1
|
Page EF, Blackmon MF, Calhoun TR. Second harmonic scattering investigation of bacterial efflux induced by the antibiotic tetracycline. J Chem Phys 2024; 161:174710. [PMID: 39498886 PMCID: PMC11540441 DOI: 10.1063/5.0231391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024] Open
Abstract
Efflux pumps are a key component in bacteria's ability to gain resistance to antibiotics. In addition to increasing efflux, new research has suggested that the antibiotic, tetracycline, may have larger impacts on bacterial membranes. Using second harmonic scattering, we monitor the transport of two small molecules across the membranes of different Gram-positive bacteria. By comparing our results to a simple kinetic model, we find evidence for changes in influx and efflux across both bacterial species. These changes, however, are probe-dependent, opening new questions about the localization of the drug's effects and the specificity of the efflux pumps involved.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Mikala F. Blackmon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
2
|
Xu Q, Kang D, Meyer MD, Pennington CL, Gopal C, Schertzer JW, Kirienko NV. Cytotoxic rhamnolipid micelles drive acute virulence in Pseudomonas aeruginosa. Infect Immun 2024; 92:e0040723. [PMID: 38391248 PMCID: PMC10929412 DOI: 10.1128/iai.00407-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has developed multi- or even pan-drug resistance toward most frontline and last resort antibiotics, leading to increasing frequency of infections and deaths among hospitalized patients, especially those with compromised immune systems. Further complicating treatment, P. aeruginosa produces numerous virulence factors that contribute to host tissue damage and immune evasion, promoting bacterial colonization and pathogenesis. In this study, we demonstrate the importance of rhamnolipid production in host-pathogen interactions. Secreted rhamnolipids form micelles that exhibited highly acute toxicity toward murine macrophages, rupturing the plasma membrane and causing organellar membrane damage within minutes of exposure. While rhamnolipid micelles (RMs) were particularly toxic to macrophages, they also caused membrane damage in human lung epithelial cells, red blood cells, Gram-positive bacteria, and even noncellular models like giant plasma membrane vesicles. Most importantly, rhamnolipid production strongly correlated with P. aeruginosa virulence against murine macrophages in various panels of clinical isolates. Altogether, our findings suggest that rhamnolipid micelles are highly cytotoxic virulence factors that drive acute cellular damage and immune evasion during P. aeruginosa infections.
Collapse
Affiliation(s)
- Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | | | - Citrupa Gopal
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - Jeffrey W. Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | | |
Collapse
|
3
|
Cho W, Jung M, Yoon SH, Jeon J, Oh MA, Kim JY, Park M, Kang CM, Chung TD. On-Site Formation of Functional Dopaminergic Presynaptic Terminals on Neuroligin-2-Modified Gold-Coated Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3082-3092. [PMID: 38206769 DOI: 10.1021/acsami.3c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Advancements in neural interface technologies have enabled the direct connection of neurons and electronics, facilitating chemical communication between neural systems and external devices. One promising approach is a synaptogenesis-involving method, which offers an opportunity for synaptic signaling between these systems. Janus synapses, one type of synaptic interface utilizing synaptic cell adhesion molecules for interface construction, possess unique features that enable the determination of location, direction of signal flow, and types of neurotransmitters involved, promoting directional and multifaceted communication. This study presents the first successful establishment of a Janus synapse between dopaminergic (DA) neurons and abiotic substrates by using a neuroligin-2 (NLG2)-mediated synapse-inducing method. NLG2 immobilized on gold-coated microspheres can induce synaptogenesis upon contact with spatially isolated DA axons. The induced DA Janus synapses exhibit stable synaptic activities comparable to that of native synapses over time, suggesting their suitability for application in neural interfaces. By calling for DA presynaptic organizations, the NLG2-immobilized abiotic substrate is a promising tool for the on-site detection of synaptic dopamine release.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minji Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjung Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung Mu Kang
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Xu Q, Kang D, Meyer MD, Pennington CL, Gopal C, Schertzer JW, Kirienko NV. Cytotoxic rhamnolipid micelles drive acute virulence in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562257. [PMID: 37873290 PMCID: PMC10592815 DOI: 10.1101/2023.10.13.562257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has developed multi- or even pan-drug resistance towards most frontline and last resort antibiotics, leading to increasing infections and deaths among hospitalized patients, especially those with compromised immune systems. Further complicating treatment, P. aeruginosa produces numerous virulence factors that contribute to host tissue damage and immune evasion, promoting bacterial colonization and pathogenesis. In this study, we demonstrate the importance of rhamnolipid production in host-pathogen interactions. Secreted rhamnolipids form micelles that exhibited highly acute toxicity towards murine macrophages, rupturing the plasma membrane and causing organellar membrane damage within minutes of exposure. While rhamnolipid micelles (RMs) were particularly toxic to macrophages, they also caused membrane damage in human lung epithelial cells, red blood cells, Gram-positive bacteria, and even non-cellular models like giant plasma membrane vesicles. Most importantly, rhamnolipid production strongly correlated to P. aeruginosa virulence against murine macrophages in various panels of clinical isolates. Altogether, our findings suggest that rhamnolipid micelles are highly cytotoxic virulence factors that drive acute cellular damage and immune evasion during P. aeruginosa infections.
Collapse
Affiliation(s)
- Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | | | - Citrupa Gopal
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - Jeffrey W. Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | | |
Collapse
|
5
|
Xu C, Chen S, Chen X, Ho KH, Park C, Yoo H, Lee SH, Park H. Altered exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of cultured striatal neurons in a knock-in mouse model of Huntington's disease. Front Mol Neurosci 2023; 16:1175522. [PMID: 37664244 PMCID: PMC10470468 DOI: 10.3389/fnmol.2023.1175522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive dominantly inherited neurodegenerative disease caused by the expansion of a cytosine-adenine-guanine (CAG) trinucleotide repeat in the huntingtin gene, which encodes the mutant huntingtin protein containing an expanded polyglutamine tract. One of neuropathologic hallmarks of HD is selective degeneration in the striatum. Mechanisms underlying selective neurodegeneration in the striatum of HD remain elusive. Neurodegeneration is suggested to be preceded by abnormal synaptic transmission at the early stage of HD. However, how mutant huntingtin protein affects synaptic vesicle exocytosis at single presynaptic terminals of HD striatal neurons is poorly understood. Here, we measured synaptic vesicle exocytosis at single presynaptic terminals of cultured striatal neurons (mainly inhibitory neurons) in a knock-in mouse model of HD (zQ175) during electrical field stimulation using real-time imaging of FM 1-43 (a lipophilic dye). We found a significant decrease in bouton density and exocytosis of synaptic vesicles at single presynaptic terminals in cultured striatal neurons. Real-time imaging of VGAT-CypHer5E (a pH sensitive dye conjugated to an antibody against vesicular GABA transporter (VGAT)) for inhibitory synaptic vesicles revealed a reduction in bouton density and exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of HD striatal neurons. Thus, our results suggest that the mutant huntingtin protein decreases bouton density and exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of striatal neurons, causing impaired inhibitory synaptic transmission, eventually leading to the neurodegeneration in the striatum of HD.
Collapse
Affiliation(s)
- Chen Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Ka Hei Ho
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Construction Robotics (InnoHK-HKCRC), Hong Kong Science Park, Sha Tin, Hong Kong SAR, China
| | - Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Caillaud M, Le Dréan ME, De-Guilhem-de-Lataillade A, Le Berre-Scoul C, Montnach J, Nedellec S, Loussouarn G, Paillé V, Neunlist M, Boudin H. A functional network of highly pure enteric neurons in a dish. Front Neurosci 2023; 16:1062253. [PMID: 36685225 PMCID: PMC9853279 DOI: 10.3389/fnins.2022.1062253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.
Collapse
Affiliation(s)
- Martial Caillaud
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France,*Correspondence: Martial Caillaud,
| | - Morgane E. Le Dréan
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | | | - Catherine Le Berre-Scoul
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Gildas Loussouarn
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
7
|
BDNF impact on synaptic dynamics: extra or intracellular long-term release differently regulates cultured hippocampal synapses. Mol Brain 2020; 13:43. [PMID: 32183860 PMCID: PMC7079446 DOI: 10.1186/s13041-020-00582-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/09/2020] [Indexed: 01/21/2023] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) signalling contributes to the formation, maturation and plasticity of Central Nervous System (CNS) synapses. Acute exposure of cultured brain circuits to BDNF leads to up-regulation of glutamatergic neuro-transmission, by the accurate tuning of pre and post synaptic features, leading to structural and functional synaptic changes. Chronic BDNF treatment has been comparatively less investigated, besides it may represent a therapeutic option to obtain rescue of post-injury alterations of synaptic networks. In this study, we used a paradigm of BDNF long-term (4 days) incubation to assess in hippocampal neurons in culture, the ability of such a treatment to alter synapses. By patch clamp recordings we describe the augmented function of excitatory neurotransmission and we further explore by live imaging the presynaptic changes brought about by long-term BDNF. In our study, exogenous long-term BDNF exposure of post-natal neurons did not affect inhibitory neurotransmission. We further compare, by genetic manipulations of cultured neurons and BDNF release, intracellular overexpression of this neurotrophin at the same developmental age. We describe for the first-time differences in synaptic modulation by BDNF with respect to exogenous or intracellular release paradigms. Such a finding holds the potential of influencing the design of future therapeutic strategies.
Collapse
|
8
|
Henkel AW, Mouihate A, Welzel O. Differential Release of Exocytosis Marker Dyes Indicates Stimulation-Dependent Regulation of Synaptic Activity. Front Neurosci 2019; 13:1047. [PMID: 31632237 PMCID: PMC6783566 DOI: 10.3389/fnins.2019.01047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023] Open
Abstract
There is a general consensus that synaptic vesicular release by a full collapse process is the primary machinery of synaptic transmission. However, competing view suggests that synaptic vesicular release operates via a kiss-and-run mechanism. By monitoring the release dynamics of a synaptic vesicular marker, FM1-43 from individual synapses in hippocampal neurons, we found evidence that the release of synaptic vesicle was delayed by several seconds after the start of field stimulation. This phenomenon was associated with modified opening kinetics of fusion pores. Detailed analysis revealed that some synapses were completely inactive for a few seconds after stimulation, despite immediate calcium influx. This delay in vesicular release was modulated by various stimulation protocols and different frequencies, indicating an activity-dependent regulation mechanism for neurotransmitter exocytosis. Staurosporine, a drug known to induce “kiss-and-run” exocytosis, increased the proportion of delayed synapses as well as the delay duration, while fluoxetine acted contrarily. Besides being a serotonin reuptake inhibitor, it directly enhanced vesicle mobilization and reduced synaptic fatigue. Exocytosis was never delayed, when it was monitored with pH-sensitive probes, synaptopHlourin and αSyt-CypHerE5 antibody, indicating an instantaneous formation of a fusion pore that allowed rapid equilibration of vesicular lumenal pH but prevented FM1-43 release because of its slow dissociation from the inner vesicular membrane. Our observations suggest that synapses operate via a sequential “kiss-and-run” and “full-collapse” exocytosis mechanism. The initially narrow vesicular pore allows the equilibration of intravesicular pH which then progresses toward full fusion, causing FM1-43 release.
Collapse
Affiliation(s)
- Andreas W Henkel
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Watanabe S, Mamer LE, Raychaudhuri S, Luvsanjav D, Eisen J, Trimbuch T, Söhl-Kielczynski B, Fenske P, Milosevic I, Rosenmund C, Jorgensen EM. Synaptojanin and Endophilin Mediate Neck Formation during Ultrafast Endocytosis. Neuron 2019; 98:1184-1197.e6. [PMID: 29953872 DOI: 10.1016/j.neuron.2018.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 11/19/2022]
Abstract
Ultrafast endocytosis generates vesicles from the plasma membrane as quickly as 50 ms in hippocampal neurons following synaptic vesicle fusion. The molecular mechanism underlying the rapid maturation of these endocytic pits is not known. Here we demonstrate that synaptojanin-1, and its partner endophilin-A, function in ultrafast endocytosis. In the absence of synaptojanin or endophilin, the membrane is rapidly invaginated, but pits do not become constricted at the base. The 5-phosphatase activity of synaptojanin is involved in formation of the neck, but 4-phosphatase is not required. Nevertheless, these pits are eventually cleaved into vesicles; within a 30-s interval, synaptic endosomes form and are resolved by clathrin-mediated budding. Then synaptojanin and endophilin function at a second step to aid with the removal of clathrin coats from the regenerated vesicles. These data together suggest that synaptojanin and endophilin can mediate membrane remodeling on a millisecond timescale during ultrafast endocytosis.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Lauren Elizabeth Mamer
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Delgermaa Luvsanjav
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Julia Eisen
- Barnard College of Columbia University, New York, NY, USA
| | - Thorsten Trimbuch
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Berit Söhl-Kielczynski
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Fenske
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ira Milosevic
- Synaptic Vesicle Dynamics, European Neuroscience Institute, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Christian Rosenmund
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Erik M Jorgensen
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
10
|
Chen S, Yu C, Rong L, Li CH, Qin X, Ryu H, Park H. Altered Synaptic Vesicle Release and Ca 2+ Influx at Single Presynaptic Terminals of Cortical Neurons in a Knock-in Mouse Model of Huntington's Disease. Front Mol Neurosci 2018; 11:478. [PMID: 30618623 PMCID: PMC6311661 DOI: 10.3389/fnmol.2018.00478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the huntingtin (HTT) gene, which leads to progressive loss of neurons starting in the striatum and cortex. One possible mechanism for this selective loss of neurons in the early stage of HD is altered neurotransmission at synapses. Despite the recent finding that presynaptic terminals play an important role in HD, neurotransmitter release at synapses in HD remains poorly understood. Here, we measured synaptic vesicle release in real time at single presynaptic terminals during electrical field stimulation. We found the increase in synaptic vesicle release at presynaptic terminals in primary cortical neurons in a knock-in mouse model of HD (zQ175). We also found the increase in Ca2+ influx at presynaptic terminals in HD neurons during the electrical stimulation. Consistent with increased Ca2+-dependent neurotransmission in HD neurons, the increase in vesicle release and Ca2+ influx was rescued with Ca2+ chelators or by blocking N-type voltage-gated Ca2+ channels, suggesting N-type voltage-gated Ca2+ channels play an important role in HD. Taken together, our results suggest that the increased synaptic vesicles release due to increased Ca2+ influx at presynaptic terminals in cortical neurons contributes to the selective neurodegeneration of these neurons in early HD and provide a possible therapeutic target.
Collapse
Affiliation(s)
- Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chenglong Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Li Rong
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chun Hei Li
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hoon Ryu
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
11
|
Kopke DL, Broadie K. FM Dye Cycling at the Synapse: Comparing High Potassium Depolarization, Electrical and Channelrhodopsin Stimulation. J Vis Exp 2018:57765. [PMID: 29889207 PMCID: PMC6101380 DOI: 10.3791/57765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
FM dyes are used to study the synaptic vesicle (SV) cycle. These amphipathic probes have a hydrophilic head and hydrophobic tail, making them water-soluble with the ability to reversibly enter and exit membrane lipid bilayers. These styryl dyes are relatively non-fluorescent in aqueous medium, but insertion into the outer leaflet of the plasma membrane causes a >40X increase in fluorescence. In neuronal synapses, FM dyes are internalized during SV endocytosis, trafficked both within and between SV pools, and released with SV exocytosis, providing a powerful tool to visualize presynaptic stages of neurotransmission. A primary genetic model of glutamatergic synapse development and function is the Drosophila neuromuscular junction (NMJ), where FM dye imaging has been used extensively to quantify SV dynamics in a wide range of mutant conditions. The NMJ synaptic terminal is easily accessible, with a beautiful array of large synaptic boutons ideal for imaging applications. Here, we compare and contrast the three ways to stimulate the Drosophila NMJ to drive activity-dependent FM1-43 dye uptake/release: 1) bath application of high [K+] to depolarize neuromuscular tissues, 2) suction electrode motor nerve stimulation to depolarize the presynaptic nerve terminal, and 3) targeted transgenic expression of channelrhodopsin variants for light-stimulated, spatial control of depolarization. Each of these methods has benefits and disadvantages for the study of genetic mutation effects on the SV cycle at the Drosophila NMJ. We will discuss these advantages and disadvantages to assist the selection of the stimulation approach, together with the methodologies specific to each strategy. In addition to fluorescent imaging, FM dyes can be photoconverted to electron-dense signals visualized using transmission electron microscopy (TEM) to study SV cycle mechanisms at an ultrastructural level. We provide the comparisons of confocal and electron microscopy imaging from the different methods of Drosophila NMJ stimulation, to help guide the selection of future experimental paradigms.
Collapse
Affiliation(s)
| | - Kendal Broadie
- Departments of Biological Sciences, Pharmacology, Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center;
| |
Collapse
|
12
|
Alford S, Hamm H, Rodriguez S, Zurawski Z. Gβγ SNARE Interactions and Their Behavioral Effects. Neurochem Res 2018; 44:636-649. [PMID: 29752624 DOI: 10.1007/s11064-018-2531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses-GPCRs are present at every studied presynaptic terminal-underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.
Collapse
Affiliation(s)
- Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA.
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| | - Shelagh Rodriguez
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| |
Collapse
|
13
|
Kaempf N, Maritzen T. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function. Front Cell Neurosci 2017; 11:320. [PMID: 29085282 PMCID: PMC5649181 DOI: 10.3389/fncel.2017.00320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis.
Collapse
Affiliation(s)
- Natalie Kaempf
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Tanja Maritzen
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
14
|
Wen X, Saltzgaber GW, Thoreson WB. Kiss-and-Run Is a Significant Contributor to Synaptic Exocytosis and Endocytosis in Photoreceptors. Front Cell Neurosci 2017; 11:286. [PMID: 28979188 PMCID: PMC5611439 DOI: 10.3389/fncel.2017.00286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
Accompanying sustained release in darkness, rod and cone photoreceptors exhibit rapid endocytosis of synaptic vesicles. Membrane capacitance measurements indicated that rapid endocytosis retrieves at least 70% of the exocytotic membrane increase. One mechanism for rapid endocytosis is kiss-and-run fusion where vesicles briefly contact the plasma membrane through a small fusion pore. Release can also occur by full-collapse in which vesicles merge completely with the plasma membrane. We assessed relative contributions of full-collapse and kiss-and-run in salamander photoreceptors using optical techniques to measure endocytosis and exocytosis of large vs. small dye molecules. Incubation with small dyes (SR101, 1 nm; 3-kDa dextran-conjugated Texas Red, 2.3 nm) loaded rod and cone synaptic terminals much more readily than larger dyes (10-kDa Texas Red, 4.6 nm; 10-kDa pHrodo, 4.6 nm; 70-kDa Texas Red, 12 nm) consistent with significant uptake through 2.3–4.6 nm fusion pores. By using total internal reflection fluorescence microscopy (TIRFM) to image individual vesicles, when rods were incubated simultaneously with Texas Red and AlexaFluor-488 dyes conjugated to either 3-kDa or 10-kDa dextran, more vesicles loaded small molecules than large molecules. Using TIRFM to detect release by the disappearance of dye-loaded vesicles, we found that SR101 and 3-kDa Texas Red were released from individual vesicles more readily than 10-kDa and 70-kDa Texas Red. Although 10-kDa pHrodo was endocytosed poorly like other large dyes, the fraction of release events was similar to SR101 and 3-kDa Texas Red. We hypothesize that while 10-kDa pHrodo may not exit through a fusion pore, release of intravesicular protons can promote detection of fusion events by rapidly quenching fluorescence of this pH-sensitive dye. Assuming that large molecules can only be released by full-collapse whereas small molecules can be released by both modes, our results indicate that 50%–70% of release from rods involves kiss-and-run with 2.3–4.6 nm fusion pores. Rapid retrieval of vesicles by kiss-and-run may limit membrane disruption of release site function during ongoing release at photoreceptor ribbon synapses.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, United States.,Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| | - Grant W Saltzgaber
- Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| | - Wallace B Thoreson
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, United States.,Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| |
Collapse
|
15
|
Chang CW, Chiang CW, Jackson MB. Fusion pores and their control of neurotransmitter and hormone release. J Gen Physiol 2017; 149:301-322. [PMID: 28167663 PMCID: PMC5339513 DOI: 10.1085/jgp.201611724] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 11/20/2022] Open
Abstract
Chang et al. review fusion pore structure and dynamics and discuss the implications for hormone and neurotransmitter release Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
16
|
Joensuu M, Padmanabhan P, Durisic N, Bademosi ATD, Cooper-Williams E, Morrow IC, Harper CB, Jung W, Parton RG, Goodhill GJ, Papadopulos A, Meunier FA. Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles. J Cell Biol 2016; 215:277-292. [PMID: 27810917 PMCID: PMC5080683 DOI: 10.1083/jcb.201604001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/30/2016] [Indexed: 11/23/2022] Open
Abstract
Joensuu et al. describe a tool for subdiffractional tracking of internalized molecules. They reveal that synaptic vesicles exhibit stochastic switching between heterogeneous diffusive and transport states in live hippocampal nerve terminals. Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti–green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)–pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2–pHluorin/Atto647N–tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adekunle T D Bademosi
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Isabel C Morrow
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Callista B Harper
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - WooRam Jung
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia .,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia .,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Cano R, Tabares L. The Active and Periactive Zone Organization and the Functional Properties of Small and Large Synapses. Front Synaptic Neurosci 2016; 8:12. [PMID: 27252645 PMCID: PMC4877509 DOI: 10.3389/fnsyn.2016.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022] Open
Abstract
The arrival of an action potential (AP) at a synaptic terminal elicits highly synchronized quanta release. Repetitive APs produce successive synaptic vesicle (SV) fusions that require management of spent SV components in the presynaptic membrane with minimum disturbance of the secretory apparatus. To this end, the synaptic machinery is structured accordingly to the strength and the range of frequencies at which each particular synapse operates. This results in variations in the number and dimension of Active Zones (AZs), amount and distribution of SVs, and probably, in the primary endocytic mechanisms they use. Understanding better how these structural differences determine the functional response in each case has been a matter of long-term interest. Here we review the structural and functional properties of three distinct types of synapses: the neuromuscular junction (NMJ; a giant, highly reliable synapse that must exocytose a large number of quanta with each stimulus to guarantee excitation of the postsynaptic cell), the hippocampal excitatory small synapse (which most often has a single release site and a relatively small pool of vesicles), and the cerebellar mossy fiber-granule cell synapse (which possesses hundreds of release sites and is able to translocate, dock and prime vesicles at high speed). We will focus on how the release apparatus is organized in each case, the relative amount of vesicular membrane that needs to be accommodated within the periAZ upon stimulation, the different mechanisms for retrieving the excess of membrane and finally, how these factors may influence the functioning of the release sites.
Collapse
Affiliation(s)
- Raquel Cano
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville Seville, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville Seville, Spain
| |
Collapse
|
18
|
Ackermann F, Waites CL, Garner CC. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 2015; 16:923-38. [PMID: 26160654 DOI: 10.15252/embr.201540434] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022] Open
Abstract
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.
Collapse
Affiliation(s)
- Frauke Ackermann
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig C Garner
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| |
Collapse
|
19
|
Bruckner JJ, Zhan H, O'Connor-Giles KM. Advances in imaging ultrastructure yield new insights into presynaptic biology. Front Cell Neurosci 2015; 9:196. [PMID: 26052269 PMCID: PMC4440913 DOI: 10.3389/fncel.2015.00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function.
Collapse
Affiliation(s)
- Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA
| | - Kate M O'Connor-Giles
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Genetics, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
20
|
Abstract
Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ege T Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Iwabuchi S, Kakazu Y, Koh JY, Goodman KM, Harata NC. Examination of synaptic vesicle recycling using FM dyes during evoked, spontaneous, and miniature synaptic activities. J Vis Exp 2014. [PMID: 24747983 DOI: 10.3791/50557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | - Yasuhiro Kakazu
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | - Jin-Young Koh
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | | | - N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine;
| |
Collapse
|
22
|
Zhang Q. Imaging single synaptic vesicles in mammalian central synapses with quantum dots. Methods Mol Biol 2014; 1026:57-69. [PMID: 23749569 DOI: 10.1007/978-1-62703-468-5_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
This protocol describes a sensitive and rigorous method to monitor the movement and turnover of single synaptic vesicles in live presynaptic terminals of mammalian central nerve system. This technique makes use of fluorescent semiconductor nanocrystals, quantum dots (Qdots), by their nanometer size, superior photoproperties, and pH-sensitivity. In comparison with other fluorescent probes like styryl dyes and pH-sensitive fluorescent proteins, Qdots offer strict loading ratio, multi-modality detection, single vesicle precision, and most importantly distinctive signals for different modes of vesicle recycling. This application is spectrally compatible with existing optical labels for synapses and thus allows multichannel and simultaneous imaging. With easy modification, this technique can be applied to other types of cells.
Collapse
Affiliation(s)
- Qi Zhang
- Pharmacology Department, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
23
|
Kavalali ET, Jorgensen EM. Visualizing presynaptic function. Nat Neurosci 2013; 17:10-6. [PMID: 24369372 DOI: 10.1038/nn.3578] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/14/2013] [Indexed: 12/15/2022]
Abstract
Synaptic communication in the nervous system is initiated by the fusion of synaptic vesicles with the presynaptic plasma membrane and subsequent neurotransmitter release. In the 1980s, this process was characterized by electron microscopy, albeit without the ability to follow processes in living cells. In the last two decades, fluorescence imaging methods have been developed that report synaptic vesicle fusion, endocytosis and recycling. These probes have provided unprecedented insight into synaptic vesicle trafficking in individual synaptic terminals and revealed heterogeneity in recycling pathways as well as synaptic vesicle populations. These methods either take advantage of uptake of fluorescent probes into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive fluorescent marker at regions facing the vesicle lumen. We provide an overview of these methods, with particular emphasis on the challenges associated with their use and the opportunities for future investigations.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Erik M Jorgensen
- 1] Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA. [2] Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
24
|
Watanabe S, Rost BR, Camacho-Pérez M, Davis MW, Söhl-Kielczynski B, Rosenmund C, Jorgensen EM. Ultrafast endocytosis at mouse hippocampal synapses. Nature 2013; 504:242-247. [PMID: 24305055 PMCID: PMC3957339 DOI: 10.1038/nature12809] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/01/2013] [Indexed: 01/21/2023]
Abstract
To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated approximately 20 s after fusion by the assembly of clathrin scaffolds or in approximately 1 s by the reversal of fusion pores via 'kiss-and-run' endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy--'flash-and-freeze' electron microscopy. Docked vesicles fuse and collapse into the membrane within 30 ms of the stimulus. Compensatory endocytosis occurs within 50 to 100 ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover, it is 200-fold faster than clathrin-mediated endocytosis. It is likely that 'ultrafast endocytosis' is specialized to restore the surface area of the membrane rapidly.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, U.S.A
| | - Benjamin R Rost
- Neuroscience Research Centre, Charité Universitätsmedizin, Berlin, Germany
| | | | - M Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, U.S.A
| | | | | | - Erik M Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, U.S.A
| |
Collapse
|
25
|
Abstract
Recent evidence suggests that endocytosis, not exocytosis, can be rate limiting for neurotransmitter release at excitatory CNS synapses during sustained activity and therefore may be a principal determinant of synaptic fatigue. At low stimulation frequencies, the probability of synaptic release is linked to the probability of synaptic retrieval such that evoked release results in proportional retrieval even for release of single synaptic vesicles. The exact mechanism by which the retrieval rates are coupled to release rates, known as compensatory endocytosis, remains unknown. Here we show that inactivation of presynaptic myosin II (MII) decreases the probability of synaptic retrieval. To be able to differentiate between the presynaptic and postsynaptic functions of MII, we developed a live cell substrate patterning technique to create defined neural circuits composed of small numbers of embryonic mouse hippocampal neurons and physically isolated from the surrounding culture. Acute application of blebbistatin to inactivate MII in circuits strongly inhibited evoked release but not spontaneous release. In circuits incorporating both control and MIIB knock-out cells, loss of presynaptic MIIB function correlated with a large decrease in the amplitude of evoked release. Using activity-dependent markers FM1-43 and horseradish peroxidase, we found that MII inactivation greatly slowed vesicular replenishment of the recycling pool but did not impede synaptic release. These results indicate that MII-driven tension or actin dynamics regulate the major pathway for synaptic vesicle retrieval. Changes in retrieval rates determine the size of the recycling pool. The resulting effect on release rates, in turn, brings about changes in synaptic strength.
Collapse
|
26
|
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2013; 76:301-31. [PMID: 24274740 DOI: 10.1146/annurev-physiol-021113-170305] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892; ,
| | | | | | | |
Collapse
|
27
|
Watanabe S, Liu Q, Davis MW, Hollopeter G, Thomas N, Jorgensen NB, Jorgensen EM. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. eLife 2013; 2:e00723. [PMID: 24015355 PMCID: PMC3762212 DOI: 10.7554/elife.00723] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/12/2013] [Indexed: 11/13/2022] Open
Abstract
Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis. DOI:http://dx.doi.org/10.7554/eLife.00723.001.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Biology , Howard Hughes Medical Institute, University of Utah , Salt Lake City , United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Properties of ribbon and non-ribbon release from rod photoreceptors revealed by visualizing individual synaptic vesicles. J Neurosci 2013; 33:2071-86. [PMID: 23365244 DOI: 10.1523/jneurosci.3426-12.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vesicle release from rod photoreceptors is regulated by Ca(2+) entry through L-type channels located near synaptic ribbons. We characterized sites and kinetics of vesicle release in salamander rods by using total internal reflection fluorescence microscopy to visualize fusion of individual synaptic vesicles. A small number of vesicles were loaded by brief incubation with FM1-43 or a dextran-conjugated, pH-sensitive form of rhodamine, pHrodo. Labeled organelles matched the diffraction-limited size of fluorescent microspheres and disappeared rapidly during stimulation. Consistent with fusion, depolarization-evoked vesicle disappearance paralleled electrophysiological release kinetics and was blocked by inhibiting Ca(2+) influx. Rods maintained tonic release at resting membrane potentials near those in darkness, causing depletion of membrane-associated vesicles unless Ca(2+) entry was inhibited. This depletion of release sites implies that sustained release may be rate limited by vesicle delivery. During depolarizing stimulation, newly appearing vesicles approached the membrane at ∼800 nm/s, where they paused for ∼60 ms before fusion. With fusion, vesicles advanced ∼18 nm closer to the membrane. Release events were concentrated near ribbons, but lengthy depolarization also triggered release from more distant non-ribbon sites. Consistent with greater contributions from non-ribbon sites during lengthier depolarization, damaging the ribbon by fluorophore-assisted laser inactivation (FALI) of Ribeye caused only weak inhibition of exocytotic capacitance increases evoked by 200-ms depolarizing test steps, whereas FALI more strongly inhibited capacitance increases evoked by 25 ms steps. Amplifying release by use of non-ribbon sites when rods are depolarized in darkness may improve detection of decrements in release when they hyperpolarize to light.
Collapse
|
29
|
Abstract
This protocol describes a sensitive and rigorous method to monitor the movement and turnover of single synaptic vesicles in live presynaptic terminals of mammalian central nervous system. This technique makes use of Photoluminescent semiconductor nanocrystals, quantum dots (Qdots), by their nanometer size, superior photoproperties, and pH-sensitivity. In comparison with previous fluorescent probes like styryl dyes and pH-sensitive fluorescent proteins, Qdots offer strict loading ratio, multi-modality detection, single vesicle precision, and most importantly distinctive signals for different modes of vesicle fusion. Qdots are spectrally compatible with existing fluorescent probes for synaptic vesicles and thus allow multichannel -imaging. With easy modification, this technique can be applied to other types of synapses and cells.
Collapse
|
30
|
Rose T, Schoenenberger P, Jezek K, Oertner T. Developmental Refinement of Vesicle Cycling at Schaffer Collateral Synapses. Neuron 2013; 77:1109-21. [DOI: 10.1016/j.neuron.2013.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 11/30/2022]
|
31
|
Otterstrom J, van Oijen AM. Visualization of membrane fusion, one particle at a time. Biochemistry 2013; 52:1654-68. [PMID: 23421412 DOI: 10.1021/bi301573w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-mediated fusion between phospholipid bilayers is a fundamental and necessary mechanism for many cellular processes. The short-lived nature of the intermediate states visited during fusion makes it challenging to capture precise kinetic information using classical, ensemble-averaging biophysical techniques. Recently, a number of single-particle fluorescence microscopy-based assays that allow researchers to obtain highly quantitative data about the fusion process by observing individual fusion events in real time have been developed. These assays depend upon changes in the acquired fluorescence signal to provide a direct readout for transitions between the various fusion intermediates. The resulting data yield meaningful and detailed kinetic information about the transitory states en route to productive membrane fusion. In this review, we highlight recent in vitro and in vivo studies of membrane fusion at the single-particle level in the contexts of viral membrane fusion and SNARE-mediated synaptic vesicle fusion. These studies afford insight into mechanisms of coordination between fusion-mediating proteins as well as coordination of the overall fusion process with other cellular processes. The development of single-particle approaches to investigate membrane fusion and their successful application to a number of model systems have resulted in a new experimental paradigm and open up considerable opportunities to extend these methods to other biological processes that involve membrane fusion.
Collapse
Affiliation(s)
- Jason Otterstrom
- Harvard Biophysics Program, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
32
|
Alabi AA, Tsien RW. Perspectives on Kiss-and-Run: Role in Exocytosis, Endocytosis, and Neurotransmission. Annu Rev Physiol 2013; 75:393-422. [DOI: 10.1146/annurev-physiol-020911-153305] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- AbdulRasheed A. Alabi
- Department of Molecular and Cellular Physiology, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford Medical School, Stanford, California 94305;
| | - Richard W. Tsien
- Department of Physiology and Neuroscience, Center for Neural Science, NYU Neuroscience Institute, New York University, New York, NY 10016;
| |
Collapse
|
33
|
Su Y, Duan J, Ying Z, Hou Y, Zhang Y, Wang R, Deng Y. Increased vulnerability of parkin knock down PC12 cells to hydrogen peroxide toxicity: the role of salsolinol and NM-salsolinol. Neuroscience 2013; 233:72-85. [PMID: 23291452 DOI: 10.1016/j.neuroscience.2012.12.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/21/2022]
Abstract
Dopamine-derived neurotoxins, 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) and 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (NM-salsolinol) are the two most possible 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like endogenous neurotoxin candidates that involved in the pathogenesis of Parkinson's disease (PD). The levels of endogenously synthesized salsolinol and NM-salsolinol are increased in the cerebrospinal fluid (CSF) of PD patients. Both of them lead to neurotoxicity in dopaminergic cells by inhibiting mitochondrial electron transport chain. To study the role of salsolinol and NM-salsolinol in Parkin deficiency-induced dopaminergic cell damage, we determined the cellular level of oxidative stress, the formation of salsolinol and NM-salsolinol, the level of mitochondrial damage and cell viability with/without the presence of exogenous H₂O₂ using differentiated dopaminergic PC12 cells. Our data show that parkin knock down elevates cellular oxidative stress, salsolinol and NM-salsolinol levels, which are responsible for the higher cell mortality in Parkin-deficient cells upon exposure to exogenous H₂O₂. The level of mitochondrial membrane potential loss, cristae disruption and the release of cytochrome c increased significantly along with the increased level of salsolinol and NM-salsolinol, whereas compared to parkin knock down cells in the presence of H₂O₂, the mitochondrial damage and higher cell mortality were both diminished when the levels of salsolinol and NM-salsolinol was reduced. The results not only indicate the elevated level of salsolinol and NM-salsolinol, but also reveal the potential role of salsolinol and NM-salsolinol in parkin knock down-induced cell vulnerability. We assume that parkin deficiency is the trigger of excessive oxidative stress, elevated endogenous neurotoxin levels and mitochondrial damage, which eventually results in cell death of dopaminergic cells.
Collapse
Affiliation(s)
- Yang Su
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Keighron JD, Ewing AG, Cans AS. Analytical tools to monitor exocytosis: a focus on new fluorescent probes and methods. Analyst 2012; 137:1755-63. [DOI: 10.1039/c2an15901e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat Neurosci 2011; 15:243-9. [PMID: 22197832 PMCID: PMC3435110 DOI: 10.1038/nn.3013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
Synaptotagmin I (syt1) is required for normal rates of synaptic vesicle endo- and exocytosis. However, whether the kinetic defects observed during endocytosis in syt1 knock-out neurons are secondary to defective exocytosis, or whether syt1 directly regulates the rate of vesicle retrieval, remains unresolved. In order to address this question, it is necessary to dissociate these two activities. Here, we have uncoupled the function of syt1 in exo- and endocytosis by re-targeting of the protein, or via mutagenesis of its tandem C2-domains; the impact of these manipulations on exo- and endocytosis were analyzed via electrophysiology, in conjunction with optical imaging of the vesicle cycle. These experiments uncovered a direct role for syt1 in endocytosis. Surprisingly, either C2-domain of syt1 - C2A or C2B - was able to function as Ca2+-sensor for endocytosis. Hence, syt1 functions as a dual Ca2+ sensor for both endo- and exocytosis, potentially coupling these two limbs of the vesicle cycle.
Collapse
|
36
|
Functional synapse formation between compartmentalized cortical neurons cultured inside microfluidic devices. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5401-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Wu Y, Ma L, Cheley S, Bayley H, Cui Q, Chapman ER. Permeation of styryl dyes through nanometer-scale pores in membranes. Biochemistry 2011; 50:7493-502. [PMID: 21815625 DOI: 10.1021/bi2006288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Styryl dyes are widely used to study synaptic vesicle (SV) recycling in neurons; vesicles are loaded with dye during endocytosis, and dye is subsequently released via exocytosis. During putative kiss-and-run exocytosis, efflux of dye from individual SVs has been proposed to occur via two sequential steps: dissociation from the membrane followed by permeation through a small fusion pore. To improve our understanding of the kinetics of efflux of dye from vesicles during kiss-and-run events, we examined the rates of efflux of different dyes through nanometer-scale pores formed in membranes by the toxins melittin and α-hemolysin; these pores approximate the size of fusion pores measured in neuroendocrine cells. We found that the axial diameter of each dye was a crucial determinant for permeation. Moreover, the two dyes with the largest cross-sectional areas were completely unable to pass through pores formed by a mutant α-hemolysin that has a slightly smaller pore than the wild-type toxin. The overall time constant for efflux (seconds) of each dye was orders of magnitude slower than the time constant for dissociation from membranes (milliseconds). Thus, the permeation step is rate-limiting, and this observation was further supported by atomistic molecular dynamics simulations. Together, the data reported here help provide a framework for interpreting dye destaining rates from secretory vesicles.
Collapse
Affiliation(s)
- Yao Wu
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
38
|
Malarkey EB, Parpura V. Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 2011; 589:4271-300. [PMID: 21746780 DOI: 10.1113/jphysiol.2011.210435] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Astrocytes can release various gliotransmitters in response to stimuli that cause increases in intracellular Ca(2+) levels; this secretion occurs via a regulated exocytosis pathway. Indeed, astrocytes express protein components of the vesicular secretory apparatus. However, the detailed temporal characteristics of vesicular fusions in astrocytes are not well understood. In order to start addressing this issue, we used total internal reflection fluorescence microscopy (TIRFM) to visualize vesicular fusion events in astrocytes expressing the fluorescent synaptobrevin 2 derivative, synapto-pHluorin. Although our cultured astrocytes from visual cortex express synaptosome-associated protein of 23 kDa (SNAP23), but not of 25 kDa (SNAP25), these glial cells exhibited a slow burst of exocytosis under mechanical stimulation; the expression of SNAP25B did not affect bursting behaviour. The relative amount of two distinct types of events observed, transient and full fusions, depended on the applied stimulus. Expression of exogenous synaptotagmin 1 (Syt1) in astrocytes endogenously expressing Syt4, led to a greater proportion of transient fusions when astrocytes were stimulated with bradykinin, a stimulus otherwise resulting in more full fusions. Additionally, we studied the stability of the transient fusion pore by measuring its dwell time, relation to vesicular size, flickering and decay slope; all of these characteristics were secretagogue dependent. The expression of SNAP25B or Syt1 had complex effects on transient fusion pore stability in a stimulus-specific manner. SNAP25B obliterated the appearance of flickers and reduced the dwell time when astrocytes were mechanically stimulated, while astrocytes expressing SNAP25B and stimulated with bradykinin had a reduction in decay slope. Syt1 reduced the dwell time when astrocytes were stimulated either mechanically or with bradykinin. Our detailed study of temporal characteristics of astrocytic exocytosis will not only aid the general understanding of this process, but also the interpretation of the events at the tripartite synapse, both in health and disease.
Collapse
Affiliation(s)
- Erik B Malarkey
- Departments of Neurobiology and Cell Biology, Center for Glial Biology inMedicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, USA
| | | |
Collapse
|
39
|
Gaffield MA, Romberg CF, Betz WJ. Live imaging of bulk endocytosis in frog motor nerve terminals using FM dyes. J Neurophysiol 2011; 106:599-607. [PMID: 21543750 DOI: 10.1152/jn.00123.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We observed endocytosis in real time in stimulated frog motor nerve terminals by imaging the growth of large membrane infoldings labeled with a low concentration of FM dye. The spatial and temporal information made available by these experiments allowed us to image several new aspects of this synaptic vesicle recycling pathway. Membrane infoldings appeared near synaptic vesicle clusters and grew rapidly during long-duration, high-frequency stimulation. In some cases, we observed large, elongated infoldings growing laterally into the terminal. We used these observations to calculate infolding growth rates. A decrease in stimulation frequency caused a decrease in growth rates, but the overall length of these structures was unaffected by frequency changes. Attempts to wash the dye from these infoldings after stimulation were unsuccessful, demonstrating that the fluorescent structures had been endocytosed. We also used this technique to trigger and image infoldings during repeated, short trains. We found that membrane uptake occurred repeatedly at individual endocytosis sites, but only during a portion of the total number of trains delivered to the terminal. Finally, we showed that phosphatidylinositol 3-kinase, but not actin, was involved in this endocytosis pathway. The ability to monitor many individual bulk endocytosis sites in real time should allow for new types of endocytosis measurements and could reveal novel and unexpected mechanisms for coordinating membrane recovery during synaptic activity.
Collapse
Affiliation(s)
- Michael A Gaffield
- Department of Physiology and Biophysics, University of Colorado-Denver, Anshutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
40
|
Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci 2011; 31:1461-70. [PMID: 21273430 DOI: 10.1523/jneurosci.3805-10.2011] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein sorting represents a potential point of regulation in neurotransmission because it dictates the protein composition of synaptic vesicles, the organelle that mediates transmitter release. Although the average number of most vesicle proteins has been estimated using bulk biochemical approaches (Takamori et al., 2006), no information exists on the intervesicle variability of protein number, and thus on the precision with which proteins are sorted to vesicles. To address this, we adapted a single molecule quantification approach (Mutch et al., 2007) and used it to quantify both the average number and variance of seven integral membrane proteins in brain synaptic vesicles. We report that four vesicle proteins, SV2, the proton ATPase, Vglut1, and synaptotagmin 1, showed little intervesicle variation in number, indicating they are sorted to vesicles with high precision. In contrast, the apparent number of VAMP2/synaptobrevin 2, synaptophysin, and synaptogyrin demonstrated significant intervesicle variability. These findings place constraints on models of protein function at the synapse and raise the possibility that changes in vesicle protein expression affect vesicle composition and functioning.
Collapse
|
41
|
|
42
|
Welzel O, Henkel AW, Stroebel AM, Jung J, Tischbirek CH, Ebert K, Kornhuber J, Rizzoli SO, Groemer TW. Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. Biophys J 2011; 100:593-601. [PMID: 21281573 PMCID: PMC3030169 DOI: 10.1016/j.bpj.2010.12.3706] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/03/2010] [Accepted: 12/14/2010] [Indexed: 11/22/2022] Open
Abstract
Hippocampal neurons in tissue culture develop functional synapses that exhibit considerable variation in synaptic vesicle content (20-350 vesicles). We examined absolute and fractional parameters of synaptic vesicle exocytosis of individual synapses. Their correlation to vesicle content was determined by activity-dependent discharge of FM-styryl dyes. At high frequency stimulation (30 Hz), synapses with large recycling pools released higher amounts of dye, but showed a lower fractional release compared to synapses that contained fewer vesicles. This effect gradually vanished at lower frequencies when stimulation was triggered at 20 Hz and 10 Hz, respectively. Live-cell antibody staining with anti-synaptotagmin-1-cypHer 5, and overexpression of synaptopHluorin as well as photoconversion of FM 1-43 followed by electron microscopy, consolidated the findings obtained with FM-styryl dyes. We found that the readily releasable pool grew with a power function with a coefficient of 2/3, possibly indicating a synaptic volume/surface dependency. This observation could be explained by assigning the rate-limiting factor for vesicle exocytosis at high frequency stimulation to the available active zone surface that is proportionally smaller in synapses with larger volumes.
Collapse
Affiliation(s)
- Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas W Henkel
- Department of Physiology, Faculty of Medicine, Jabriya, Kuwait University, Safat, Kuwait
| | - Armin M Stroebel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten H Tischbirek
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Ebert
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Silvio O Rizzoli
- European Neuroscience Institute Göttingen, Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain/Excellence Cluster 171, Göttingen, Germany
| | - Teja W Groemer
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
43
|
Welzel O, Tischbirek CH, Jung J, Kohler EM, Svetlitchny A, Henkel AW, Kornhuber J, Groemer TW. Synapse clusters are preferentially formed by synapses with large recycling pool sizes. PLoS One 2010; 5:e13514. [PMID: 20976002 PMCID: PMC2958124 DOI: 10.1371/journal.pone.0013514] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022] Open
Abstract
Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1-43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1-43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity.
Collapse
Affiliation(s)
- Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten H. Tischbirek
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eva M. Kohler
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexei Svetlitchny
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas W. Henkel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Teja W. Groemer
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
44
|
Richards DA. Regulation of exocytic mode in hippocampal neurons by intra-bouton calcium concentration. J Physiol 2010; 588:4927-36. [PMID: 20962005 DOI: 10.1113/jphysiol.2010.197509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses in culture, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here we investigate these two modes of exocytosis using fluorescence imaging of FM1-43, combined with quantitative Ca(2+) imaging using Oregon green BAPTA-1 (OGB1), to examine how the balance of exocytic mode changes during a stimulus train. Our findings are twofold: that the full fusion mode becomes progressively favoured through the course of a 5 or 10 Hz stimulus train, and that this occurs in parallel with presynaptic accumulation of calcium. Blockade of calcium accumulation with AM-EGTA also prevents the conversion of exocytic mode. This conversion of exocytic mode may provide insight as to the mechanisms underpinning short term plasticity.
Collapse
Affiliation(s)
- David A Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
45
|
Optical tracking of phenotypically diverse individual synapses on solitary tract nucleus neurons. Brain Res 2009; 1312:54-66. [PMID: 19944080 DOI: 10.1016/j.brainres.2009.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/04/2009] [Accepted: 11/18/2009] [Indexed: 11/23/2022]
Abstract
The solitary tract nucleus (NTS) is the termination site for cranial visceral afferents-peripheral primary afferent neurons which differ by phenotype (e.g. myelinated and unmyelinated). These afferents have very uniform glutamate release properties calculated by variance mean analysis. In the present study, we optical measured the inter-terminal release properties across individual boutons by assessing vesicle membrane turnover with the dye FM1-43. Single neurons were mechanically micro-harvested from medial NTS without enzyme treatment. The TRPV1 agonist capsaicin (CAP, 100 nM) was used to identify afferent, CAP-sensitive terminals arising from unmyelinated afferents. Isolated NTS neurons retained both glutamatergic and inhibitory terminals that generated EPSCs and IPSCs, respectively. Visible puncta on the neurons were stained positively with monoclonal antibody for synaptophysin, a presynaptic marker. Elevating extracellular K(+) concentration to 10 mM increased synaptic release measured at individual terminals by FM1-43. Within single neurons, CAP destained some but not other individual terminals. FM1-43 positive terminals that were resistant to CAP could be destained with K(+) solution. Individual terminals responded to depolarization with similar vesicle turnover kinetics. Thus, vesicular release was relatively homogenous across individual release sites. Surprisingly, conventionally high K(+) concentrations (>50 mM) produced erratic synaptic responses and at 90 mM K(+) overt neuron swelling--results that suggest precautions about assuming consistent K(+) responses in all neurons. The present work demonstrates remarkably uniform glutamate release between individual unmyelinated terminals and suggests that the homogeneous EPSC release properties of solitary tract afferents result from highly uniform release properties across multiple contacts on NTS neurons.
Collapse
|
46
|
Affiliation(s)
- Jeremy Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065; ,
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065; ,
| |
Collapse
|
47
|
Biophysical characterization of styryl dye-membrane interactions. Biophys J 2009; 97:101-9. [PMID: 19580748 PMCID: PMC2711377 DOI: 10.1016/j.bpj.2009.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/31/2009] [Accepted: 04/09/2009] [Indexed: 11/22/2022] Open
Abstract
Styryl dyes (also referred to as FM dyes) become highly fluorescent upon binding to membranes and are often used to study synaptic vesicle recycling in neurons. To date, however, no direct comparisons of the fluorescent properties, or time-resolved (millisecond) measurements of dye-membrane binding and unbinding reactions, for all members of this family of probes have been reported. Here, we compare the fluorescence intensities of each member of the FM dye family when bound to membranes. This analysis included SGC5, a new lipophilic fluorescent dye with a unique structure. Fluorescence intensities depended on the length of the lipophilic tail of each dye, with a rank order as follows: SGC5 > FM1-84 > FM1-43 > SynaptoGreen C3 > FM2-10/FM4-64/FM5-95. Stopped-flow measurements revealed that dye hydrophobicity determined the affinity and departitioning rates for dye-membrane interactions. All of the dyes dissociated from membranes on the millisecond timescale, which is orders of magnitude faster than the overall destaining rate (timescale of seconds) of these dyes from presynaptic boutons. Departitioning kinetics were faster at higher temperatures, but were unaffected by pH or cholesterol. The data reported here aid interpretation of dye-release kinetics from single synaptic vesicles, and indicate that these probes dissociate from membranes on more rapid timescales than previously appreciated.
Collapse
|
48
|
Richards DA. Vesicular release mode shapes the postsynaptic response at hippocampal synapses. J Physiol 2009; 587:5073-80. [PMID: 19752123 DOI: 10.1113/jphysiol.2009.175315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here these two modes of exocytosis were investigated with a combination of electrophysiological recording and fluorescence imaging. It is shown that these exocytic modes result in distinct postsynaptic consequences, such that so-called 'kiss-and-run' exocytosis results in negligible activation of AMPA receptors, compared to the robust postsynaptic responses elicited by apparent full fusion. In contrast NMDA receptors are robustly activated by this form of glutamate delivery. Addition of cyclothiazide, which blocks AMPA receptor desensitization, reveals that the relatively slow rate of release of glutamate during kiss-and-run exocytosis shifts the population of AMPA receptors into a desensitized state, rather than simply being insufficient for receptor activation. These findings provide further support for the existence of a fusion pore mediated mode of exocytosis, and demonstrate that these two exocytic modes directly affect the throughput of synaptic transmission.
Collapse
Affiliation(s)
- David A Richards
- