1
|
Govta N, Fatiukha A, Govta L, Pozniak C, Distelfeld A, Fahima T, Beckles DM, Krugman T. Nitrogen deficiency tolerance conferred by introgression of a QTL derived from wild emmer into bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:187. [PMID: 39020219 PMCID: PMC11255033 DOI: 10.1007/s00122-024-04692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
KEY MESSAGE Genetic dissection of a QTL from wild emmer wheat, QGpc.huj.uh-5B.2, introgressed into bread wheat, identified candidate genes associated with tolerance to nitrogen deficiency, and potentially useful for improving nitrogen-use efficiency. Nitrogen (N) is an important macronutrient critical to wheat growth and development; its deficiency is one of the main factors causing reductions in grain yield and quality. N availability is significantly affected by drought or flooding, that are dependent on additional factors including soil type or duration and severity of stress. In a previous study, we identified a high grain protein content QTL (QGpc.huj.uh-5B.2) derived from the 5B chromosome of wild emmer wheat, that showed a higher proportion of explained variation under water-stress conditions. We hypothesized that this QTL is associated with tolerance to N deficiency as a possible mechanism underlying the higher effect under stress. To validate this hypothesis, we introgressed the QTL into the elite bread wheat var. Ruta, and showed that under N-deficient field conditions the introgression IL99 had a 33% increase in GPC (p < 0.05) compared to the recipient parent. Furthermore, evaluation of IL99 response to severe N deficiency (10% N) for 14 days, applied using a semi-hydroponic system under controlled conditions, confirmed its tolerance to N deficiency. Fine-mapping of the QTL resulted in 26 homozygous near-isogenic lines (BC4F5) segregating to N-deficiency tolerance. The QTL was delimited from - 28.28 to - 1.29 Mb and included 13 candidate genes, most associated with N-stress response, N transport, and abiotic stress responses. These genes may improve N-use efficiency under severely N-deficient environments. Our study demonstrates the importance of WEW as a source of novel candidate genes for sustainable improvement in tolerance to N deficiency in wheat.
Collapse
Affiliation(s)
- Nikolai Govta
- Wild Cereal Gene Bank, Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Andrii Fatiukha
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Liubov Govta
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Assaf Distelfeld
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tamar Krugman
- Wild Cereal Gene Bank, Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel.
| |
Collapse
|
2
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [PMID: 37974978 PMCID: PMC10643749 DOI: 10.1007/s12551-023-01136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Nuclear cytoplasmic transport is mediated by many receptors that recognize specific nuclear localization signals on proteins and RNA and transport these substrates through nuclear pore complexes. Facilitated diffusion through nuclear pore complexes requires the attachment of transport receptors. Despite the relatively large tunnel diameter, some even small proteins (less than 20-30 kDa), such as histones, pass through the nuclear pore complex only with transport receptors. Over several decades, considerable material has been accumulated on the structure, architecture, and amino acid composition of the proteins included in this complex and the sequence of many receptors. We consider the data available in the literature on the structure of the nuclear pore complex and possible mechanisms of nuclear-cytoplasmic transport, applying the theory of electrostatic interactions in the context of our data on changes in the electrokinetic potential of nuclei and our previously proposed physical model of the mechanism of facilitated diffusion through the nuclear pore complex (NPC). According to our data, the main contribution to the charge of the nuclear membrane is made by anionic phospholipids, which are part of both the nuclear membrane and the nuclear matrix, which creates a potential difference between them. The nuclear membrane is a four-layer phospholipid dielectric, so the potential vector can only pass through the NPC, creating an electrostatic funnel that "pulls in" the positively charged load-NLS-NTR trigger complexes. Considering the newly obtained data, an improved model of the previously proposed physical model of the mechanism of nuclear-cytoplasmic transport is proposed. This model considers the contribution of electrostatic fields to the transportation speed when changing the membrane's thickness in the NPC basket at a higher load.
Collapse
Affiliation(s)
- Liya A. Minasbekyan
- Scientific Research Institute of Biology, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| | - Hamlet G. Badalyan
- Chair of General Physics, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| |
Collapse
|
3
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [DOI: https:/doi.org/10.1007/s12551-023-01136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 02/27/2024] Open
|
4
|
Kehlenbach RH, Neumann P, Ficner R, Dickmanns A. Interaction of nucleoporins with nuclear transport receptors: a structural perspective. Biol Chem 2023; 404:791-805. [PMID: 37210735 DOI: 10.1515/hsz-2023-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Soluble nuclear transport receptors and stationary nucleoporins are at the heart of the nucleocytoplasmic transport machinery. A subset of nucleoporins contains characteristic and repetitive FG (phenylalanine-glycine) motifs, which are the basis for the permeability barrier of the nuclear pore complex (NPC) that controls transport of macromolecules between the nucleus and the cytoplasm. FG-motifs can interact with each other and/or with transport receptors, mediating their translocation across the NPC. The molecular details of homotypic and heterotypic FG-interactions have been analyzed at the structural level. In this review, we focus on the interactions of nucleoporins with nuclear transport receptors. Besides the conventional FG-motifs as interaction spots, a thorough structural analysis led us to identify additional similar motifs at the binding interface between nucleoporins and transport receptors. A detailed analysis of all known human nucleoporins revealed a large number of such phenylalanine-containing motifs that are not buried in the predicted 3D-structure of the respective protein but constitute part of the solvent-accessible surface area. Only nucleoporins that are rich in conventional FG-repeats are also enriched for these motifs. This additional layer of potential low-affinity binding sites on nucleoporins for transport receptors may have a strong impact on the interaction of transport complexes with the nuclear pore and, thus, the efficiency of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Piotr Neumann
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Fare CM, Rhine K, Lam A, Myong S, Shorter J. A minimal construct of nuclear-import receptor Karyopherin-β2 defines the regions critical for chaperone and disaggregation activity. J Biol Chem 2023; 299:102806. [PMID: 36529289 PMCID: PMC9860449 DOI: 10.1016/j.jbc.2022.102806] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Karyopherin-β2 (Kapβ2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapβ2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapβ2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapβ2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapβ2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapβ2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapβ2 recapitulate all salient features of Kapβ2 activity. By contrast, Kapβ2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapβ2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Lam
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Khalil B, Chhangani D, Wren MC, Smith CL, Lee JH, Li X, Puttinger C, Tsai CW, Fortin G, Morderer D, Gao J, Liu F, Lim CK, Chen J, Chou CC, Croft CL, Gleixner AM, Donnelly CJ, Golde TE, Petrucelli L, Oskarsson B, Dickson DW, Zhang K, Shorter J, Yoshimura SH, Barmada SJ, Rincon-Limas DE, Rossoll W. Nuclear import receptors are recruited by FG-nucleoporins to rescue hallmarks of TDP-43 proteinopathy. Mol Neurodegener 2022; 17:80. [PMID: 36482422 PMCID: PMC9733332 DOI: 10.1186/s13024-022-00585-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, causing both nuclear loss-of-function and cytoplasmic toxic gain-of-function phenotypes. While TDP-43 proteinopathy has been associated with defects in nucleocytoplasmic transport, this process is still poorly understood. Here we study the role of karyopherin-β1 (KPNB1) and other nuclear import receptors in regulating TDP-43 pathology. METHODS We used immunostaining, immunoprecipitation, biochemical and toxicity assays in cell lines, primary neuron and organotypic mouse brain slice cultures, to determine the impact of KPNB1 on the solubility, localization, and toxicity of pathological TDP-43 constructs. Postmortem patient brain and spinal cord tissue was stained to assess KPNB1 colocalization with TDP-43 inclusions. Turbidity assays were employed to study the dissolution and prevention of aggregation of recombinant TDP-43 fibrils in vitro. Fly models of TDP-43 proteinopathy were used to determine the effect of KPNB1 on their neurodegenerative phenotype in vivo. RESULTS We discovered that several members of the nuclear import receptor protein family can reduce the formation of pathological TDP-43 aggregates. Using KPNB1 as a model, we found that its activity depends on the prion-like C-terminal region of TDP-43, which mediates the co-aggregation with phenylalanine and glycine-rich nucleoporins (FG-Nups) such as Nup62. KPNB1 is recruited into these co-aggregates where it acts as a molecular chaperone that reverses aberrant phase transition of Nup62 and TDP-43. These findings are supported by the discovery that Nup62 and KPNB1 are also sequestered into pathological TDP-43 aggregates in ALS/FTD postmortem CNS tissue, and by the identification of the fly ortholog of KPNB1 as a strong protective modifier in Drosophila models of TDP-43 proteinopathy. Our results show that KPNB1 can rescue all hallmarks of TDP-43 pathology, by restoring its solubility and nuclear localization, and reducing neurodegeneration in cellular and animal models of ALS/FTD. CONCLUSION Our findings suggest a novel NLS-independent mechanism where, analogous to its canonical role in dissolving the diffusion barrier formed by FG-Nups in the nuclear pore, KPNB1 is recruited into TDP-43/FG-Nup co-aggregates present in TDP-43 proteinopathies and therapeutically reverses their deleterious phase transition and mislocalization, mitigating neurodegeneration.
