded by their stalk cell neighbor.
Collapse
Affiliation(s)
- Deanne Francis
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amin S Ghabrial
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Kissing S, Hermsen C, Repnik U, Nesset CK, von Bargen K, Griffiths G, Ichihara A, Lee BS, Schwake M, De Brabander J, Haas A, Saftig P. Vacuolar ATPase in phagosome-lysosome fusion. J Biol Chem 2015; 290:14166-80. [PMID: 25903133 DOI: 10.1074/jbc.m114.628891] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Indexed: 01/11/2023] Open
Abstract
The vacuolar H(+)-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes.
Collapse
Affiliation(s)
- Sandra Kissing
- From the Institute of Biochemistry, Christian-Albrechts-University of Kiel, D-24098 Kiel, Germany
| | - Christina Hermsen
- Institute for Cell Biology, Friedrich-Wilhelms University, D-53121 Bonn, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | | | - Kristine von Bargen
- Institute for Cell Biology, Friedrich-Wilhelms University, D-53121 Bonn, Germany
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Atsuhiro Ichihara
- Department of Medicine II, Tokyo Women's Medical University, Tokyo 162-866, Japan
| | - Beth S Lee
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 42210
| | - Michael Schwake
- Department of Chemistry, Biochemistry III, University of Bielefeld, D-33615 Bielefeld, Germany, and
| | - Jef De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Albert Haas
- Institute for Cell Biology, Friedrich-Wilhelms University, D-53121 Bonn, Germany,
| | - Paul Saftig
- From the Institute of Biochemistry, Christian-Albrechts-University of Kiel, D-24098 Kiel, Germany,
| |
Collapse
|
38
|
Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals. Antimicrob Agents Chemother 2015; 59:2410-20. [PMID: 25666149 DOI: 10.1128/aac.04239-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of "toxic" sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of "trailing growth" that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular "redistribution" of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy.
Collapse
|
39
|
Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes. Proc Natl Acad Sci U S A 2014; 112:100-5. [PMID: 25453092 DOI: 10.1073/pnas.1413764111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the V(o) domain of the conserved V-type H(+)-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro.
Collapse
|
40
|
The contribution of Candida albicans vacuolar ATPase subunit V₁B, encoded by VMA2, to stress response, autophagy, and virulence is independent of environmental pH. EUKARYOTIC CELL 2014; 13:1207-21. [PMID: 25038082 DOI: 10.1128/ec.00135-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Candida albicans vacuoles are central to many critical biological processes, including filamentation and in vivo virulence. The V-ATPase proton pump is a multisubunit complex responsible for organellar acidification and is essential for vacuolar biogenesis and function. To study the function of the V₁B subunit of C. albicans V-ATPase, we constructed a tetracycline-regulatable VMA2 mutant, tetR-VMA2. Inhibition of VMA2 expression resulted in the inability to grow at alkaline pH and altered resistance to calcium, cold temperature, antifungal drugs, and growth on nonfermentable carbon sources. Furthermore, V-ATPase was unable to fully assemble at the vacuolar membrane and was impaired in proton transport and ATPase-specific activity. VMA2 repression led to vacuolar alkalinization in addition to abnormal vacuolar morphology and biogenesis. Key virulence-related traits, including filamentation and secretion of degradative enzymes, were markedly inhibited. These results are consistent with previous studies of C. albicans V-ATPase; however, differential contributions of the V-ATPase Vo and V₁ subunits to filamentation and secretion are observed. We also make the novel observation that inhibition of C. albicans V-ATPase results in increased susceptibility to osmotic stress. Notably, V-ATPase inhibition under conditions of nitrogen starvation results in defects in autophagy. Lastly, we show the first evidence that V-ATPase contributes to virulence in an acidic in vivo system by demonstrating that the tetR-VMA2 mutant is avirulent in a Caenorhabditis elegans infection model. This study illustrates the fundamental requirement of V-ATPase for numerous key virulence-related traits in C. albicans and demonstrates that the contribution of V-ATPase to virulence is independent of host pH.
