1
|
Fracassi C, Ugge' M, Abdelhalim M, Zapparoli E, Simoni M, Magliulo D, Mazza D, Lazarevic D, Morelli M, Collas P, Bernardi R. PML modulates epigenetic composition of chromatin to regulate expression of pro-metastatic genes in triple-negative breast cancer. Nucleic Acids Res 2023; 51:11024-11039. [PMID: 37823593 PMCID: PMC10639071 DOI: 10.1093/nar/gkad819] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The promyelocytic leukemia (PML) protein organizes nuclear aggregates known as PML nuclear bodies (PML-NBs), where many transcription factors localize to be regulated. In addition, associations of PML and PML-NBs with chromatin are described in various cell types, further implicating PML in transcriptional regulation. However, a complete understanding of the functional consequences of PML association to DNA in cellular contexts where it promotes relevant phenotypes is still lacking. We examined PML chromatin association in triple-negative breast cancer (TNBC) cell lines, where it exerts important oncogenic functions. We find that PML associates discontinuously with large heterochromatic PML-associated domains (PADs) that contain discrete gene-rich euchromatic sub-domains locally depleted of PML. PML promotes heterochromatic organization in PADs and expression of pro-metastatic genes embedded in these sub-domains. Importantly, this occurs outside PML-NBs, suggesting that nucleoplasmic PML exerts a relevant gene regulatory function. We also find that PML plays indirect regulatory roles in TNBC cells by promoting the expression of pro-metastatic genes outside PADs. Our findings suggest that PML is an important transcriptional regulator of pro-oncogenic metagenes in TNBC cells, via transcriptional regulation and epigenetic organization of heterochromatin domains that embed regions of local transcriptional activity.
Collapse
Affiliation(s)
- Cristina Fracassi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Martina Ugge'
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Matilde Simoni
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Daniela Magliulo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Marco J Morelli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Rosa Bernardi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
2
|
Iannucci LF, D'Erchia AM, Picardi E, Bettio D, Conca F, Surdo NC, Di Benedetto G, Musso D, Arrigoni C, Lolicato M, Vismara M, Grisan F, Salviati L, Milanesi L, Pesole G, Lefkimmiatis K. Cyclic AMP induces reversible EPAC1 condensates that regulate histone transcription. Nat Commun 2023; 14:5521. [PMID: 37684224 PMCID: PMC10491619 DOI: 10.1038/s41467-023-41088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The second messenger cyclic AMP regulates many nuclear processes including transcription, pre-mRNA splicing and mitosis. While most functions are attributed to protein kinase A, accumulating evidence suggests that not all nuclear cyclic AMP-dependent effects are mediated by this kinase, implying that other effectors may be involved. Here we explore the nuclear roles of Exchange Protein Activated by cyclic AMP 1. We find that it enters the nucleus where forms reversible biomolecular condensates in response to cyclic AMP. This phenomenon depends on intrinsically disordered regions present at its amino-terminus and is independent of protein kinase A. Finally, we demonstrate that nuclear Exchange Protein Activated by cyclic AMP 1 condensates assemble at genomic loci on chromosome 6 in the proximity of Histone Locus Bodies and promote the transcription of a histone gene cluster. Collectively, our data reveal an unexpected mechanism through which cyclic AMP contributes to nuclear spatial compartmentalization and promotes the transcription of specific genes.
Collapse
Affiliation(s)
- Liliana Felicia Iannucci
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Bettio
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Filippo Conca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Nicoletta Concetta Surdo
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Deborah Musso
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mauro Vismara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy.
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy.
| |
Collapse
|
3
|
Bevill SM, Casaní-Galdón S, El Farran CA, Cytrynbaum EG, Macias KA, Oldeman SE, Oliveira KJ, Moore MM, Hegazi E, Adriaens C, Najm FJ, Demetri GD, Cohen S, Mullen JT, Riggi N, Johnstone SE, Bernstein BE. Impact of supraphysiologic MDM2 expression on chromatin networks and therapeutic responses in sarcoma. CELL GENOMICS 2023; 3:100321. [PMID: 37492096 PMCID: PMC10363746 DOI: 10.1016/j.xgen.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 07/27/2023]
Abstract
Amplification of MDM2 on supernumerary chromosomes is a common mechanism of P53 inactivation across tumors. Here, we investigated the impact of MDM2 overexpression on chromatin, gene expression, and cellular phenotypes in liposarcoma. Three independent regulatory circuits predominate in aggressive, dedifferentiated tumors. RUNX and AP-1 family transcription factors bind mesenchymal gene enhancers. P53 and MDM2 co-occupy enhancers and promoters associated with P53 signaling. When highly expressed, MDM2 also binds thousands of P53-independent growth and stress response genes, whose promoters engage in multi-way topological interactions. Overexpressed MDM2 concentrates within nuclear foci that co-localize with PML and YY1 and could also contribute to P53-independent phenotypes associated with supraphysiologic MDM2. Importantly, we observe striking cell-to-cell variability in MDM2 copy number and expression in tumors and models. Whereas liposarcoma cells are generally sensitive to MDM2 inhibitors and their combination with pro-apoptotic drugs, MDM2-high cells tolerate them and may underlie the poor clinical efficacy of these agents.
Collapse
Affiliation(s)
- Samantha M. Bevill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Chadi A. El Farran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Eli G. Cytrynbaum
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin A. Macias
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvie E. Oldeman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kayla J. Oliveira
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Molly M. Moore
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Esmat Hegazi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Carmen Adriaens
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Fadi J. Najm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - George D. Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sonia Cohen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John T. Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicolò Riggi
- Department of Cell and Tissue Genomics (CTG), Genentech Inc, South San Francisco, CA 94080, USA
| | - Sarah E. Johnstone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bradley E. Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Kleijwegt C, Bressac F, Seurre C, Bouchereau W, Cohen C, Texier P, Simonet T, Schaeffer L, Lomonte P, Corpet A. Interplay between PML NBs and HIRA for H3.3 dynamics following type I interferon stimulus. eLife 2023; 12:e80156. [PMID: 37227756 PMCID: PMC10212570 DOI: 10.7554/elife.80156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Promyelocytic leukemia Nuclear Bodies (PML NBs) are nuclear membrane-less organelles physically associated with chromatin underscoring their crucial role in genome function. The H3.3 histone chaperone complex HIRA accumulates in PML NBs upon senescence, viral infection or IFN-I treatment in primary cells. Yet, the molecular mechanisms of this partitioning and its function in regulating histone dynamics have remained elusive. By using specific approaches, we identify intermolecular SUMO-SIM interactions as an essential mechanism for HIRA recruitment in PML NBs. Hence, we describe a role of PML NBs as nuclear depot centers to regulate HIRA distribution in the nucleus, dependent both on SP100 and DAXX/H3.3 levels. Upon IFN-I stimulation, PML is required for interferon-stimulated genes (ISGs) transcription and PML NBs become juxtaposed to ISGs loci at late time points of IFN-I treatment. HIRA and PML are necessary for the prolonged H3.3 deposition at the transcriptional end sites of ISGs, well beyond the peak of transcription. Though, HIRA accumulation in PML NBs is dispensable for H3.3 deposition on ISGs. We thus uncover a dual function for PML/PML NBs, as buffering centers modulating the nuclear distribution of HIRA, and as chromosomal hubs regulating ISGs transcription and thus HIRA-mediated H3.3 deposition at ISGs upon inflammatory response.
Collapse
Affiliation(s)
- Constance Kleijwegt
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Florent Bressac
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Coline Seurre
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Wilhelm Bouchereau
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Camille Cohen
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Pascale Texier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Thomas Simonet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle interactionsLyonFrance
| | - Laurent Schaeffer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle interactionsLyonFrance
| | - Patrick Lomonte
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Armelle Corpet
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| |
Collapse
|
5
|
Lussier-Price M, Wahba HM, Mascle XH, Cappadocia L, Bourdeau V, Gagnon C, Igelmann S, Sakaguchi K, Ferbeyre G, Omichinski J. Zinc controls PML nuclear body formation through regulation of a paralog specific auto-inhibition in SUMO1. Nucleic Acids Res 2022; 50:8331-8348. [PMID: 35871297 PMCID: PMC9371903 DOI: 10.1093/nar/gkac620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
SUMO proteins are important regulators of many key cellular functions in part through their ability to form interactions with other proteins containing SUMO interacting motifs (SIMs). One characteristic feature of all SUMO proteins is the presence of a highly divergent intrinsically disordered region at their N-terminus. In this study, we examine the role of this N-terminal region of SUMO proteins in SUMO–SIM interactions required for the formation of nuclear bodies by the promyelocytic leukemia (PML) protein (PML-NBs). We demonstrate that the N-terminal region of SUMO1 functions in a paralog specific manner as an auto-inhibition domain by blocking its binding to the phosphorylated SIMs of PML and Daxx. Interestingly, we find that this auto-inhibition in SUMO1 is relieved by zinc, and structurally show that zinc stabilizes the complex between SUMO1 and a phospho-mimetic form of the SIM of PML. In addition, we demonstrate that increasing cellular zinc levels enhances PML-NB formation in senescent cells. Taken together, these results provide important insights into a paralog specific function of SUMO1, and suggest that zinc levels could play a crucial role in regulating SUMO1-SIM interactions required for PML-NB formation and function.