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA
| | - Melissa C Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Jannifer H Lee
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Chih-Wei Tsai
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Gael Fortin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chun Kim Lim
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto, Japan
| | - Jingjiao Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Geriatric Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ching-Chieh Chou
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Cara L Croft
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- UK Dementia Research Institute at University College London, London, UK
| | - Amanda M Gleixner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, 15261, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, 15261, USA
| | - Todd E Golde
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | | | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto, Japan
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
7
|
Tingey M, Li Y, Yu W, Young A, Yang W. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus 2022; 13:170-193. [PMID: 35593254 PMCID: PMC9132428 DOI: 10.1080/19491034.2022.2076965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Albert Young
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Damizia M, Altieri L, Lavia P. Non-transport roles of nuclear import receptors: In need of the right balance. Front Cell Dev Biol 2022; 10:1041938. [PMID: 36438555 PMCID: PMC9686011 DOI: 10.3389/fcell.2022.1041938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2023] Open
Abstract
Nuclear import receptors ensure the recognition and transport of proteins across the nuclear envelope into the nucleus. In addition, as diverse processes as mitosis, post-translational modifications at mitotic exit, ciliogenesis, and phase separation, all share a common need for regulation by nuclear import receptors - particularly importin beta-1 and importin beta-2/transportin - independent on nuclear import. In particular, 1) nuclear import receptors regulate the mitotic spindle after nuclear envelope breakdown, 2) they shield cargoes from unscheduled ubiquitination, regulating their timely proteolysis; 3) they regulate ciliary factors, crucial to cell communications and tissue architecture during development; and 4) they prevent phase separation of toxic proteins aggregates in neurons. The balance of nuclear import receptors to cargoes is critical in all these processes, albeit in opposite directions: overexpression of import receptors, as often found in cancer, inhibits cargoes and impairs downstream processes, motivating the therapeutic design of specific inhibitors. On the contrary, elevated expression is beneficial in neuronal contexts, where nuclear import receptors are regarded as potential therapeutic tools in counteracting the formation of aggregates that may cause neurodegeneration. This paradox demonstrates the amplitude of nuclear import receptors-dependent functions in different contexts and adds complexity in considering their therapeutic implications.
Collapse
Affiliation(s)
- Michela Damizia
- Department of Cellular, Computational and Integrated Biology (CIBIO), University of Trento, Trento, Italy
| | - Ludovica Altieri
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Sapienza University of Rome, Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Sapienza University of Rome, Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Tingey M, Yang W. Unraveling docking and initiation of mRNA export through the nuclear pore complex. Bioessays 2022; 44:e2200027. [PMID: 35754154 PMCID: PMC9308666 DOI: 10.1002/bies.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/07/2022]
Abstract
The nuclear export of mRNA through the nuclear pore complex (NPC) is a process required for the healthy functioning of human cells, making it a critical area of research. However, the geometries of mRNA and the NPC are well below the diffraction limit of light microscopy, thereby presenting significant challenges in evaluating the discrete interactions and dynamics involved in mRNA nuclear export through the native NPC. Recent advances in biotechnology and single-molecule super-resolution light microscopy have enabled researchers to gain granular insight into the specific contributions made by discrete nucleoporins in the nuclear basket of the NPC to the export of mRNA. Specifically, by expanding upon the docking step facilitated by the protein TPR in the nuclear basket as well as identifying NUP153 as being the primary nuclear basket protein initiating export through the central channel of the NPC.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Florio TJ, Lokareddy RK, Yeggoni DP, Sankhala RS, Ott CA, Gillilan RE, Cingolani G. Differential recognition of canonical NF-κB dimers by Importin α3. Nat Commun 2022; 13:1207. [PMID: 35260573 PMCID: PMC8904830 DOI: 10.1038/s41467-022-28846-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. In unstimulated cells, p50/p65 is retained by the inhibitor IκBα in the cytoplasm that masks the p65-nuclear localization sequence (NLS). Upon activation, p50/p65 is translocated into the nucleus by the adapter importin α3 and the receptor importin β. Here, we describe a bipartite NLS in p50/p65, analogous to nucleoplasmin NLS but exposed in trans. Importin α3 accommodates the p50- and p65-NLSs at the major and minor NLS-binding pockets, respectively. The p50-NLS is the predominant binding determinant, while the p65-NLS induces a conformational change in the Armadillo 7 of importin α3 that stabilizes a helical conformation of the p65-NLS. Neither conformational change was observed for importin α1, which makes fewer bonds with the p50/p65 NLSs, explaining the preference for α3. We propose that importin α3 discriminates between the transcriptionally active p50/p65 heterodimer and p50/p50 and p65/65 homodimers, ensuring fidelity in NF-κB signaling. Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. Here, the authors identify a bipartite Nuclear Localization Signal in the NF-κB p50/p65 heterodimer that is recognized with high affinity by importin α3.
Collapse
Affiliation(s)
- Tyler J Florio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Daniel P Yeggoni
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Rajeshwer S Sankhala
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Connor A Ott
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY, 14853, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
11
|
Kalita J, Kapinos LE, Zheng T, Rencurel C, Zilman A, Lim RY. Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage. J Cell Biol 2022; 221:e202108107. [PMID: 35089308 PMCID: PMC8932525 DOI: 10.1083/jcb.202108107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear pore complexes (NPCs) discriminate nonspecific macromolecules from importin and exportin receptors, collectively termed "karyopherins" (Kaps), that mediate nucleocytoplasmic transport. This selective barrier function is attributed to the behavior of intrinsically disordered phenylalanine-glycine nucleoporins (FG Nups) that guard the NPC channel. However, NPCs in vivo are typically enriched with different Kaps, and how they impact the NPC barrier remains unknown. Here, we show that two major Kaps, importinβ1/karyopherinβ1 (Kapβ1) and exportin 1/chromosomal maintenance 1 (CRM1), are required to fortify NPC barrier function in vivo. Their enrichment at the NPC is sustained by promiscuous binding interactions with the FG Nups, which enable CRM1 to compensate for the loss of Kapβ1 as a means to maintain NPC barrier function. However, such a compensatory mechanism is constrained by the cellular abundances and different binding kinetics for each respective Kap, as evidenced for importin-5. Consequently, we find that NPC malfunction and nucleocytoplasmic leakage result from poor Kap enrichment.
Collapse
Affiliation(s)
- Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Larisa E. Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Tiantian Zheng
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Roderick Y.H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Naudi-Fabra S, Blackledge M, Milles S. Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins. Biomolecules 2021; 12:biom12010027. [PMID: 35053175 PMCID: PMC8773649 DOI: 10.3390/biom12010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid–liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.
Collapse
|
13
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
14
|
Hoogenboom BW, Hough LE, Lemke EA, Lim RYH, Onck PR, Zilman A. Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment. PHYSICS REPORTS 2021; 921:1-53. [PMID: 35892075 PMCID: PMC9306291 DOI: 10.1016/j.physrep.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular "nanomachine" known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the cell nucleus and the cytoplasm. NPCs combine high molecular specificity of transport with high throughput and speed, and are highly robust with respect to molecular noise and structural perturbations. Remarkably, the functional mechanisms of NPC transport are highly conserved among eukaryotes, from yeast to humans, despite significant differences in the molecular components among various species. The NPC is the largest macromolecular complex in the cell. Yet, despite its significant complexity, it has become clear that its principles of operation can be largely understood based on fundamental physical concepts, as have emerged from a combination of experimental methods of molecular cell biology, biophysics, nanoscience and theoretical and computational modeling. Indeed, many aspects of NPC function can be recapitulated in artificial mimics with a drastically reduced complexity compared to biological pores. We review the current physical understanding of the NPC architecture and function, with the focus on the critical analysis of experimental studies in cells and artificial NPC mimics through the lens of theoretical and computational models. We also discuss the connections between the emerging concepts of NPC operation and other areas of biophysics and bionanotechnology.
Collapse
Affiliation(s)
- Bart W. Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado, Boulder CO 80309, United States of America
| | - Edward A. Lemke
- Biocenter Mainz, Departments of Biology and Chemistry, Johannes Gutenberg University and Institute of Molecular Biology, 55128 Mainz, Germany
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anton Zilman
- Department of Physics and Institute for Biomedical Engineering (IBME), University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
15
|
Lyngdoh DL, Nag N, Uversky VN, Tripathi T. Prevalence and functionality of intrinsic disorder in human FG-nucleoporins. Int J Biol Macromol 2021; 175:156-170. [PMID: 33548309 DOI: 10.1016/j.ijbiomac.2021.01.218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 11/27/2022]
Abstract
The nuclear-cytoplasmic transport of biomolecules is assisted by the nuclear pores composed of evolutionarily conserved proteins termed nucleoporins (Nups). The central Nups, characterized by multiple FG-repeats, are highly dynamic and contain a high level of intrinsically disordered regions (IDPRs). FG-Nups bind several protein partners and play critical roles in molecular interactions and the regulation of cellular functions through their IDPRs. In the present study, we performed a multiparametric bioinformatics analysis to characterize the prevalence and functionality of IDPRs in human FG-Nups. These analyses revealed that the sequence of all FG-Nups contained >50% IDPRs (except Nup54 and Nup358). Nup98, Nup153, and POM121 were extremely disordered with ~80% IDPRs. The functional disorder-based binding regions in the FG-Nups were identified. The phase separation behavior of FG-Nups indicated that all FG-Nups have the potential to undergo liquid-to-liquid phase separation that could stabilize their liquid state. The inherent structural flexibility in FG-Nups is mechanistically and functionally advantageous. Since certain FG-Nups interact with disease-relevant protein aggregates, their complexes can be exploited for drug design. Furthermore, consideration of the FG-Nups from the intrinsic disorder perspective provides critical information that can guide future experimental studies to uncover novel pathways associated with diseases linked with protein misfolding and aggregation.
Collapse
Affiliation(s)
- Denzelle Lee Lyngdoh
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
16
|
Barbato S, Kapinos LE, Rencurel C, Lim RYH. Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability. J Cell Sci 2020; 133:jcs238121. [PMID: 31932502 DOI: 10.1242/jcs.238121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Ran is a small GTPase whose nucleotide-bound forms cycle through nuclear pore complexes (NPCs) to direct nucleocytoplasmic transport (NCT). Generally, Ran guanosine triphosphate (RanGTP) binds cargo-carrying karyopherin receptors (Kaps) in the nucleus and releases them into the cytoplasm following hydrolysis to Ran guanosine diphosphate (RanGDP). This generates a remarkably steep Ran gradient across the nuclear envelope that sustains compartment-specific cargo delivery and accumulation. However, because NPCs are permeable to small molecules of comparable size, it is unclear how an uncontrolled mixing of RanGTP and RanGDP is prevented. Here, we find that an NPC-enriched pool of karyopherin subunit beta 1 (KPNB1, hereafter referred to as Kapβ1) selectively mediates Ran diffusion across the pore but not passive molecules of similar size (e.g. GFP). This is due to RanGTP having a stronger binding interaction with Kapβ1 than RanGDP. For this reason, the RanGDP importer, nuclear transport factor 2, facilitates the return of RanGDP into the nucleus following GTP hydrolysis. Accordingly, the enrichment of Kapβ1 at NPCs may function as a retention mechanism that preserves the sharp transition of RanGTP and RanGDP in the nucleus and cytoplasm, respectively.
Collapse
Affiliation(s)
- Suncica Barbato
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Larisa E Kapinos
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Ernst S, Müller-Newen G. Nucleocytoplasmic Shuttling of STATs. A Target for Intervention? Cancers (Basel) 2019; 11:cancers11111815. [PMID: 31752278 PMCID: PMC6895884 DOI: 10.3390/cancers11111815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are transcription factors that in the latent state are located predominantly in the cytoplasm. Activation of STATs through phosphorylation of a single tyrosine residue results in nuclear translocation. The requirement of tyrosine phosphorylation for nuclear accumulation is shared by all STAT family members but mechanisms of nuclear translocation vary between different STATs. These differences offer opportunities for specific intervention. To achieve this, the molecular mechanisms of nucleocytoplasmic shuttling of STATs need to be understood in more detail. In this review we will give an overview on the various aspects of nucleocytoplasmic shuttling of latent and activated STATs with a special focus on STAT3 and STAT5. Potential targets for cancer treatment will be identified and discussed.
Collapse
Affiliation(s)
- Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52074 Aachen, Germany;
- Confocal Microscopy Facility, Interdisciplinary Center for Clinical Research IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52074 Aachen, Germany;
- Correspondence:
| |
Collapse
|
18
|
Frey S, Rees R, Schünemann J, Ng SC, Fünfgeld K, Huyton T, Görlich D. Surface Properties Determining Passage Rates of Proteins through Nuclear Pores. Cell 2019; 174:202-217.e9. [PMID: 29958108 DOI: 10.1016/j.cell.2018.05.045] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/18/2018] [Accepted: 05/21/2018] [Indexed: 10/28/2022]
Abstract
Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport through an FG domain-controlled barrier. We now explore how surface-features of a mobile species determine its NPC passage rate. Negative charges and lysines impede passage. Hydrophobic residues, certain polar residues (Cys, His), and, surprisingly, charged arginines have striking translocation-promoting effects. Favorable cation-π interactions between arginines and FG-phenylalanines may explain this apparent paradox. Application of these principles to redesign the surface of GFP resulted in variants that show a wide span of transit rates, ranging from 35-fold slower than wild-type to ∼500 times faster, with the latter outpacing even naturally occurring nuclear transport receptors (NTRs). The structure of a fast and particularly FG-specific GFPNTR variant illustrates how NTRs can expose multiple regions for binding hydrophobic FG motifs while evading non-specific aggregation. Finally, we document that even for NTR-mediated transport, the surface-properties of the "passively carried" cargo can strikingly affect the translocation rate.