Collapse
|
41
|
Abstract
Neurons fire by releasing neurotransmitters via fusion of synaptic vesicles with the plasma membrane. Fusion can be evoked by an incoming signal from a preceding neuron or can occur spontaneously. Synaptic vesicle fusion requires the formation of trans complexes between SNAREs as well as Ca(2+) ions. Wang et al. (2014. J. Cell Biol. http://dx.doi.org/jcb.201312109) now find that the Ca(2+)-binding protein Calmodulin promotes spontaneous release and SNARE complex formation via its interaction with the V0 sector of the V-ATPase.
Collapse
Affiliation(s)
- Stefano Vavassori
- Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland
| | | |
Collapse
|
42
|
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
43
|
Mangieri LR, Mader BJ, Thomas CE, Taylor CA, Luker AM, Tse TE, Huisingh C, Shacka JJ. ATP6V0C knockdown in neuroblastoma cells alters autophagy-lysosome pathway function and metabolism of proteins that accumulate in neurodegenerative disease. PLoS One 2014; 9:e93257. [PMID: 24695574 PMCID: PMC3973706 DOI: 10.1371/journal.pone.0093257] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/22/2014] [Indexed: 02/06/2023] Open
Abstract
ATP6V0C is the bafilomycin A1-binding subunit of vacuolar ATPase, an enzyme complex that critically regulates vesicular acidification. We and others have shown previously that bafilomycin A1 regulates cell viability, autophagic flux and metabolism of proteins that accumulate in neurodegenerative disease. To determine the importance of ATP6V0C for autophagy-lysosome pathway function, SH-SY5Y human neuroblastoma cells differentiated to a neuronal phenotype were nucleofected with non-target or ATP6V0C siRNA and following recovery were treated with either vehicle or bafilomycin A1 (0.3-100 nM) for 48 h. ATP6V0C knockdown was validated by quantitative RT-PCR and by a significant decrease in Lysostracker Red staining. ATP6V0C knockdown significantly increased basal levels of microtubule-associated protein light chain 3-II (LC3-II), α-synuclein high molecular weight species and APP C-terminal fragments, and inhibited autophagic flux. Enhanced LC3 and LAMP-1 co-localization following knockdown suggests that autophagic flux was inhibited in part due to lysosomal degradation and not by a block in vesicular fusion. Knockdown of ATP6V0C also sensitized cells to the accumulation of autophagy substrates and a reduction in neurite length following treatment with 1 nM bafilomycin A1, a concentration that did not produce such alterations in non-target control cells. Reduced neurite length and the percentage of propidium iodide-positive dead cells were also significantly greater following treatment with 3 nM bafilomycin A1. Together these results indicate a role for ATP6V0C in maintaining constitutive and stress-induced ALP function, in particular the metabolism of substrates that accumulate in age-related neurodegenerative disease and may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Leandra R. Mangieri
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Burton J. Mader
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, United States of America
| | - Cailin E. Thomas
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Charles A. Taylor
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Austin M. Luker
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tonia E. Tse
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carrie Huisingh
- Department Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John J. Shacka
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
44
|
Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: novel structural findings and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:857-79. [PMID: 24508215 DOI: 10.1016/j.bbabio.2014.01.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/25/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Kadmon Pharmaceuticals Corporation, Alexandria Center for Life Science, 450 East 29th Street, New York, NY 10016, USA.