Collapse
Affiliation(s)
- Mathieu Lussier-Price
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Haytham M Wahba
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
- Department of Biochemistry, Beni-Suef University , Beni-Suef, Egypt
| | - Xavier H Mascle
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Laurent Cappadocia
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Veronique Bourdeau
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Christina Gagnon
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Sebastian Igelmann
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo, Japan
| | - Gerardo Ferbeyre
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - James G Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| |
Collapse
|
6
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
7
|
Yin S, Zhang F, Lin S, Chen W, Weng K, Liu D, Wang C, He Z, Chen Y, Ma W, Huang J, Huang Y, Songyang Z. TIN2 deficiency leads to ALT-associated phenotypes and differentiation defects in embryonic stem cells. Stem Cell Reports 2022; 17:1183-1197. [PMID: 35395177 PMCID: PMC9120858 DOI: 10.1016/j.stemcr.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Telomere integrity is critical for embryonic development, and core telomere-binding proteins, such as TIN2, are key to maintaining telomere stability. Here, we report that homozygous Tin2S341X resulted in embryonic lethality in mice and reduced expression of Tin2 in the derived mouse embryonic stem cells (mESCs). Homozygous mutant mESCs were able to self-renew and remain undifferentiated but displayed many phenotypes associated with alternative lengthening of telomeres (ALT), including excessively long and heterogeneous telomeres, increased ALT-associated promyelocytic leukemia (PML) bodies, and unstable chromosomal ends. These cells also showed upregulation of Zscan4 expression and elevated targeting of DAXX/ATRX and H3K9me3 marks on telomeres. Furthermore, the mutant mESCs were impeded in their differentiation capacity. Upon differentiation, DAXX/ATRX and PML bodies disassociated from telomeres in these cells, where elevated DNA damage was also apparent. Our results reveal differential responses to telomere dysfunction in mESCs versus differentiated cells and highlight the critical role of TIN2 in embryonic development.
Collapse
Affiliation(s)
- Shanshan Yin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fangyingnan Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Weng
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
8
|
Barroso-Gomila O, Trulsson F, Muratore V, Canosa I, Merino-Cacho L, Cortazar AR, Pérez C, Azkargorta M, Iloro I, Carracedo A, Aransay AM, Elortza F, Mayor U, Vertegaal ACO, Barrio R, Sutherland JD. Identification of proximal SUMO-dependent interactors using SUMO-ID. Nat Commun 2021; 12:6671. [PMID: 34795231 PMCID: PMC8602451 DOI: 10.1038/s41467-021-26807-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The fast dynamics and reversibility of posttranslational modifications by the ubiquitin family pose significant challenges for research. Here we present SUMO-ID, a technology that merges proximity biotinylation by TurboID and protein-fragment complementation to find SUMO-dependent interactors of proteins of interest. We develop an optimized split-TurboID version and show SUMO interaction-dependent labelling of proteins proximal to PML and RANGAP1. SUMO-dependent interactors of PML are involved in transcription, DNA damage, stress response and SUMO modification and are highly enriched in SUMO Interacting Motifs, but may only represent a subset of the total PML proximal proteome. Likewise, SUMO-ID also allow us to identify interactors of SUMOylated SALL1, a less characterized SUMO substrate. Furthermore, using TP53 as a substrate, we identify SUMO1, SUMO2 and Ubiquitin preferential interactors. Thus, SUMO-ID is a powerful tool that allows to study the consequences of SUMO-dependent interactions, and may further unravel the complexity of the ubiquitin code.
Collapse
Affiliation(s)
- Orhi Barroso-Gomila
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Fredrik Trulsson
- grid.10419.3d0000000089452978Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Veronica Muratore
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Iñigo Canosa
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Laura Merino-Cacho
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Ana Rosa Cortazar
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERONC, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Coralia Pérez
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Mikel Azkargorta
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Ibon Iloro
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERONC, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain ,grid.11480.3c0000000121671098Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain
| | - Ana M. Aransay
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Felix Elortza
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Ugo Mayor
- grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain ,grid.11480.3c0000000121671098Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain
| | - Alfred C. O. Vertegaal
- grid.10419.3d0000000089452978Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160, Derio, Spain.
| | - James D. Sutherland
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| |
Collapse
|
9
|
Suzich JB, Cuddy SR, Baidas H, Dochnal S, Ke E, Schinlever AR, Babnis A, Boutell C, Cliffe AR. PML-NB-dependent type I interferon memory results in a restricted form of HSV latency. EMBO Rep 2021; 22:e52547. [PMID: 34197022 PMCID: PMC8419685 DOI: 10.15252/embr.202152547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalize with PML-NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sean R Cuddy
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Hiam Baidas
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Eugene Ke
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Chris Boutell
- MRC‐University of Glasgow Centre for Virus Research (CVR)GlasgowUK
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
10
|
The Multiple Facets of ATRX Protein. Cancers (Basel) 2021; 13:cancers13092211. [PMID: 34062956 PMCID: PMC8124985 DOI: 10.3390/cancers13092211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene encoding for the epigenetic regulator ATRX is gaining a prominent position among the most important oncosuppressive genes of the human genome. ATRX gene somatic mutations are found across a number of diverse cancer types, suggesting its relevance in tumor induction and progression. In the present review, the multiple activities of ATRX protein are described in the light of the most recent literature available highlighting its multifaceted role in the caretaking of the human genome. Abstract ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central “caretaker” of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
Collapse
|
11
|
Zhang L, Zhang Y, Chen Y, Gholamalamdari O, Wang Y, Ma J, Belmont AS. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res 2021; 31:251-264. [PMID: 33355299 PMCID: PMC7849416 DOI: 10.1101/gr.266239.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
TSA-seq mapping suggests that gene distance to nuclear speckles is more deterministic and predictive of gene expression levels than gene radial positioning. Gene expression correlates inversely with distance to nuclear speckles, with chromosome regions of unusually high expression located at the apex of chromosome loops protruding from the nuclear periphery into the interior. Genomic distances to the nearest lamina-associated domain are larger for loop apexes mapping closest to nuclear speckles, suggesting the possibility of conservation of speckle-associated regions. To facilitate comparison of genome organization by TSA-seq, we reduced required cell numbers 10- to 20-fold for TSA-seq by deliberately saturating protein-labeling while preserving distance mapping by the still unsaturated DNA-labeling. Only ∼10% of the genome shows statistically significant shifts in relative nuclear speckle distances in pair-wise comparisons between human cell lines (H1, HFF, HCT116, K562); however, these moderate shifts in nuclear speckle distances tightly correlate with changes in cell type-specific gene expression. Similarly, half of heat shock-induced gene loci already preposition very close to nuclear speckles, with the remaining positioned near or at intermediate distance (HSPH1) to nuclear speckles but shifting even closer with transcriptional induction. Speckle association together with chromatin decondensation correlates with expression amplification upon HSPH1 activation. Our results demonstrate a largely "hardwired" genome organization with specific genes moving small mean distances relative to speckles during cell differentiation or a physiological transition, suggesting an important role of nuclear speckles in gene expression regulation.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yu Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor Suppressors Having Oncogenic Functions: The Double Agents. Cells 2020; 10:cells10010046. [PMID: 33396222 PMCID: PMC7824251 DOI: 10.3390/cells10010046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer progression involves multiple genetic and epigenetic events, which involve gain-of-functions of oncogenes and loss-of-functions of tumor suppressor genes. Classical tumor suppressor genes are recessive in nature, anti-proliferative, and frequently found inactivated or mutated in cancers. However, extensive research over the last few years have elucidated that certain tumor suppressor genes do not conform to these standard definitions and might act as “double agents”, playing contrasting roles in vivo in cells, where either due to haploinsufficiency, epigenetic hypermethylation, or due to involvement with multiple genetic and oncogenic events, they play an enhanced proliferative role and facilitate the pathogenesis of cancer. This review discusses and highlights some of these exceptions; the genetic events, cellular contexts, and mechanisms by which four important tumor suppressors—pRb, PTEN, FOXO, and PML display their oncogenic potentials and pro-survival traits in cancer.
Collapse
Affiliation(s)
- Neerajana Datta
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal PIN-743372, India;
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
- Correspondence:
| |
Collapse
|
13
|
Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 2020; 48:11890-11912. [PMID: 33068409 PMCID: PMC7708061 DOI: 10.1093/nar/gkaa828] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cells compartmentalize their internal milieu in order to achieve specific reactions in time and space. This organization in distinct compartments is essential to allow subcellular processing of regulatory signals and generate specific cellular responses. In the nucleus, genetic information is packaged in the form of chromatin, an organized and repeated nucleoprotein structure that is a source of epigenetic information. In addition, cells organize the distribution of macromolecules via various membrane-less nuclear organelles, which have gathered considerable attention in the last few years. The macromolecular multiprotein complexes known as Promyelocytic Leukemia Nuclear Bodies (PML NBs) are an archetype for nuclear membrane-less organelles. Chromatin interactions with nuclear bodies are important to regulate genome function. In this review, we will focus on the dynamic interplay between PML NBs and chromatin. We report how the structure and formation of PML NBs, which may involve phase separation mechanisms, might impact their functions in the regulation of chromatin dynamics. In particular, we will discuss how PML NBs participate in the chromatinization of viral genomes, as well as in the control of specific cellular chromatin assembly pathways which govern physiological mechanisms such as senescence or telomere maintenance.
Collapse
Affiliation(s)
- Armelle Corpet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Constance Kleijwegt
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Simon Roubille
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Franceline Juillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Karine Jacquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Pascale Texier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| |
Collapse
|
14
|
Grosch M, Ittermann S, Shaposhnikov D, Drukker M. Chromatin-Associated Membraneless Organelles in Regulation of Cellular Differentiation. Stem Cell Reports 2020; 15:1220-1232. [PMID: 33217325 PMCID: PMC7724471 DOI: 10.1016/j.stemcr.2020.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane-free intracellular biocondensates are enclosures of proteins and nucleic acids that form by phase separation. Extensive ensembles of nuclear "membraneless organelles" indicate their involvement in genome regulation. Indeed, nuclear bodies have been linked to regulation of gene expression by formation of condensates made of chromatin and RNA processing factors. Important questions pertain to the involvement of membraneless organelles in determining cell identity through their cell-type-specific composition and function. Paraspeckles provide a prism to these questions because they exhibit striking cell-type-specific patterns and since they are crucial in embryogenesis. Here, we outline known interactions between paraspeckles and chromatin, and postulate how such interactions may be important in regulation of cell fate transitions. Moreover, we propose long non-coding RNAs (lncRNAs) as candidates for similar regulation because many form foci that resemble biocondensates and exhibit dynamic patterns during differentiation. Finally, we outline approaches that could ascertain how chromatin-associated membraneless organelles regulate cellular differentiation.
Collapse
Affiliation(s)
- Markus Grosch
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Sebastian Ittermann
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Dmitry Shaposhnikov
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC RA Leiden, The Netherlands.
| |
Collapse
|
15
|
Razin SV, Ulianov SV. Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells 2020; 9:cells9112480. [PMID: 33203115 PMCID: PMC7696541 DOI: 10.3390/cells9112480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The functioning of a cell at various organizational levels is determined by the interactions between macromolecules that promote cellular organelle formation and orchestrate metabolic pathways via the control of enzymatic activities. Although highly specific and relatively stable protein-protein, protein-DNA, and protein-RNA interactions are traditionally suggested as the drivers for cellular function realization, recent advances in the discovery of weak multivalent interactions have uncovered the role of so-called macromolecule condensates. These structures, which are highly divergent in size, composition, function, and cellular localization are predominantly formed by liquid-liquid phase separation (LLPS): a physical-chemical process where an initially homogenous solution turns into two distinct phases, one of which contains the major portion of the dissolved macromolecules and the other one containing the solvent. In a living cell, LLPS drives the formation of membrane-less organelles such as the nucleolus, nuclear bodies, and viral replication factories and facilitates the assembly of complex macromolecule aggregates possessing regulatory, structural, and enzymatic functions. Here, we discuss the role of LLPS in the spatial organization of eukaryotic chromatin and regulation of gene expression in normal and pathological conditions.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-9787
| |
Collapse
|
16
|
PML Regulates the Epidermal Differentiation Complex and Skin Morphogenesis during Mouse Embryogenesis. Genes (Basel) 2020; 11:genes11101130. [PMID: 32992884 PMCID: PMC7600374 DOI: 10.3390/genes11101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is an essential component of nuclear compartments called PML bodies. This protein participates in several cellular processes, including growth control, senescence, apoptosis, and differentiation. Previous studies have suggested that PML regulates gene expression at a subset of loci through a function in chromatin remodeling. Here we have studied global gene expression patterns in mouse embryonic skin derived from Pml depleted and wild type mouse embryos. Differential gene expression analysis at different developmental stages revealed a key role of PML in regulating genes involved in epidermal stratification. In particular, we observed dysregulation of the late cornified envelope gene cluster, which is a sub-region of the epidermal differentiation complex. In agreement with these data, PML body numbers are elevated in basal keratinocytes during embryogenesis, and we observed reduced epidermal thickness and defective hair follicle development in PML depleted mouse embryos.
Collapse
|
17
|
Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and Targeted Therapy. Trends Cancer 2020; 6:889-906. [PMID: 32527650 DOI: 10.1016/j.trecan.2020.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
Abstract
Targeted therapy has become increasingly important in cancer therapy. For example, targeting the promyelocytic leukemia PML protein in leukemia has proved to be an effective treatment. PML is the core component of super-assembled structures called PML nuclear bodies (NBs). Although this nuclear megaDalton complex was first observed in the 1960s, the mechanism of its assembly remains poorly understood. We review recent breakthroughs in the PML field ranging from a revised assembly mechanism to PML-driven genome organization and carcinogenesis. In addition, we highlight that oncogenic oligomerization might also represent a promising target in the treatment of leukemias and solid tumors.
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Kurihara M, Kato K, Sanbo C, Shigenobu S, Ohkawa Y, Fuchigami T, Miyanari Y. Genomic Profiling by ALaP-Seq Reveals Transcriptional Regulation by PML Bodies through DNMT3A Exclusion. Mol Cell 2020; 78:493-505.e8. [PMID: 32353257 DOI: 10.1016/j.molcel.2020.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
Abstract
The promyelocytic leukemia (PML) body is a phase-separated nuclear structure physically associated with chromatin, implying its crucial roles in genome functions. However, its role in transcriptional regulation is largely unknown. We developed APEX-mediated chromatin labeling and purification (ALaP) to identify the genomic regions proximal to PML bodies. We found that PML bodies associate with active regulatory regions across the genome and with ∼300 kb of the short arm of the Y chromosome (YS300) in mouse embryonic stem cells. The PML body association with YS300 is essential for the transcriptional activity of the neighboring Y-linked clustered genes. Mechanistically, PML bodies provide specific nuclear spaces that the de novo DNA methyltransferase DNMT3A cannot access, resulting in the steady maintenance of a hypo-methylated state at Y-linked gene promoters. Our study underscores a new mechanism for gene regulation in the 3D nuclear space and provides insights into the functional properties of nuclear structures for genome function.
Collapse
Affiliation(s)
- Misuzu Kurihara
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan
| | - Kagayaki Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan
| | - Chiaki Sanbo
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, Hayama, 240-0193, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Takeshi Fuchigami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Yusuke Miyanari
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, Hayama, 240-0193, Japan.
| |
Collapse
|
19
|
Lång A, Lång E, Bøe SO. PML Bodies in Mitosis. Cells 2019; 8:cells8080893. [PMID: 31416160 PMCID: PMC6721746 DOI: 10.3390/cells8080893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies are dynamic intracellular structures that recruit and release a variety of different proteins in response to stress, virus infection, DNA damage and cell cycle progression. While PML bodies primarily are regarded as nuclear compartments, they are forced to travel to the cytoplasm each time a cell divides, due to breakdown of the nuclear membrane at entry into mitosis and subsequent nuclear exclusion of nuclear material at exit from mitosis. Here we review the biochemical and biophysical transitions that occur in PML bodies during mitosis and discuss this in light of post-mitotic nuclear import, cell fate decision and acute promyelocytic leukemia therapy.
Collapse
Affiliation(s)
- Anna Lång
- Oslo University Hospital, Department of Molecular Microbiology, Forskningsveien 1, 0373 Oslo, Norway
| | - Emma Lång
- Oslo University Hospital, Department of Molecular Microbiology, Forskningsveien 1, 0373 Oslo, Norway
| | - Stig Ove Bøe
- Oslo University Hospital, Department of Molecular Microbiology, Forskningsveien 1, 0373 Oslo, Norway.
| |
Collapse
|
20
|
Sha Z, Blyszcz T, González-Prieto R, Vertegaal ACO, Goldberg AL. Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem 2019; 294:15218-15234. [PMID: 31285264 PMCID: PMC6802522 DOI: 10.1074/jbc.ra119.009147] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Protein ubiquitination and SUMOylation are required for the maintenance of cellular protein homeostasis, and both increase in proteotoxic conditions (e.g. heat shock or proteasome inhibition). However, we found that when ubiquitination was blocked in several human cell lines by inhibiting the ubiquitin-activating enzyme with TAK243, there was an unexpected, large accumulation of proteins modified by SUMO2/3 chains or SUMO1, but not by several other ubiquitin-like proteins. This buildup of SUMOylated proteins was evident within 3–4 h. It required the small ubiquitin-like modifier (SUMO)-conjugating enzyme, UBC9, and the promyelocytic leukemia protein (PML) and thus was not due to nonspecific SUMO conjugation by ubiquitination enzymes. The SUMOylated proteins accumulated predominantly bound to chromatin and were localized to PML nuclear bodies. Because blocking protein synthesis with cycloheximide prevented the buildup of SUMOylated proteins, they appeared to be newly-synthesized proteins. The proteins SUMOylated after inhibition of ubiquitination were purified and analyzed by MS. In HeLa and U2OS cells, there was a cycloheximide-sensitive increase in a similar set of SUMOylated proteins (including transcription factors and proteins involved in DNA damage repair). Surprisingly, the inhibition of ubiquitination also caused a cycloheximide-sensitive decrease in a distinct set of SUMOylated proteins (including proteins for chromosome modification and mRNA splicing). More than 80% of the SUMOylated proteins whose levels rose or fell upon inhibiting ubiquitination inhibition underwent similar cycloheximide-sensitive increases or decreases upon proteasome inhibition. Thus, when nuclear substrates of the ubiquitin–proteasome pathway are not efficiently degraded, many become SUMO-modified and accumulate in PML bodies.
Collapse
Affiliation(s)
- Zhe Sha
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tamara Blyszcz
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
21
|
McFarlane S, Orr A, Roberts APE, Conn KL, Iliev V, Loney C, da Silva Filipe A, Smollett K, Gu Q, Robertson N, Adams PD, Rai TS, Boutell C. The histone chaperone HIRA promotes the induction of host innate immune defences in response to HSV-1 infection. PLoS Pathog 2019; 15:e1007667. [PMID: 30901352 PMCID: PMC6472835 DOI: 10.1371/journal.ppat.1007667] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Host innate immune defences play a critical role in restricting the intracellular propagation and pathogenesis of invading viral pathogens. Here we show that the histone H3.3 chaperone HIRA (histone cell cycle regulator) associates with promyelocytic leukaemia nuclear bodies (PML-NBs) to stimulate the induction of innate immune defences against herpes simplex virus 1 (HSV-1) infection. Following the activation of innate immune signalling, HIRA localized at PML-NBs in a Janus-Associated Kinase (JAK), Cyclin Dependent Kinase (CDK), and Sp100-dependent manner. RNA-seq analysis revealed that HIRA promoted the transcriptional upregulation of a broad repertoire of host genes that regulate innate immunity to HSV-1 infection, including those involved in MHC-I antigen presentation, cytokine signalling, and interferon stimulated gene (ISG) expression. ChIP-seq analysis revealed that PML, the principle scaffolding protein of PML-NBs, was required for the enrichment of HIRA onto ISGs, identifying a role for PML in the HIRA-dependent regulation of innate immunity to virus infection. Our data identifies independent roles for HIRA in the intrinsic silencing of viral gene expression and the induction of innate immune defences to restrict the initiation and propagation of HSV-1 infection, respectively. These intracellular host defences are antagonized by the HSV-1 ubiquitin ligase ICP0, which disrupts the stable recruitment of HIRA to infecting viral genomes and PML-NBs at spatiotemporally distinct phases of infection. Our study highlights the importance of histone chaperones to regulate multiple phases of intracellular immunity to virus infection, findings that are likely to be highly pertinent in the cellular restriction of many clinically important viral pathogens. Host innate immune defences play critical roles in the cellular restriction of invading viral pathogens and the stimulation of adaptive immune responses. A key component in the regulation of this arm of host immunity is the rapid induction of cytokine signalling and the expression of interferon stimulated gene products (ISGs), which confer a refractory antiviral state to limit virus propagation and pathogenesis. While the signal transduction cascades that activate innate immune defences are well established, little is known about the cellular host factors that expedite the expression of this broad repertoire of antiviral host genes in response to pathogen invasion. Here we show that HIRA, a histone H3.3 chaperone, associates with PML-NBs to stimulate the induction of innate immune defences in response to HSV-1 infection. Our study highlights the importance of histone chaperones in the coordinated regulation of multiple phases of host immunity in response to pathogen invasion and identifies a key role for HIRA in the induction of innate immunity to virus infection.
Collapse
Affiliation(s)
- Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Ashley P. E. Roberts
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Kristen L. Conn
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatoon, CA
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, CA
| | - Victor Iliev
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Neil Robertson
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Peter D. Adams
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, United States of America
| | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, United Kingdom
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Epstein I, Finkbeiner S. The Arc of cognition: Signaling cascades regulating Arc and implications for cognitive function and disease. Semin Cell Dev Biol 2018; 77:63-72. [PMID: 29559111 DOI: 10.1016/j.semcdb.2017.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
Abstract
The activity-regulated cytoskeletal (Arc) gene is implicated in numerous synaptic plasticity paradigms, including long-term potentiation and depression and homeostatic plasticity, and is critical for consolidating memory. How Arc facilitates these forms of plasticity is not fully understood. Unlike other neuronal immediate-early genes, Arc encodes a protein that shuttles between the somatodendritic and nuclear compartments to regulate synaptic plasticity. Little attention has been paid to Arc's role in the nucleus. Here, we highlight the regulatory elements and signaling cascades required to induce Arc transcription and discuss the significance of Arc nuclear localization for synaptic plasticity and scaling. We integrate these findings into the context of cognitive function and disease and propose a model in which Arc mediates an effect on memory as a "chaser" of synaptic activity through homeostatic scaling.
Collapse
Affiliation(s)
- Irina Epstein
- Gladstone Institutes,1650 Owens Street, San Francisco, CA 94158, USA.
| | - Steven Finkbeiner
- Gladstone Institutes,1650 Owens Street, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Haase S, Garcia-Fabiani MB, Carney S, Altshuler D, Núñez FJ, Méndez FM, Núñez F, Lowenstein PR, Castro MG. Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 2018; 22:599-613. [PMID: 29889582 PMCID: PMC6044414 DOI: 10.1080/14728222.2018.1487953] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION ATRX is a chromatin remodeling protein whose main function is the deposition of the histone variant H3.3. ATRX mutations are widely distributed in glioma, and correlate with alternative lengthening of telomeres (ALT) development, but they also affect other cellular functions related to epigenetic regulation. Areas covered: We discuss the main molecular characteristics of ATRX, from its various functions in normal development to the effects of its loss in ATRX syndrome patients and animal models. We focus on the salient consequences of ATRX mutations in cancer, from a clinical to a molecular point of view, focusing on both adult and pediatric glioma. Finally, we will discuss the therapeutic opportunities future research perspectives. Expert opinion: ATRX is a major component of various essential cellular pathways, exceeding its functions as a histone chaperone (e.g. DNA replication and repair, chromatin higher-order structure regulation, gene transcriptional regulation, etc.). However, it is unclear how the loss of these functions in ATRX-null cancer cells affects cancer development and progression. We anticipate new treatments and clinical approaches will emerge for glioma and other cancer types as mechanistic and molecular studies on ATRX are only just beginning to reveal the many critical functions of this protein in cancer.
Collapse
Affiliation(s)
- Santiago Haase
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - María Belén Garcia-Fabiani
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Stephen Carney
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - David Altshuler
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Felipe J Núñez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Flor M Méndez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Fernando Núñez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
24
|
Mannen T, Yamashita S, Tomita K, Goshima N, Hirose T. The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL. J Cell Biol 2017; 214:45-59. [PMID: 27377249 PMCID: PMC4932371 DOI: 10.1083/jcb.201601024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/14/2016] [Indexed: 01/21/2023] Open
Abstract
The mammalian cell nucleus contains membraneless suborganelles referred to as nuclear bodies (NBs). Some NBs are formed with an architectural RNA (arcRNA) as the structural core. Here, we searched for new NBs that are built on unidentified arcRNAs by screening for ribonuclease (RNase)-sensitive NBs using 32,651 fluorescently tagged human cDNA clones. We identified 32 tagged proteins that required RNA for their localization in distinct nuclear foci. Among them, seven RNA-binding proteins commonly localized in the Sam68 nuclear body (SNB), which was disrupted by RNase treatment. Knockdown of each SNB protein revealed that SNBs are composed of two distinct RNase-sensitive substructures. One substructure is present as a distinct NB, termed the DBC1 body, in certain conditions, and the more dynamic substructure including Sam68 joins to form the intact SNB. HNRNPL acts as the adaptor to combine the two substructures and form the intact SNB through the interaction of two sets of RNA recognition motifs with the putative arcRNAs in the respective substructures.
Collapse
Affiliation(s)
- Taro Mannen
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Seisuke Yamashita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kozo Tomita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koutou 135-0064, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
25
|
Salsman J, Rapkin LM, Margam NN, Duncan R, Bazett-Jones DP, Dellaire G. Myogenic differentiation triggers PML nuclear body loss and DAXX relocalization to chromocentres. Cell Death Dis 2017; 8:e2724. [PMID: 28358373 PMCID: PMC5386546 DOI: 10.1038/cddis.2017.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
The promyelocytic leukemia protein (PML) is expressed in most normal human tissues and forms nuclear bodies (NBs) that have roles in gene regulation and cellular processes such as DNA repair, cell cycle control, and cell fate decisions. Using murine C2C12 myoblasts, we demonstrate that activation of skeletal muscle differentiation results in loss of PML and PML NBs prior to myotube fusion. Myotube formation was associated with marked chromatin reorganization and the relocalization of DAXX from PML NBs to chromocentres. MyoD expression was sufficient to cause PML NB loss, and silencing of PML induced DAXX relocalization. Fusion of C2C12 cells using the reptilian reovirus p14 fusogenic protein failed to disrupt PML NBs yet still promoted DAXX redistribution and loss; whereas ectopic expression of PML in differentiated cells only partially restored PML NB formation and DAXX localization at NBs. Finally, we determined that the C-terminal SUMO-interacting motif of DAXX is required for its colocalization with ATRX in heterochromatin domains during myotube formation. These data support a model in which activation of myogenic differentiation results in PML NB loss, chromatin reorganization and DAXX relocalization, and provides a paradigm for understanding the consequence of PML loss in other cellular contexts, such as during cancer development and progression.
Collapse
Affiliation(s)
- Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | - Lindsy M Rapkin
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
| | - Nandini N Margam
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | - Roy Duncan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | - David P Bazett-Jones
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada, B3H 4R2.,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| |
Collapse
|
26
|
PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4. Sci Rep 2017; 7:45038. [PMID: 28332630 PMCID: PMC5362932 DOI: 10.1038/srep45038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/20/2017] [Indexed: 11/16/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is an essential component of PML nuclear bodies (PML NBs) frequently lost in cancer. PML NBs coordinate chromosomal regions via modification of nuclear proteins that in turn may regulate genes in the vicinity of these bodies. However, few PML NB-associated genes have been identified. PML and PML NBs can also regulate mTOR and cell fate decisions in response to cellular stresses. We now demonstrate that PML depletion in U2OS cells or TERT-immortalized normal human diploid fibroblasts results in decreased expression of the mTOR inhibitor DDIT4 (REDD1). DNA and RNA immuno-FISH reveal that PML NBs are closely associated with actively transcribed DDIT4 loci, implicating these bodies in regulation of basal DDIT4 expression. Although PML silencing did reduce the sensitivity of U2OS cells to metabolic stress induced by metformin, PML loss did not inhibit the upregulation of DDIT4 in response to metformin, hypoxia-like (CoCl2) or genotoxic stress. Analysis of publicly available cancer data also revealed a significant correlation between PML and DDIT4 expression in several cancer types (e.g. lung, breast, prostate). Thus, these findings uncover a novel mechanism by which PML loss may contribute to mTOR activation and cancer progression via dysregulation of basal DDIT4 gene expression.
Collapse
|
27
|
Abstract
Promyelocytic Leukemia (PML) is a nuclear protein that forms sub-nuclear structures termed nuclear bodies associated with transcriptionally active genomic regions. PML is a tumour suppressor and regulator of cell differentiation. We demonstrate that PML promotes TNFα-induced transcriptional responses by promoting NF-κB activity. TNFα-treated PML-/- cells show normal IκBα degradation and NF-κB nuclear translocation but significantly reduced NF-κB DNA binding and phosphorylation of NF-κB p65. We also demonstrate that the PML retinoic acid receptor-α (PML-RARα) oncofusion protein, which causes acute promyelocytic leukemia, inhibits TNFα induced gene expression and phosphorylation of NF-κB. This study establishes PML as an important regulator of NF-κB and demonstrates that PML-RARα dysregulates NF-κB.
Collapse
|
28
|
Ohsaki Y, Kawai T, Yoshikawa Y, Cheng J, Jokitalo E, Fujimoto T. PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Biol 2016; 212:29-38. [PMID: 26728854 PMCID: PMC4700481 DOI: 10.1083/jcb.201507122] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PML-II plays a critical role in generating nuclear lipid droplets, which are associated with promyelocytic leukemia nuclear bodies as well as with the extension of the inner nuclear membrane. Lipid droplets (LDs) in the nucleus of hepatocyte-derived cell lines were found to be associated with premyelocytic leukemia (PML) nuclear bodies (NBs) and type I nucleoplasmic reticulum (NR) or the extension of the inner nuclear membrane. Knockdown of PML isoform II (PML-II) caused a significant decrease in both nuclear LDs and type I NR, whereas overexpression of PML-II increased both. Notably, these effects were evident only in limited types of cells, in which a moderate number of nuclear LDs exist intrinsically, and PML-II was targeted not only at PML NBs, but also at the nuclear envelope, excluding lamins and SUN proteins. Knockdown of SUN proteins induced a significant increase in the type I NR and nuclear LDs, but these effects were cancelled by simultaneous knockdown of PML-II. Nuclear LDs harbored diacylglycerol O-acyltransferase 2 and CTP:phosphocholine cytidylyltransferase α and incorporated newly synthesized lipid esters. These results corroborated that PML-II plays a critical role in generating nuclear LDs in specific cell types.
Collapse
Affiliation(s)
- Yuki Ohsaki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Kawai
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yukichika Yoshikawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
29
|
Courtney J, Woods E, Scholz D, Hall WW, Gautier VW. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells. PLoS One 2015; 10:e0140209. [PMID: 26485569 PMCID: PMC4616565 DOI: 10.1371/journal.pone.0140209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022] Open
Abstract
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.
Collapse
Affiliation(s)
- Jane Courtney
- Dublin Institute of Technology, Kevin St, Dublin, Ireland
- * E-mail:
| | - Elena Woods
- UCD Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| | - Dimitri Scholz
- UCD Conway Institute of Biomolecular & Biomedical Research, School of Medicine and Biomedical Science University College Dublin (UCD), Dublin, Ireland
| | - William W. Hall
- UCD Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| | - Virginie W. Gautier
- UCD Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
30
|
Fraser J, Williamson I, Bickmore WA, Dostie J. An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiol Mol Biol Rev 2015; 79:347-72. [PMID: 26223848 PMCID: PMC4517094 DOI: 10.1128/mmbr.00006-15] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In humans, nearly two meters of genomic material must be folded to fit inside each micrometer-scale cell nucleus while remaining accessible for gene transcription, DNA replication, and DNA repair. This fact highlights the need for mechanisms governing genome organization during any activity and to maintain the physical organization of chromosomes at all times. Insight into the functions and three-dimensional structures of genomes comes mostly from the application of visual techniques such as fluorescence in situ hybridization (FISH) and molecular approaches including chromosome conformation capture (3C) technologies. Recent developments in both types of approaches now offer the possibility of exploring the folded state of an entire genome and maybe even the identification of how complex molecular machines govern its shape. In this review, we present key methodologies used to study genome organization and discuss what they reveal about chromosome conformation as it relates to transcription regulation across genomic scales in mammals.
Collapse
Affiliation(s)
- James Fraser
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Iain Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Josée Dostie
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| |
Collapse
|
31
|
SP140L, an Evolutionarily Recent Member of the SP100 Family, Is an Autoantigen in Primary Biliary Cirrhosis. J Immunol Res 2015; 2015:526518. [PMID: 26347895 PMCID: PMC4548144 DOI: 10.1155/2015/526518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
The SP100 family members comprise a set of closely related genes on chromosome 2q37.1. The widely expressed SP100 and the leukocyte-specific proteins SP110 and SP140 have been associated with transcriptional regulation and various human diseases. Here, we have characterized the SP100 family member SP140L. The genome sequence analysis showed the formation of SP140L gene through rearrangements of the two neighboring genes, SP100 and SP140, during the evolution of higher primates. The SP140L expression is interferon-inducible with high transcript levels in B cells and other peripheral blood mononuclear cells. Subcellularly, SP140L colocalizes with SP100 and SP140 in nuclear structures that are devoid of SP110, PML, or p300 proteins. Similarly to SP100 and SP140 protein, we detected serum autoantibodies to SP140L in patients with primary biliary cirrhosis using luciferase immunoprecipitation system and immunoblotting assays. In conclusion, our results show that SP140L is phylogenetically recent member of SP100 proteins and acts as an autoantigen in primary biliary cirrhosis patients.
Collapse
|
32
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
The elastin peptide (VGVAPG)3 induces the 3D reorganisation of PML-NBs and SC35 speckles architecture, and accelerates proliferation of fibroblasts and melanoma cells. Histochem Cell Biol 2014; 143:245-58. [PMID: 25274422 DOI: 10.1007/s00418-014-1274-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 01/28/2023]
Abstract
During melanoma tumour growth, cancerous cells are exposed to the immediate surrounding the micro- and macro environment, which is largely modified through the degradation of the extracellular matrix by fibroblast-derived metalloproteinases. Among the degradation products, (VGVAPG)3, an elastin peptide is known to stimulate the proliferation of both fibroblasts and cancerous cells by binding to the elastin-binding receptor and activating the MEK/ERK signal transduction pathway. As this process strongly modifies mRNA synthesis, we investigated its effect on the relative three-dimensional organisation of the major partners of the mRNA splicing machinery: promyelocytic nuclear bodies (PML-NBs ) and splicing component 35 speckles (SC35) of normal fibroblasts and melanoma SK-MEL-28 cells. SC35 and PML-NBs proteins were immunolabeled and imaged by confocal microscopy within these cells cultured with (VGVAPG)3. Three-dimensional reconstruction was performed to elucidate the organisation of PML-NBs and SC35 speckles and their spatial relationship. In G0 cells, SC35 speckles were sequestered in PML-NBs. Shortly after (VGVAPG)3 stimulation, the three-dimensional organisation of PML-NBs and SC35 speckles changed markedly. In particular, SC35 speckles gradually enlarged and adopted a heterogeneous organisation, intermingled with PML-NBs. Conversely, inhibition of the elastin-binding protein or MEK/ERK pathway induced a remarkable early sequestration of condensed SC35 speckles in PML-NBs, the hallmark of splicing inhibition. The 3D architecture of speckles/PML-NBs highlights the modulation in their spatial relationship, the multiple roles of PML-NBs in activation, inhibition and sequestration, and provides the first demonstration of the dependence of PML-NBs and SC35 speckles on the elastin peptide for these functions.
Collapse
|
35
|
Costa FC, Saito A, Gonçalves KA, Vidigal PM, Meirelles GV, Bressan GC, Kobarg J. Ki-1/57 and CGI-55 ectopic expression impact cellular pathways involved in proliferation and stress response regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2944-56. [PMID: 25205453 DOI: 10.1016/j.bbamcr.2014.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Collapse
Affiliation(s)
- Fernanda C Costa
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil.
| | - Angela Saito
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Kaliandra A Gonçalves
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Pedro M Vidigal
- Laboratório de Bioinformática, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.
| | - Gabriela V Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil.
| | - Gustavo C Bressan
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil; Departamento de Genética, Evolução e Bioagentes - Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| |
Collapse
|
36
|
Woods E, Courtney J, Scholz D, Hall WW, Gautier VW. Tracking protein dynamics with photoconvertible Dendra2 on spinning disk confocal systems. J Microsc 2014; 256:197-207. [PMID: 25186063 DOI: 10.1111/jmi.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/31/2014] [Indexed: 01/25/2023]
Abstract
Understanding the dynamic properties of cellular proteins in live cells and in real time is essential to delineate their function. In this context, we introduce the Fluorescence Recovery After Photobleaching-Photoactivation unit (Andor) combined with the Nikon Eclipse Ti E Spinning Disk (Andor) confocal microscope as an advantageous and robust platform to exploit the properties of the Dendra2 photoconvertible fluorescent protein (Evrogen) and analyse protein subcellular trafficking in living cells. A major advantage of the spinning disk confocal is the rapid acquisition speed, enabling high temporal resolution of cellular processes. Furthermore, photoconversion and imaging are less invasive on the spinning disk confocal as the cell exposition to illumination power is reduced, thereby minimizing photobleaching and increasing cell viability. We have tested this commercially available platform using experimental settings adapted to track the migration of fast trafficking proteins such as UBC9, Fibrillarin and have successfully characterized their differential motion between subnuclear structures. We describe here step-by-step procedures, with emphasis on cellular imaging parameters, to successfully perform the dynamic imaging and photoconversion of Dendra2-fused proteins at high spatial and temporal resolutions necessary to characterize the trafficking pathways of proteins.
Collapse
Affiliation(s)
- Elena Woods
- Centre for Research in Infectious Diseases, School of Medicine and Biomedical Science, University College Dublin (UCD), Dublin, Ireland
| | | | | | | | | |
Collapse
|
37
|
Chen BK, Anchel D, Gong Z, Cotton R, Li R, Sun Y, Bazett-Jones DP. Nano-dissection and sequencing of DNA at single sub-nuclear structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3267-74. [PMID: 24799430 DOI: 10.1002/smll.201400075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Indexed: 05/03/2023]
Abstract
The relative positioning of gene loci within a mammalian nucleus is non-random and plays a role in gene regulation. Some sub-nuclear structures may represent "hubs" that bring specific genetic loci into close proximity where co-regulatory mechanisms can operate. The identification of loci in proximity to a shared sub-nuclear structure can provide insights into the function of the associated structure, and reveal relationships between the loci sharing a common association. A technique is introduced based on the nano-dissection of DNA from thin sections of cells by high-precision nano-tools operated inside a scanning electron microscope. The ability to dissect and identify gene loci occupying a shared site at a single sub-nuclear structure is demonstrated here for the first time. The technique is applied to the nano-dissection of DNA in vicinity of a single promyelocytic leukemia nuclear body (PML NB), and reveals novel loci from several chromosomes that are confirmed to associate at PML NBs with statistical significance in a cell population. Furthermore, it is demonstrated that pairs of loci from different chromosomes congregate at the same nuclear body. It is proposed that this technique is the first that allows the de novo determination of gene loci associations with single nuclear sub-structures.
Collapse
Affiliation(s)
- Brandon K Chen
- Department of Mechanical Engineering, University of Toronto, M5S 3G8
| | | | | | | | | | | | | |
Collapse
|
38
|
Palibrk V, Lång E, Lång A, Schink KO, Rowe AD, Bøe SO. Promyelocytic leukemia bodies tether to early endosomes during mitosis. Cell Cycle 2014; 13:1749-55. [PMID: 24675887 DOI: 10.4161/cc.28653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.
Collapse
Affiliation(s)
- Vuk Palibrk
- Department of Microbiology and Department of Medical Biochemistry; Oslo University Hospital and University of Oslo; Oslo, Norway
| | - Emma Lång
- Department of Microbiology and Department of Medical Biochemistry; Oslo University Hospital and University of Oslo; Oslo, Norway
| | - Anna Lång
- Department of Microbiology and Department of Medical Biochemistry; Oslo University Hospital and University of Oslo; Oslo, Norway
| | - Kay Oliver Schink
- Department of Biochemistry; Institute for Cancer Research; The Norwegian Radium Hospital; Oslo University Hospital; Oslo, Norway
| | - Alexander D Rowe
- Department of Microbiology and Department of Medical Biochemistry; Oslo University Hospital and University of Oslo; Oslo, Norway
| | - Stig Ove Bøe
- Department of Microbiology and Department of Medical Biochemistry; Oslo University Hospital and University of Oslo; Oslo, Norway
| |
Collapse
|
39
|
Wood AM, Garza-Gongora AG, Kosak ST. A Crowdsourced nucleus: understanding nuclear organization in terms of dynamically networked protein function. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:178-90. [PMID: 24412853 PMCID: PMC3954575 DOI: 10.1016/j.bbagrm.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
Abstract
The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Ashley M Wood
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Arturo G Garza-Gongora
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
Abstract
The principles that determine the organization of the nucleus have become clearer in recent years, largely because of new insights into polymer, colloid, and soft-matter science. Macromolecules, together with the giant linear polymers that form the chromosomes, are confined at high concentrations within the nuclear envelope and their interactions are influenced strongly by short-range depletion or entropic forces which are negligible in dilute systems, in addition to the more familiar van der Waals, electrostatic, steric, hydrogen bonding, and hydrophobic forces. The studies described in this volume are consistent with the model that this complex and concentrated mixture of macromolecules is maintained in a delicate equilibrium by quite simple although unsuspected physicochemical principles. The sensitivity of this equilibrium to perturbation may underlie the controversies about the existence of a nuclear matrix or scaffold. In this volume, we underline the importance for cell biologists of being familiar with current work in colloid, polymer, soft matter, and nanoscience. This chapter presents a brief background to the aspects of the nucleus that are considered in detail in subsequent chapters.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, CRCHUQ-Oncology, Québec, Canada; Biosystems Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
41
|
Lusic M, Marini B, Ali H, Lucic B, Luzzati R, Giacca M. Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 2013; 13:665-77. [PMID: 23768491 DOI: 10.1016/j.chom.2013.05.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/05/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
Nuclear bodies (NBs), characterized by the presence of the promyelocytic leukemia (PML) protein, are important components of the nuclear architecture, contributing to genetic and epigenetic control of gene expression. In investigating the mechanisms mediating HIV-1 latency, we determined that silenced but transcriptionally competent HIV-1 proviruses reside in close proximity to PML NBs and that this association inhibits HIV-1 gene expression. PML binds to the latent HIV-1 promoter, which coincides with transcriptionally inactive facultative heterochromatic marks, notably H3K9me2, at the viral genome. PML degradation and NB disruption result in strong activation of viral transcription as well as release of G9a, the major methyltransferase responsible for H3K9me2, and loss of facultative heterochromatin marks from the proviral DNA. Additionally, HIV-1 transcriptional activation requires proviral displacement from PML NBs by active nuclear actin polymerization. Thus, nuclear topology and active gene movement mediate HIV-1 transcriptional regulation and have implications for controlling HIV-1 latency and eradication.
Collapse
Affiliation(s)
- Marina Lusic
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology ICGEB, 34149 Trieste, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Schmid S, Sachs D, tenOever BR. Mitogen-activated protein kinase-mediated licensing of interferon regulatory factor 3/7 reinforces the cell response to virus. J Biol Chem 2013; 289:299-311. [PMID: 24275658 DOI: 10.1074/jbc.m113.519934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of the intrinsic antiviral defense in mammals relies on the accumulation of foreign genetic material. As such, complete engagement of this response is limited to replication-competent viruses. Interferon regulatory factors (IRFs) are mediators of this defense with shared enhancer elements but display a spectrum of transcriptional potential. Here we describe a mechanism designed to enhance this response should a pathogen not be successfully inhibited. We find that activation of IRF7 results in the induction of MAP3K8 and restructuring of the antiviral transcriptome. MAP3K8 mediates the phosphorylation and repression of IRF3 homodimers to promote greater transcriptional activity through utilization of IRF3:IRF7 heterodimers. Among the genes influenced by the MAP3K8/IRF7 signaling axis are members of the SP100 gene family that serve as general transcriptional enhancers of the antiviral defense. We propose that this feed forward loop serves to reinforce the cellular response and is reserved for imminent threats to the host.
Collapse
|
43
|
Corpet A, Olbrich T, Gwerder M, Fink D, Stucki M. Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle 2013; 13:249-67. [PMID: 24200965 PMCID: PMC3906242 DOI: 10.4161/cc.26988] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced senescence is a permanent cell cycle arrest characterized by extensive chromatin reorganization. Here, we investigated the specific targeting and dynamics of histone H3 variants in human primary senescent cells. We show that newly synthesized epitope-tagged H3.3 is incorporated in senescent cells but does not accumulate in senescence-associated heterochromatin foci (SAHF). Instead, we observe that new H3.3 colocalizes with its specific histone chaperones within the promyelocytic leukemia nuclear bodies (PML-NBs) and is targeted to PML-NBs in a DAXX-dependent manner both in proliferating and senescent cells. We further show that overexpression of DAXX enhances targeting of H3.3 in large PML-NBs devoid of transcriptional activity and promotes the accumulation of HP1, independently of H3K9me3. Loss of H3.3 from pericentromeric heterochromatin upon DAXX or PML depletion suggests that the targeting of H3.3 to PML-NBs is implicated in pericentromeric heterochromatin organization. Together, our results underline the importance of the replication-independent chromatin assembly pathway for histone replacement in non-dividing senescent cells and establish PML-NBs as important regulatory sites for the incorporation of new H3.3 into chromatin.
Collapse
Affiliation(s)
- Armelle Corpet
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| | - Teresa Olbrich
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| | - Myriam Gwerder
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| | - Daniel Fink
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| | - Manuel Stucki
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| |
Collapse
|
44
|
Liu Y, van den Berg A, Veenstra R, Rutgers B, Nolte I, van Imhoff G, Visser L, Diepstra A. PML nuclear bodies and SATB1 are associated with HLA class I expression in EBV+ Hodgkin lymphoma. PLoS One 2013; 8:e72930. [PMID: 24009715 PMCID: PMC3757028 DOI: 10.1371/journal.pone.0072930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/16/2013] [Indexed: 12/28/2022] Open
Abstract
Tumor cells of classical Hodgkin lymphoma (cHL) are characterized by a general loss of B cell phenotype, whereas antigen presenting properties are commonly retained. HLA class I is expressed in most EBV+ cHL cases, with an even enhanced expression in a proportion of the cases. Promyelocytic leukemia protein (PML) and special AT-rich region binding protein 1 (SATB1) are two global chromatin organizing proteins that have been shown to regulate HLA class I expression in Jurkat cells. We analyzed HLA class I, number of PML nuclear bodies (NBs) and SATB1 expression in tumor cells of 54 EBV+ cHL cases and used 27 EBV- cHL cases as controls. There was a significant difference in presence of HLA class I staining between EBV+ and EBV- cases (p<0.0001). We observed normal HLA class I expression in 35% of the EBV+ and in 19% of the EBV- cases. A stronger than normal HLA class I expression was observed in approximately 40% of EBV+ cHL and not in EBV- cHL cases. 36 EBV+ cHL cases contained less than 10 PML-NBs per tumor cell, whereas 16 cases contained more than 10 PML-NBs. The number of PML-NBs was positively correlated to the level of HLA class I expression (p<0.01). The percentage of SATB1 positive cells varied between 0% to 100% in tumor cells and was inversely correlated with the level of HLA class I expression, but only between normal and strong expression (p<0.05). Multivariable analysis indicated that the number of PML-NBs and the percentage of SATB1+ tumor cells are independent factors affecting HLA class I expression in EBV+ cHL. In conclusion, both PML and SATB1 are correlated to HLA class I expression levels in EBV+ cHL.
Collapse
Affiliation(s)
- Yuxuan Liu
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne Veenstra
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ilja Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gustaaf van Imhoff
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
45
|
Rivera-Molina YA, Martínez FP, Tang Q. Nuclear domain 10 of the viral aspect. World J Virol 2013; 2:110-122. [PMID: 24255882 PMCID: PMC3832855 DOI: 10.5501/wjv.v2.i3.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 02/05/2023] Open
Abstract
Nuclear domain 10 (ND10) are spherical bodies distributed throughout the nucleoplasm and measuring around 0.2-1.0 μm. First observed under an electron microscope, they were originally described as dense bodies found in the nucleus. They are known by a number of other names, including Promyelocytic Leukemia bodies (PML bodies), Kremer bodies, and PML oncogenic domains. ND10 are frequently associated with Cajal bodies and cleavage bodies. It has been suggested that they play a role in regulating gene transcription. ND10 were originally characterized using human autoantisera, which recognizes Speckled Protein of 100 kDa, from patients with primary biliary cirrhosis. At the immunohistochemical level, ND10 appear as nuclear punctate structures, with 10 indicating the approximate number of dots per nucleus observed. ND10 do not colocalize with kinetochores, centromeres, sites of mRNA processing, or chromosomes. Resistance of ND10 antigens to nuclease digestion and salt extraction suggest that ND10 are associated with the nuclear matrix. They are often identified by immunofluorescent assay using specific antibodies against PML, Death domain-associated protein, nuclear dot protein (NDP55), and so on. The role of ND10 has long been the subject of investigation, with the specific connection of ND10 and viral infection having been a particular focus for almost 20 years. This review summarizes the relationship of ND10 and viral infection. Some future study directions are also discussed.
Collapse
|
46
|
Ching RW, Ahmed K, Boutros PC, Penn LZ, Bazett-Jones DP. Identifying gene locus associations with promyelocytic leukemia nuclear bodies using immuno-TRAP. ACTA ACUST UNITED AC 2013; 201:325-35. [PMID: 23589495 PMCID: PMC3628506 DOI: 10.1083/jcb.201211097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Important insights into nuclear function would arise if gene loci physically interacting with particular subnuclear domains could be readily identified. Immunofluorescence microscopy combined with fluorescence in situ hybridization (immuno-FISH), the method that would typically be used in such a study, is limited by spatial resolution and requires prior assumptions for selecting genes to probe. Our new technique, immuno-TRAP, overcomes these limitations. Using promyelocytic leukemia nuclear bodies (PML NBs) as a model, we used immuno-TRAP to determine if specific genes localize within molecular dimensions with these bodies. Although we confirmed a TP53 gene-PML NB association, immuno-TRAP allowed us to uncover novel locus-PML NB associations, including the ABCA7 and TFF1 loci and, most surprisingly, the PML locus itself. These associations were cell type specific and reflected the cell's physiological state. Combined with microarrays or deep sequencing, immuno-TRAP provides powerful opportunities for identifying gene locus associations with potentially any nuclear subcompartment.
Collapse
Affiliation(s)
- Reagan W Ching
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
47
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
48
|
PML-mediated signaling and its role in cancer stem cells. Oncogene 2013; 33:1475-84. [PMID: 23563177 DOI: 10.1038/onc.2013.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/08/2023]
Abstract
The promyelocytic leukemia (PML) protein, initially discovered as a part of the PML/retinoic acid receptor alpha fusion protein, has been found to be a critical player in oncogenesis and tumor progression. Multiple cellular activities, including DNA repair, alternative lengthening of telomeres, transcriptional control, apoptosis and senescence, are regulated by PML and its featured subcellular structure, the PML nuclear body. In correspondence with its role in many important life processes, PML mediates several complex downstream signaling pathways. The determinant function of PML in tumorigenesis and cancer progression raises the interest in its involvement in cancer stem cells (CSCs), a subpopulation of cancer cells that share properties with stem cells and are critical for tumor propagation. Recently, there are exciting discoveries concerning the requirement of PML in CSC maintenance. Growing evidences strongly suggest a positive role of PML in regulating CSCs in both hematopoietic cancers and solid tumors, whereas the underlying mechanisms may be different and remain elusive. Here we summarize and discuss the PML-mediated signaling pathways in cancers and their potential roles in regulating CSCs.
Collapse
|
49
|
Foltánková V, Matula P, Sorokin D, Kozubek S, Bártová E. Hybrid detectors improved time-lapse confocal microscopy of PML and 53BP1 nuclear body colocalization in DNA lesions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:360-369. [PMID: 23410959 DOI: 10.1017/s1431927612014353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We used hybrid detectors (HyDs) to monitor the trajectories and interactions of promyelocytic leukemia (GFP-PML) nuclear bodies (NBs) and mCherry-53BP1-positive DNA lesions. 53BP1 protein accumulates in NBs that occur spontaneously in the genome or in γ-irradiation-induced foci. When we induced local DNA damage by ultraviolet irradiation, we also observed accumulation of 53BP1 proteins into discrete bodies, instead of the expected dispersed pattern. In comparison with photomultiplier tubes, which are used for standard analysis by confocal laser scanning microscopy, HyDs significantly eliminated photobleaching of GFP and mCherry fluorochromes during image acquisition. The low laser intensities used for HyD-based confocal analysis enabled us to observe NBs for the longer time periods, necessary for studies of the trajectories and interactions of PML and 53BP1 NBs. To further characterize protein interactions, we used resonance scanning and a novel bioinformatics approach to register and analyze the movements of individual PML and 53BP1 NBs. The combination of improved HyD-based confocal microscopy with a tailored bioinformatics approach enabled us to reveal damage-specific properties of PML and 53BP1 NBs.
Collapse
Affiliation(s)
- Veronika Foltánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
50
|
Pan WW, Zhou JJ, Liu XM, Xu Y, Guo LJ, Yu C, Shi QH, Fan HY. Death domain-associated protein DAXX promotes ovarian cancer development and chemoresistance. J Biol Chem 2013; 288:13620-30. [PMID: 23539629 DOI: 10.1074/jbc.m112.446369] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The role of DAXX in ovarian cancer development and metastasis has not been investigated before now. RESULTS Overexpression of DAXX enhanced ovarian cancer cell proliferation, colony formation, and migration, whereas Daxx depletion had the opposite effects. CONCLUSION DAXX promotes ovarian cancer cell proliferation and chemoresistance. SIGNIFICANCE ModulatingDAXXmay be an effective strategy for preventing the recurrence and chemoresistance of ovarian cancers. Understanding the genes involved in apoptosis and DNA damage responses may improve therapeutic strategies for ovarian cancer. The death domain-associated protein DAXX can be either a pro-apoptotic or an anti-apoptotic factor, depending on the cell type and context. In this study, we found that DAXX was highly expressed in human ovarian surface epithelial tumors but not in granulosa cell tumors. In cultured ovarian cancer cells, DAXX interacted with promyelocytic leukemia protein (PML) and localized to subnuclear domains (so-called PML nuclear bodies). A role for DAXX in ovarian cancer cell proliferation, metastasis, and radio/chemoresistance was examined. Overexpression of DAXX enhanced multiple ovarian cancer cell lines' proliferation, colony formation, and migration, whereas Daxx depletion by RNA interference had the opposite effects. When transplanted into nude mice, ovarian cancer cells that overexpressed DAXX displayed enhanced tumorigenesis capability in vivo, whereas Daxx depletion inhibited tumor development. Importantly, Daxx induced tumorigenic transformation of normal ovarian surface epithelial cells. Daxx also protected ovarian cancer cells against x-irradiation- and chemotherapy-induced DNA damage by interacting with PML. Taken together, our results suggest that DAXX is a novel ovarian cancer oncogene that promotes ovarian cancer cell proliferation and chemoresistance in ovarian cancer cells. Thus, modulating DAXX-PML nuclear body activity may be an effective strategy for preventing the recurrence and chemoresistance of ovarian cancers.
Collapse
Affiliation(s)
- Wei-Wei Pan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | |
Collapse
|