Collapse
Affiliation(s)
- Steffen Frey
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Renate Rees
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jürgen Schünemann
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kevser Fünfgeld
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
19
|
Enhanced diffusion by binding to the crosslinks of a polymer gel. Nat Commun 2018; 9:4348. [PMID: 30341303 PMCID: PMC6195553 DOI: 10.1038/s41467-018-06851-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/27/2018] [Indexed: 01/20/2023] Open
Abstract
Creating a selective gel that filters particles based on their interactions is a major goal of nanotechnology, with far-reaching implications from drug delivery to controlling assembly pathways. However, this is particularly difficult when the particles are larger than the gel's characteristic mesh size because such particles cannot passively pass through the gel. Thus, filtering requires the interacting particles to transiently reorganize the gel's internal structure. While significant advances, e.g., in DNA engineering, have enabled the design of nano-materials with programmable interactions, it is not clear what physical principles such a designer gel could exploit to achieve selective permeability. We present an equilibrium mechanism where crosslink binding dynamics are affected by interacting particles such that particle diffusion is enhanced. In addition to revealing specific design rules for manufacturing selective gels, our results have the potential to explain the origin of selective permeability in certain biological materials, including the nuclear pore complex.
Collapse
|
20
|
Kattimani Y, Veerappa AM. Complex interaction between mutant HNRNPA1 and gE of varicella zoster virus in pathogenesis of multiple sclerosis. Autoimmunity 2018; 51:147-151. [PMID: 29996671 DOI: 10.1080/08916934.2018.1482883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system causing axonal injury, neuronal loss, and atrophy of the central nervous system leading to permanent neurological and clinical disability. Presence of mutations in M9 domain of HNRNPA1 and detection of autoantibodies against this domain in HNRNPA1 qualifies it as a strong candidate for causing MS. These two aspects indicate the presence of a facilitator in associating them. Varicella zoster virus (VZV), known to cause chicken pox infection in humans, is a significant contender in sensitizing the infected people towards MS. Reactivation of latent herpes viruses by other infectious agents and cross-recognition of common viral antigens with antigens found in the myelin sheath induces molecular mimicry or superantigens. Mutations in HNRNPA1 cause mislocalization to the cytoplasm, and co-localize with stress granules (SG) causing cellular apoptosis, this creates the first step toward MS pathogenesis. Mutant HNRNPA1 accumulates in SG allowing the cells to display peptides of HNRNPA1 on surfaces of major histocompatibility complex (MHC) I triggering a cascade of immune reactions. Since glycoprotein E (gE) of VZV shares >62% amino acids sequence similarity with Prion-like domain (PrLD) of HNRNPA1, signifying the reason behind autoantibodies against M9 and PrLD of HNRNPA1. This review attempts to delineate the interactions of VZV, gE of VZV, with M9 domain and PrLD of HNRNPA1 in a step-by-step process. This supports the tripartite model that an environmental trigger in genetically susceptible individuals causes an autoimmune response to self-CNS antigens that result in the pathology observed in the brain and spinal cord of MS patients.
Collapse
Affiliation(s)
- Yogita Kattimani
- a Laboratory of Genomic Sciences, Department of Studies in Genetics and Genomics , University of Mysore , Mysore , Karnataka , India
| | - Avinash M Veerappa
- a Laboratory of Genomic Sciences, Department of Studies in Genetics and Genomics , University of Mysore , Mysore , Karnataka , India
| |
Collapse
|
21
|
Fisher PDE, Shen Q, Akpinar B, Davis LK, Chung KKH, Baddeley D, Šarić A, Melia TJ, Hoogenboom BW, Lin C, Lusk CP. A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement. ACS NANO 2018; 12:1508-1518. [PMID: 29350911 PMCID: PMC5834394 DOI: 10.1021/acsnano.7b08044] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nuclear pore complexes (NPCs) form gateways that control molecular exchange between the nucleus and the cytoplasm. They impose a diffusion barrier to macromolecules and enable the selective transport of nuclear transport receptors with bound cargo. The underlying mechanisms that establish these permeability properties remain to be fully elucidated but require unstructured nuclear pore proteins rich in Phe-Gly (FG)-repeat domains of different types, such as FxFG and GLFG. While physical modeling and in vitro approaches have provided a framework for explaining how the FG network contributes to the barrier and transport properties of the NPC, it remains unknown whether the number and/or the spatial positioning of different FG-domains along a cylindrical, ∼40 nm diameter transport channel contributes to their collective properties and function. To begin to answer these questions, we have used DNA origami to build a cylinder that mimics the dimensions of the central transport channel and can house a specified number of FG-domains at specific positions with easily tunable design parameters, such as grafting density and topology. We find the overall morphology of the FG-domain assemblies to be dependent on their chemical composition, determined by the type and density of FG-repeat, and on their architectural confinement provided by the DNA cylinder, largely consistent with here presented molecular dynamics simulations based on a coarse-grained polymer model. In addition, high-speed atomic force microscopy reveals local and reversible FG-domain condensation that transiently occludes the lumen of the DNA central channel mimics, suggestive of how the NPC might establish its permeability properties.
Collapse
Affiliation(s)
- Patrick D. Ellis Fisher
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Qi Shen
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Bernice Akpinar
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH, UK
| | - Luke K. Davis
- London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Kenny Kwok Hin Chung
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - David Baddeley
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Anđela Šarić
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Thomas J. Melia
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Bart W. Hoogenboom
- London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Chenxiang Lin
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, USA
- Correspondence to: Chenxiang Lin: or C. Patrick Lusk:
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Correspondence to: Chenxiang Lin: or C. Patrick Lusk:
| |
Collapse
|
22
|
Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation. Int J Mol Sci 2018; 19:ijms19020638. [PMID: 29495267 PMCID: PMC5855860 DOI: 10.3390/ijms19020638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/05/2022] Open
Abstract
Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally synthesize auxin and cytokinin, which results in crown gall disease. T-DNA and several virulence (Vir) proteins are secreted through a type IV secretion system (T4SS) composed of T-pilus and a transmembrane protein complex. Three members of Arabidopsis reticulon-like B (RTNLB) proteins, RTNLB1, 2, and 4, interact with VirB2, the major component of T-pilus. Here, we have identified that other RTNLB proteins, RTNLB3 and 8, interact with VirB2 in vitro. Root-based A. tumefaciens transformation assays with Arabidopsis rtnlb3, or rtnlb5-10 single mutants showed that the rtnlb8 mutant was resistant to A. tumefaciens infection. In addition, rtnlb3 and rtnlb8 mutants showed reduced transient transformation efficiency in seedlings. RTNLB3- or 8 overexpression transgenic plants showed increased susceptibility to A. tumefaciens and Pseudomonas syringae infection. RTNLB1-4 and 8 transcript levels differed in roots, rosette leaves, cauline leaves, inflorescence, flowers, and siliques of wild-type plants. Taken together, RTNLB3 and 8 may participate in A. tumefaciens infection but may have different roles in plants.
Collapse
|
23
|
Kumeta M, Konishi HA, Zhang W, Sakagami S, Yoshimura SH. Prolines in the α-helix confer the structural flexibility and functional integrity of importin-β. J Cell Sci 2018; 131:jcs.206326. [PMID: 29142102 DOI: 10.1242/jcs.206326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
The karyopherin family of nuclear transport receptors is composed of a long array of amphiphilic α-helices and undergoes flexible conformational changes to pass through the hydrophobic crowding barrier of the nuclear pore. Here, we focused on the characteristic enrichment of prolines in the middle of the outer α-helices of importin-β. When these prolines were substituted with alanine, nuclear transport activity was reduced drastically in vivo and in vitro, and caused a severe defect in mitotic progression. These mutations did not alter the overall folding of the helical repeat or affect its interaction with cargo or the regulatory factor Ran. However, in vitro and in silico analyses revealed that the mutant lost structural flexibility and could not undergo rapid conformational changes when transferring from a hydrophilic to hydrophobic environment or vice versa. These findings reveal the essential roles of prolines in ensuring the structural flexibility and functional integrity of karyopherins.
Collapse
Affiliation(s)
- Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hide A Konishi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Wanzhen Zhang
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sayuri Sakagami
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
24
|
Chen WG, Witten J, Grindy SC, Holten-Andersen N, Ribbeck K. Charge Influences Substrate Recognition and Self-Assembly of Hydrophobic FG Sequences. Biophys J 2017; 113:2088-2099. [PMID: 29117531 DOI: 10.1016/j.bpj.2017.08.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 01/19/2023] Open
Abstract
The nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG domains consist of repeating units of FxFG, FG, or GLFG sequences, many of which are interspersed with highly charged amino acid sequences. Despite the high density of charge in certain FG domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Using rationally designed short peptide sequences, we determined that the charge type and identity of amino acids surrounding FG sequences impact the structure and selectivity of FG-based gels. Moreover, we showed that spatial localization of the charged amino acids with respect to the FG sequence determines the degree to which charge influences hydrophobic interactions. Taken together, our study highlights that charge type and placement of amino acids regulate FG-sequence function and are important considerations when studying the mechanism of nuclear pore complex transport in vivo.
Collapse
Affiliation(s)
- Wesley G Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jacob Witten
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Computational Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Scott C Grindy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
25
|
Nipah and Hendra Virus Nucleoproteins Inhibit Nuclear Accumulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT2 by Interfering with Their Complex Formation. J Virol 2017; 91:JVI.01136-17. [PMID: 28835499 DOI: 10.1128/jvi.01136-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Henipaviruses, such as Nipah (NiV) and Hendra (HeV) viruses, are highly pathogenic zoonotic agents within the Paramyxoviridae family. The phosphoprotein (P) gene products of the paramyxoviruses have been well characterized for their interferon (IFN) antagonist activity and their contribution to viral pathogenicity. In this study, we demonstrated that the nucleoprotein (N) of henipaviruses also prevents the host IFN signaling response. Reporter assays demonstrated that the NiV and HeV N proteins (NiV-N and HeV-N, respectively) dose-dependently suppressed both type I and type II IFN responses and that the inhibitory effect was mediated by their core domains. Additionally, NiV-N prevented the nuclear transport of signal transducer and activator of transcription 1 (STAT1) and STAT2. However, NiV-N did not associate with Impα5, Impβ1, or Ran, which are members of the nuclear transport system for STATs. Although P protein is known as a binding partner of N protein and actively retains N protein in the cytoplasm, the IFN antagonist activity of N protein was not abolished by the coexpression of P protein. This suggests that the IFN inhibition by N protein occurs in the cytoplasm. Furthermore, we demonstrated that the complex formation of STATs was hampered in the N protein-expressing cells. As a result, STAT nuclear accumulation was reduced, causing a subsequent downregulation of interferon-stimulated genes (ISGs) due to low promoter occupancy by STAT complexes. This novel route for preventing host IFN responses by henipavirus N proteins provides new insight into the pathogenesis of these viruses.IMPORTANCE Paramyxoviruses are well known for suppressing interferon (IFN)-mediated innate immunity with their phosphoprotein (P) gene products, and the henipaviruses also possess P, V, W, and C proteins for evading host antiviral responses. There are numerous studies providing evidence for the relationship between viral pathogenicity and antagonistic activities against IFN responses by P gene products. Meanwhile, little attention has been paid to the influence of nucleoprotein (N) on host innate immune responses. In this study, we demonstrated that both the NiV and HeV N proteins have antagonistic activity against the JAK/STAT signaling pathway by preventing the nucleocytoplasmic trafficking of STAT1 and STAT2. This inhibitory effect is due to an impairment of the ability of STATs to form complexes. These results provide new insight into the involvement of N protein in viral pathogenicity via its IFN antagonism.
Collapse
|
26
|
Onischenko E, Tang JH, Andersen KR, Knockenhauer KE, Vallotton P, Derrer CP, Kralt A, Mugler CF, Chan LY, Schwartz TU, Weis K. Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex. Cell 2017; 171:904-917.e19. [PMID: 29033133 DOI: 10.1016/j.cell.2017.09.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/25/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture.
Collapse
Affiliation(s)
- Evgeny Onischenko
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Jeffrey H Tang
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Kasper R Andersen
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kevin E Knockenhauer
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Pascal Vallotton
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Carina P Derrer
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Annemarie Kralt
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Christopher F Mugler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leon Y Chan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland.
| |
Collapse
|
27
|
Kapinos LE, Huang B, Rencurel C, Lim RYH. Karyopherins regulate nuclear pore complex barrier and transport function. J Cell Biol 2017; 216:3609-3624. [PMID: 28864541 PMCID: PMC5674887 DOI: 10.1083/jcb.201702092] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Kapinos et al. show that nuclear pore complex permeability and cargo release functionalities are concomitantly regulated by karyopherin occupancy and turnover in a systematic continuum. This highlights increasingly important roles for the soluble nucleocytoplasmic transport machinery that depart from established views of the nuclear pore complex selectivity mechanism. Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)–specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine–glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Binlu Huang
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Stanley GJ, Fassati A, Hoogenboom BW. Biomechanics of the transport barrier in the nuclear pore complex. Semin Cell Dev Biol 2017; 68:42-51. [DOI: 10.1016/j.semcdb.2017.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
|
29
|
Aramburu IV, Lemke EA. Floppy but not sloppy: Interaction mechanism of FG-nucleoporins and nuclear transport receptors. Semin Cell Dev Biol 2017; 68:34-41. [PMID: 28669824 PMCID: PMC7611744 DOI: 10.1016/j.semcdb.2017.06.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
The nuclear pore complex (NPC) forms a permeability barrier between the nucleus and the cytoplasm. Molecules that are able to cross this permeability barrier encounter different disordered phenylalanine glycine rich nucleoporins (FG-Nups) that act as a molecular filter and regulate the selective NPC crossing of biomolecules. In this review, we provide a current overview regarding the interaction mechanism between FG-Nups and the carrier molecules that recognize and enable the transport of cargoes through the NPC aiming to understand the general molecular mechanisms that facilitate the nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Iker Valle Aramburu
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
30
|
Abstract
Nuclear pore complexes (NPCs) mediate molecular transport between the nucleus and cytoplasm in eukaryotic cells. Tethered within each NPC lie numerous intrinsically disordered proteins known as FG nucleoporins (FG Nups) that are central to this process. Over two decades of investigation has converged on a view that a barrier mechanism consisting of FG Nups rejects non-specific macromolecules while promoting the speed and selectivity of karyopherin (Kaps) receptors (and their cargoes). Yet, the number of NPCs in the cell is exceedingly small compared to the number of Kaps, so that in fact there is a high likelihood the pores are always populated by Kaps. Here, we contemplate a view where Kaps actively participate in regulating the selectivity and speed of transport through NPCs. This so-called "Kap-centric" control of the NPC accounts for Kaps as essential barrier reinforcements that play a prerequisite role in facilitating fast transport kinetics. Importantly, Kap-centric control reconciles both mechanistic and kinetic requirements of the NPC, and in so doing potentially resolves incoherent aspects of FG-centric models. On this basis, we surmise that Kaps prime the NPC for nucleocytoplasmic transport by fine-tuning the NPC microenvironment according to the functional needs of the cell.
Collapse
Affiliation(s)
- Roderick Y H Lim
- a Biozentrum and the Swiss Nanoscience Institute; University of Basel ; Basel, Switzerland
| | - Binlu Huang
- a Biozentrum and the Swiss Nanoscience Institute; University of Basel ; Basel, Switzerland
| | - Larisa E Kapinos
- a Biozentrum and the Swiss Nanoscience Institute; University of Basel ; Basel, Switzerland
| |
Collapse
|
31
|
Pederson T, King MC, Marko JF. Forces, fluctuations, and self-organization in the nucleus. Mol Biol Cell 2016; 26:3915-9. [PMID: 26543199 PMCID: PMC4710223 DOI: 10.1091/mbc.e15-06-0357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We address several processes and domains in the nucleus wherein holding the perspective of physics either reveals a conundrum or is likely to enable progress.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - John F Marko
- Department of Molecular Biosciences and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
32
|
Lemke EA. The Multiple Faces of Disordered Nucleoporins. J Mol Biol 2016; 428:2011-24. [PMID: 26791761 PMCID: PMC7611686 DOI: 10.1016/j.jmb.2016.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/26/2022]
Abstract
An evolutionary advantage of intrinsically disordered proteins (IDPs) is their ability to bind a variety of folded proteins-a paradigm that is central to the nucleocytoplasmic transport mechanism, in which nuclear transport receptors mediate the translocation of various cargo through the nuclear pore complex by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). FG-Nups are highly dynamic, which poses a substantial problem when trying to determine precisely their function using common experimental approaches. FG-Nups have been studied under a variety of conditions, ranging from those that constitute single-molecule measurements to physiological concentrations at which they can form supramolecular structures. In this review, I describe the physicochemical properties of FG-Nups and compare them to those of other disordered systems, including well-studied IDPs. From this comparison, it is apparent that FG-Nups not only share some properties with IDPs in general but also possess unique characteristics that might be key to their central role in the nucleocytoplasmic transport machinery.
Collapse
Affiliation(s)
- Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
33
|
Transport Selectivity of Nuclear Pores, Phase Separation, and Membraneless Organelles. Trends Biochem Sci 2015; 41:46-61. [PMID: 26705895 DOI: 10.1016/j.tibs.2015.11.001] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
Abstract
Nuclear pore complexes (NPCs) provide a selective passageway for receptor-mediated active transport between nucleus and cytoplasm, while maintaining the distinct molecular compositions of both compartments at large. In this review we discuss how NPCs gain a remarkable sorting selectivity from non-globular FG domains and their phase separation into dense polymer meshworks. The resulting sieve-like FG hydrogels are effective barriers to normal macromolecules but are at the same time highly permeable to shuttling nuclear transport receptors, which bind to FG motifs as well as to their designated cargoes. Phase separation driven by disordered protein domains was recently also recognized as being pivotal to the formation of membraneless organelles, making it an important emerging principle in cell biology.
Collapse
|
34
|
Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics. Biophys J 2015; 108:918-927. [PMID: 25692596 PMCID: PMC4336380 DOI: 10.1016/j.bpj.2014.12.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022] Open
Abstract
The transport channel of nuclear pore complexes (NPCs) contains a high density of intrinsically disordered proteins that are rich in phenylalanine-glycine (FG)-repeat motifs (FG Nups). The FG Nups interact promiscuously with various nuclear transport receptors (NTRs), such as karyopherins (Kaps), that mediate the trafficking of nucleocytoplasmic cargoes while also generating a selectively permeable barrier against other macromolecules. Although the binding of NTRs to FG Nups increases molecular crowding in the NPC transport channel, it is unclear how this impacts FG Nup barrier function or the movement of other molecules, such as the Ran importer NTF2. Here, we use surface plasmon resonance to evaluate FG Nup conformation, binding equilibria, and interaction kinetics associated with the multivalent binding of NTF2 and karyopherinβ1 (Kapβ1) to Nsp1p molecular brushes. NTF2 and Kapβ1 show different long- and short-lived binding characteristics that emerge from varying degrees of molecular retention and FG repeat binding avidity within the Nsp1p brush. Physiological concentrations of NTF2 produce a collapse of Nsp1p brushes, whereas Kapβ1 binding generates brush extension. However, the presence of prebound Kapβ1 inhibits Nsp1p brush collapse during NTF2 binding, which is dominated by weak, short-lived interactions that derive from steric hindrance and diminished avidity with Nsp1p. This suggests that binding promiscuity confers kinetic advantages to NTF2 by expediting its facilitated diffusion and reinforces the proposal that Kapβ1 contributes to the integral barrier function of the NPC.
Collapse
|
35
|
Christie M, Chang CW, Róna G, Smith KM, Stewart AG, Takeda AAS, Fontes MRM, Stewart M, Vértessy BG, Forwood JK, Kobe B. Structural Biology and Regulation of Protein Import into the Nucleus. J Mol Biol 2015; 428:2060-90. [PMID: 26523678 DOI: 10.1016/j.jmb.2015.10.023] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
Proteins are translated in the cytoplasm, but many need to access the nucleus to perform their functions. Understanding how these nuclear proteins are transported through the nuclear envelope and how the import processes are regulated is therefore an important aspect of understanding cell function. Structural biology has played a key role in understanding the molecular events during the transport processes and their regulation, including the recognition of nuclear targeting signals by the corresponding receptors. Here, we review the structural basis of the principal nuclear import pathways and the molecular basis of their regulation. The pathways involve transport factors that are members of the β-karyopherin family, which can bind cargo directly (e.g., importin-β, transportin-1, transportin-3, importin-13) or through adaptor proteins (e.g., importin-α, snurportin-1, symportin-1), as well as unrelated transport factors such as Hikeshi, involved in the transport of heat-shock proteins, and NTF2, involved in the transport of RanGDP. Solenoid proteins feature prominently in these pathways. Nuclear transport factors recognize nuclear targeting signals on the cargo proteins, including the classical nuclear localization signals, recognized by the adaptor importin-α, and the PY nuclear localization signals, recognized by transportin-1. Post-translational modifications, particularly phosphorylation, constitute key regulatory mechanisms operating in these pathways.
Collapse
Affiliation(s)
- Mary Christie
- The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales Faculty of Medicine, Darlinghurst, NSW 2010, Australia
| | - Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gergely Róna
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Kate M Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Alastair G Stewart
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Agnes A S Takeda
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Murray Stewart
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
36
|
Matsuura Y. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs. J Mol Biol 2015; 428:2025-39. [PMID: 26519791 DOI: 10.1016/j.jmb.2015.09.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
37
|
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 2015; 163:734-45. [PMID: 26456112 PMCID: PMC4622936 DOI: 10.1016/j.cell.2015.09.047] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/17/2015] [Accepted: 09/23/2015] [Indexed: 11/23/2022]
Abstract
The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. Integrative structural biology reveals the basis of rapid nuclear transport Transient binding of disordered nucleoporins leaves their plasticity unaffected Multiple minimalistic low-affinity binding motifs create a polyvalent complex A highly reactive and dynamic surface permits an ultrafast binding mechanism
Collapse
|
38
|
Hough LE, Dutta K, Sparks S, Temel DB, Kamal A, Tetenbaum-Novatt J, Rout MP, Cowburn D. The molecular mechanism of nuclear transport revealed by atomic-scale measurements. eLife 2015; 4. [PMID: 26371551 PMCID: PMC4621360 DOI: 10.7554/elife.10027] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/07/2015] [Indexed: 12/29/2022] Open
Abstract
Nuclear pore complexes (NPCs) form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG)-rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used nuclear magnetic resonance spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC. DOI:http://dx.doi.org/10.7554/eLife.10027.001 Eukaryotic cells have a nucleus that contains most of the organism's genetic material. Two layers of membrane form an envelope around the nucleus and protect its contents from the rest of the cell's interior. However, this protective barrier must also allow certain proteins and nucleic acids(collectively called ‘cargo’) to move in and out of the nucleus. Cargo molecules can pass through channel-like structures called nuclear pore complexes, which are embedded in the nuclear envelope. However, transport across this barrier is highly selective. While small molecules can pass freely through nuclear pore complexes, larger cargo can only be transported when they are bound to so-called transport factors. The nuclear pore complex is a large structure made up of more than 30 different proteins called nucleoporins. Like all proteins, nucleoporins are built from amino acids. Many nucleoporins contain repeating units of two amino acids, namely phenylalanine (which is often referred to as ‘F’) and glycine (or ‘G’). These ‘FG nucleoporins’ are found on the inside of the nuclear pore complex and interact with transport factors to allow them to transit across the nuclear envelope. Several models have been put forward to explain how FG nucleoporins block the passage of most molecules. But it was unclear from these models how these nucleoporins could do this while simultaneously allowing the selective and fast transport of nuclear transport receptors. There was also a major lack of experimental data that probed the behavior of FG nucleoporins in detail. Hough, Dutta et al. have now used a technique called nuclear magnetic resonance spectroscopy (or NMR for short) to address this issue. NMR can be used to analyze the structure of proteins and how they interact with other molecules. This analysis revealed that FG nucleoporins never adopt an ordered three-dimensional shape, even briefly; instead they remain unfolded or disordered, moving constantly. Nevertheless, and unlike many other unfolded proteins, FG nucleoporins do not aggregate into clumps. This is because they are constantly changing and continuously interacting with other molecules present inside the cell, which prevents them from aggregating. Hough, Dutta et al. also observed that the repeating units in the FG nucleoporins engaged briefly with a large number of sites or pockets present on the transport factors. These FG repeats can bind and then release the transport factors at unusually high speeds, which enables the transport factors to move quickly through the nuclear pore complex. This transit is specific because only transport factors have a high capacity for interacting with the FG repeats. These findings provide an explanation for how the nuclear pore complex achieves fast and selective transport. Further work is needed to see whether certain FG nucleoporins specifically interact with a particular type of transport factor, to provide preferred transport routes through the nuclear pore complex. DOI:http://dx.doi.org/10.7554/eLife.10027.002
Collapse
Affiliation(s)
| | - Kaushik Dutta
- New York Structural Biology Center, New York, United States
| | - Samuel Sparks
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Deniz B Temel
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Alia Kamal
- The Rockefeller University, New York, United States
| | | | | | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
39
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
40
|
Caly L, Ghildyal R, Jans DA. Respiratory virus modulation of host nucleocytoplasmic transport; target for therapeutic intervention? Front Microbiol 2015; 6:848. [PMID: 26322040 PMCID: PMC4536372 DOI: 10.3389/fmicb.2015.00848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
The respiratory diseases caused by rhinovirus, respiratory syncytial virus, and influenza virus represent a large social and financial burden on healthcare worldwide. Although all three viruses have distinctly unique properties in terms of infection and replication, they share the ability to exploit/manipulate the host-cell nucleocytoplasmic transport system in order to replicate effectively and efficiently. This review outlines the various ways in which infection by these viruses impacts on the host nucleocytoplasmic transport system, and examples where inhibition thereof in turn decreases viral replication. The highly conserved nature of the nucleocytoplasmic transport system and the viral proteins that interact with it make this virus–host interface a prime candidate for the development of specific antiviral therapeutics in the future.
Collapse
Affiliation(s)
- Leon Caly
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia
| | - Reena Ghildyal
- Faculty of ESTeM, University of Canberra, Bruce, ACT Australia
| | - David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia
| |
Collapse
|
41
|
Kapinos LE, Schoch RL, Wagner RS, Schleicher KD, Lim RYH. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 2014; 106:1751-62. [PMID: 24739174 DOI: 10.1016/j.bpj.2014.02.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/03/2023] Open
Abstract
Intrinsically disordered Phe-Gly nucleoporins (FG Nups) within nuclear pore complexes exert multivalent interactions with transport receptors (Karyopherins (Kaps)) that orchestrate nucleocytoplasmic transport. Current FG-centric views reason that selective Kap translocation is promoted by alterations in the barrier-like FG Nup conformations. However, the strong binding of Kaps with the FG Nups due to avidity contradicts rapid Kap translocation in vivo. Here, using surface plasmon resonance, we innovate a means to correlate in situ mechanistic (molecular occupancy and conformational changes) with equilibrium (binding affinity) and kinetic (multivalent binding kinetics) aspects of Karyopherinβ1 (Kapβ1) binding to four different FG Nups. A general feature of the FxFG domains of Nup214, Nup62, and Nup153 is their capacity to extend and accommodate large numbers of Kapβ1 molecules at physiological Kapβ1 concentrations. A notable exception is the GLFG domain of Nup98, which forms a partially penetrable cohesive layer. Interestingly, we find that a slowly exchanging Kapβ1 phase forms an integral constituent within the FG Nups that coexists with a fast phase, which dominates transport kinetics due to limited binding with the pre-occupied FG Nups at physiological Kapβ1 concentrations. Altogether, our data reveal an emergent Kap-centric barrier mechanism that may underlie mechanistic and kinetic control in the nuclear pore complex.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Rafael L Schoch
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Raphael S Wagner
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Kai D Schleicher
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
42
|
Structural Mechanism of Nuclear Transport Mediated by Importin β and Flexible Amphiphilic Proteins. Structure 2014; 22:1699-1710. [DOI: 10.1016/j.str.2014.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/03/2014] [Accepted: 10/04/2014] [Indexed: 11/17/2022]
|
43
|
Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014; 114:6806-43. [PMID: 24702702 PMCID: PMC4350607 DOI: 10.1021/cr4007329] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Ágnes Tóth-Petróczy
- Department
of Biological Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Daniel A. Kraut
- Department
of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Andreas T. Matouschek
- Section
of Molecular Genetics and Microbiology, Institute for Cellular &
Molecular Biology, The University of Texas
at Austin, 2506 Speedway, Austin, Texas 78712, United States
| | - Roderick Y. H. Lim
- Biozentrum
and the Swiss Nanoscience Institute, University
of Basel, Klingelbergstrasse
70, CH-4056 Basel, Switzerland
| | - Bin Xue
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lukasz Kurgan
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vladimir N. Uversky
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation, Russian
Academy of Sciences, 142290 Pushchino, Moscow Region 119991, Russia
| |
Collapse
|
44
|
Milles S, Lemke EA. Mapping Multivalency and Differential Affinities within Large Intrinsically Disordered Protein Complexes with Segmental Motion Analysis. Angew Chem Int Ed Engl 2014; 53:7364-7. [DOI: 10.1002/anie.201403694] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Sigrid Milles
- Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg (Germany)
| | - Edward A. Lemke
- Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg (Germany)
| |
Collapse
|
45
|
Milles S, Lemke EA. Detektion von Mehrbindigkeit und differenziellen Affinitäten in großen, intrinsisch ungeordneten Proteinen mithilfe von Segmentbewegungsanalyse. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sigrid Milles
- Structural and Computational Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg (Deutschland)
| | - Edward A. Lemke
- Structural and Computational Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg (Deutschland)
| |
Collapse
|
46
|
Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. PLoS Comput Biol 2014; 10:e1003488. [PMID: 24626154 PMCID: PMC3952814 DOI: 10.1371/journal.pcbi.1003488] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/12/2014] [Indexed: 01/22/2023] Open
Abstract
Nuclear pore complexes (NPCs) form gateways for material transfer across the nuclear envelope of eukaryotic cells. Disordered proteins, rich in phenylalanine-glycine repeat motifs (FG-nups), form the central transport channel. Understanding how nups are arranged in the interior of the NPC may explain how NPC functions as a selectivity filter for transport of large molecules and a sieve-like filter for diffusion of small molecules (< or ). We employed molecular dynamics to model the structures formed by various assemblies of one kind of nup, namely the 609-aa-long FG domain of Nsp1 (Nsp1-FG). The simulations started from different initial conformations and geometrical arrangements of Nsp1-FGs. In all cases Nsp1-FGs collectively formed brush-like structures with bristles made of bundles of 2–27 nups, however, the bundles being cross-linked through single nups leaving one bundle and joining a nearby one. The degree of cross-linking varies with different initial nup conformations and arrangements. Structural analysis reveals that FG-repeats of the nups not only involve formation of bundle structures, but are abundantly present in cross-linking regions where the epitopes of FG-repeats are highly accessible. Large molecules that are assisted by transport factors (TFs) are selectively transported through NPC apparently by binding to FG-nups through populated FG-binding pockets on the TF surface. Therefore, our finding suggests that TFs bind concertedly to multiple FGs in cross-linking regions and break-up the bundles to create wide pores for themselves and their cargoes to pass. In addition, the cross-linking between Nsp1-FG bundles, arising from simulations, is found to set a molecular size limit of < for passive diffusion of molecules. Our simulations suggest that the NPC central channel, near the periphery where tethering of nups is dominant, features brush-like moderately cross-linked bundles, but in the central region, where tethering loses its effect, features a sieve-like structure of bundles and frequent cross-links. Cells of higher life forms separate their genomes from the rest of the cell in a nucleus that surrounds the genome by a nuclear envelope. Hundreds of pores, each a complex made of many proteins, assure traffic into and out of the nucleus through highly selective transport: small biomolecules can pass unhindered, whereas large biomolecules need to associate with proteins called transport factors, to pass. Little is known about how the nuclear pore complexes function, a key impediment to observation being their huge size and the disordered nature of the pore interior. We investigated computationally what kind of structure the nuclear pore proteins (nups) form. In the computation we place many nups, each a 600 amino acid-long protein, into arrangements considered representative for the nuclear pore, and simulate the subsequent molecular behavior. We find that the nups form bundles of 2–27 proteins, the bundles being cross-linked when a single nup leaves a bundle and joins an adjacent one. The finding suggests an adaptive molecular mesh arrangement of nups in the nuclear pore and explains how selective transport is accomplished, namely that passage of sufficiently small molecules is unhindered by the cross-linking, but that large molecules need the assistance of transport factors to melt the cross-linking.
Collapse
|
47
|
Bernis C, Swift-Taylor B, Nord M, Carmona S, Chook YM, Forbes DJ. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration. Mol Biol Cell 2014; 25:992-1009. [PMID: 24478460 PMCID: PMC3967982 DOI: 10.1091/mbc.e13-08-0506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transportin-specific molecular tools are used to show that the mitotic cell contains importin β and transportin “global positioning system” pathways that are mechanistically parallel. Transportin works to control where the spindle, nuclear membrane, and nuclear pores are formed by directly affecting assembly factor function. The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel.
Collapse
Affiliation(s)
- Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego, La Jolla, CA 92093-0347 Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | | | | | | | | | | |
Collapse
|
48
|
Azimi M, Mofrad MRK. Higher nucleoporin-Importinβ affinity at the nuclear basket increases nucleocytoplasmic import. PLoS One 2013; 8:e81741. [PMID: 24282617 PMCID: PMC3840022 DOI: 10.1371/journal.pone.0081741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/25/2013] [Indexed: 01/26/2023] Open
Abstract
Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized.
Collapse
Affiliation(s)
- Mohammad Azimi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, United States
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, United States
- * E-mail:
| |
Collapse
|
49
|
Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis 2013; 4:e854. [PMID: 24113188 PMCID: PMC3824679 DOI: 10.1038/cddis.2013.370] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 01/03/2023]
Abstract
Chromosomal missegregation is a common feature of many human tumors. Recent studies have indicated a link between nucleoporin RanBP2/Nup358 and chromosomal segregation during mitosis; however, the molecular details have yet to be fully established. Observed through live cell imaging and flow cytometry, here we show that RNA interference-mediated knockdown of RanBP2 induced G2/M phase arrest, metaphase catastrophe and mitotic cell death. Furthermore, RanBP2 down-modulation disrupted importin/karyopherin β1 as well as the expression and localization of the Ran GTPase activating protein 1. We found that N-terminal of RanBP2 interacted with the N-terminal of importin β1. Moreover, at least a portion of RanBP2 partially localizes at the centrosome during mitosis. Notably, we also found that GTPase Ran is also involved in the regulation of RanBP2-importin β1 interaction. Overall, our results suggest that mitotic arrest and the following cell death were caused by depletion of RanBP2. Our findings point to a crucial role for RanBP2 in proper mitotic progression and faithful chromosomal segregation.
Collapse
|
50
|
Andersen KR, Onischenko E, Tang JH, Kumar P, Chen JZ, Ulrich A, Liphardt JT, Weis K, Schwartz TU. Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors. eLife 2013; 2:e00745. [PMID: 23795296 PMCID: PMC3679522 DOI: 10.7554/elife.00745] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023] Open
Abstract
Nucleocytoplasmic transport is mediated by nuclear pore complexes (NPCs) embedded in the nuclear envelope. About 30 different proteins (nucleoporins, nups) arrange around a central eightfold rotational axis to build the modular NPC. Nup188 and Nup192 are related and evolutionary conserved, large nucleoporins that are part of the NPC scaffold. Here we determine the structure of Nup188. The protein folds into an extended stack of helices where an N-terminal 130 kDa segment forms an intricate closed ring, while the C-terminal region is a more regular, superhelical structure. Overall, the structure has distant similarity with flexible S-shaped nuclear transport receptors (NTRs). Intriguingly, like NTRs, both Nup188 and Nup192 specifically bind FG-repeats and are able to translocate through NPCs by facilitated diffusion. This blurs the existing dogma of a clear distinction between stationary nups and soluble NTRs and suggests an evolutionary relationship between the NPC and the soluble nuclear transport machinery. DOI:http://dx.doi.org/10.7554/eLife.00745.001 The nucleus of a cell is surrounded by a two-layered membrane that controls the flow of molecules from the cytoplasm into the nucleus and vice versa. The molecular traffic between the cytoplasm and nucleus is essentially controlled by nuclear pore complexes—large, multi-protein structures that are embedded in the membrane. Each nuclear pore complex contains about 30 different proteins called nucleoporins or nups, which combine to form a structure with a central pore that allows the molecules to enter and leave the nucleus. The centre of the nuclear pore complex is thought to be filled with protein filaments that contain a large number of so-called FG repeats (where F and G are the amino acids phenylalanine and glycine). Specialized molecules called soluble nuclear transport receptors, which carry various cargoes between the cytoplasm and nucleus, can bind to these FG repeats, and the interaction between the receptors and the FG repeats is crucial for the selective transport of molecules between the cytoplasm and the nucleus. The large size of the nuclear pore complex has hindered efforts to work out its structure, but in recent years researchers have been able to obtain structures for many individual nups and their subcomplexes. Now, Andersen et al. have determined the structure of one of the largest nups, Nup188. This has led to the discovery that it and a related nup, Nup192, share unexpected features with soluble nuclear transport receptors. In general the first step when attempting to determine the structure of a biomolecule is to form a crystal. Since full-length Nup188 did not crystallize, Andersen et al. instead crystallized two large fragments of Nup188, determined the structures of these fragments, and then combined these to produce the likely structure of the full-length protein. They found that Nup188 has a structure that consists of stacked helices and is more flexible than other nups. Moreover, its structure was very similar to those of soluble nuclear transport receptors, and this led Andersen et al. to investigate whether Nup188 also had similar functional features. Surprisingly, they discovered that both Nup188 and Nup192 could bind FG repeats, just like nuclear transport receptors. What is more, this binding allowed both nups to travel through nuclear pore complexes in in vitro transport reactions. These findings have implications for the understanding of the organization and function of FG-repeats and suggest that the stationary elements of the nuclear pore complex and soluble nuclear transport receptors are evolutionarily related. DOI:http://dx.doi.org/10.7554/eLife.00745.002
Collapse
Affiliation(s)
- Kasper R Andersen
- Department of Biology , Massachusetts Institute of Technology , Cambridge , United States
| | | | | | | | | | | | | | | | | |
Collapse
|