| | - John L Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, Singapore 637551, Republic of Singapore; Bioinformatics Institute, A(⁎)STAR, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
45
|
Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain. Dev Cell 2014; 27:462-8. [PMID: 24286827 DOI: 10.1016/j.devcel.2013.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/23/2013] [Accepted: 10/17/2013] [Indexed: 11/23/2022]
Abstract
Studies of homotypic vacuole-vacuole fusion in the yeast Saccharomyces cerevisiae have been instrumental in determining the cellular machinery required for eukaryotic membrane fusion and have implicated the vacuolar H(+)-ATPase (V-ATPase). The V-ATPase is a multisubunit, rotary proton pump whose precise role in homotypic fusion is controversial. Models formulated from in vitro studies suggest that it is the proteolipid proton-translocating pore of the V-ATPase that functions in fusion, with further studies in worms, flies, zebrafish, and mice appearing to support this model. We present two in vivo assays and use a mutant V-ATPase subunit to establish that it is the H(+)-translocation/vacuole acidification function, rather than the physical presence of the V-ATPase, that promotes homotypic vacuole fusion in yeast. Furthermore, we show that acidification of the yeast vacuole in the absence of the V-ATPase rescues vacuole-fusion defects. Our results clarify the in vivo requirements of acidification for membrane fusion.
Collapse
|
46
|
Vacuolar H+-ATPase: An Essential Multitasking Enzyme in Physiology and Pathophysiology. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/675430] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vacuolar H+-ATPases (V-ATPases) are large multisubunit proton pumps that are required for housekeeping acidification of membrane-bound compartments in eukaryotic cells. Mammalian V-ATPases are composed of 13 different subunits. Their housekeeping functions include acidifying endosomes, lysosomes, phagosomes, compartments for uncoupling receptors and ligands, autophagosomes, and elements of the Golgi apparatus. Specialized cells, including osteoclasts, intercalated cells in the kidney and pancreatic beta cells, contain both the housekeeping V-ATPases and an additional subset of V-ATPases, which plays a cell type specific role. The specialized V-ATPases are typically marked by the inclusion of cell type specific isoforms of one or more of the subunits. Three human diseases caused by mutations of isoforms of subunits have been identified. Cancer cells utilize V-ATPases in unusual ways; characterization of V-ATPases may lead to new therapeutic modalities for the treatment of cancer. Two accessory proteins to the V-ATPase have been identified that regulate the proton pump. One is the (pro)renin receptor and data is emerging that indicates that V-ATPase may be intimately linked to renin/angiotensin signaling both systemically and locally. In summary, V-ATPases play vital housekeeping roles in eukaryotic cells. Specialized versions of the pump are required by specific organ systems and are involved in diseases.
Collapse
|
47
|
Gerasimaitė R, Sharma S, Desfougères Y, Schmidt A, Mayer A. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 2014; 127:5093-104. [DOI: 10.1242/jcs.159772] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles has been unknown. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, showed that cytosolic polyP cannot be imported whereas polyP produced by the VTC complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which likely constitute the translocation channel, block not only polyP translocation but also synthesis. Since they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP may be one reason for the existence of acidocalcisomes in eukaryotes.
Collapse
|
48
|
Wang D, Hiesinger PR. The vesicular ATPase: a missing link between acidification and exocytosis. ACTA ACUST UNITED AC 2013; 203:171-3. [PMID: 24165933 PMCID: PMC3812979 DOI: 10.1083/jcb.201309130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The vesicular adenosine triphosphatase (ATPase) acidifies intracellular compartments, including synaptic vesicles and secretory granules. A controversy about a second function of this ATPase in exocytosis has been fuelled by questions about multiple putative roles of acidification in the exocytic process. Now, Poëa-Guyon et al. (2013. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201303104) present new evidence that the vesicular ATPase performs separate acidification and exocytosis roles and propose a mechanism for how these two functions are causally linked.
Collapse
Affiliation(s)
- Dong Wang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | |
Collapse
|
49
|
Collaco AM, Geibel P, Lee BS, Geibel JP, Ameen NA. Functional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR. Am J Physiol Cell Physiol 2013; 305:C981-96. [PMID: 23986201 DOI: 10.1152/ajpcell.00067.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vacuolar ATPases (V-ATPases) are highly conserved proton pumps that regulate organelle pH. Epithelial luminal pH is also regulated by cAMP-dependent traffic of specific subunits of the V-ATPase complex from endosomes into the apical membrane. In the intestine, cAMP-dependent traffic of cystic fibrosis transmembrane conductance regulator (CFTR) channels and the sodium hydrogen exchanger (NHE3) in the brush border regulate luminal pH. V-ATPase was found to colocalize with CFTR in intestinal CFTR high expresser (CHE) cells recently. Moreover, apical traffic of V-ATPase and CFTR in rat Brunner's glands was shown to be dependent on cAMP/PKA. These observations support a functional relationship between V-ATPase and CFTR in the intestine. The current study examined V-ATPase and CFTR distribution in intestines from wild-type, CFTR(-/-) mice and polarized intestinal CaCo-2BBe cells following cAMP stimulation and inhibition of CFTR/V-ATPase function. Coimmunoprecipitation studies examined V-ATPase interaction with CFTR. The pH-sensitive dye BCECF determined proton efflux and its dependence on V-ATPase/CFTR in intestinal cells. cAMP increased V-ATPase/CFTR colocalization in the apical domain of intestinal cells and redistributed the V-ATPase Voa1 and Voa2 trafficking subunits from the basolateral membrane to the brush border membrane. Voa1 and Voa2 subunits were localized to endosomes beneath the terminal web in untreated CFTR(-/-) intestine but redistributed to the subapical cytoplasm following cAMP treatment. Inhibition of CFTR or V-ATPase significantly decreased pHi in cells, confirming their functional interdependence. These data establish that V-ATPase traffics into the brush border membrane to regulate proton efflux and this activity is dependent on CFTR in the intestine.
Collapse
Affiliation(s)
- Anne M Collaco
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
50
|
Hsin IL, Sheu GT, Jan MS, Sun HL, Wu TC, Chiu LY, Lue KH, Ko JL. Inhibition of lysosome degradation on autophagosome formation and responses to GMI, an immunomodulatory protein from Ganoderma microsporum. Br J Pharmacol 2013; 167:1287-300. [PMID: 22708544 DOI: 10.1111/j.1476-5381.2012.02073.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Autophagic cell death is considered a self-destructive process that results from large amounts of autophagic flux. In our previous study, GMI, a recombinant fungal immunomodulatory protein cloned from Ganoderma microsporum, induced autophagic cell death in lung cancer cells. The aim of this study was to examine the role of autophagosome accumulation in GMI-mediated cell death. EXPERIMENTAL APPROACH Western blot analysis, flow cytometry and confocal microscopy were used to evaluate the effects of different treatments, including silencing of ATP6V0A1 by use of short hairpin RNAi, on GMI-mediated cell death, lung cancer cell viability and autophagosome accumulation in vitro. KEY RESULTS Lysosome inhibitors bafilomycin-A1 and chloroquine increased GMI-mediated autophagic cell death. GMI and bafilomycin-A1 co-treatment induced the accumulation of large amounts of autophagosomes, but did not significantly induce apoptosis. GMI elicited autophagy through the PKB (Akt)/mammalian target of rapamycin signalling pathway. Silencing of ATP6V0A1, one subunit of vesicular H(+)-ATPases (V-ATPases) that mediates lysosome acidification, spontaneously induced autophagosome accumulation, but did not affect lysosome acidity. GMI-mediated autophagosome accumulation and cytotoxicity was increased in shATP6V0A1 lung cancer cells. Furthermore, ATP6V0A1 silencing decreased autophagosome and lysosome fusion in GMI-treated CaLu-1/GFP-LC3 lung cancer cells. CONCLUSION AND IMPLICATIONS We demonstrated that autophagosome accumulation induces autophagic cell death in a GMI treatment model, and ATP6V0A1 plays an important role in mediating autophagosome-lysosome fusion. Our findings provide new insights into the mechanisms involved in the induction of autophagic cell death.
Collapse
Affiliation(s)
- I-Lun Hsin
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|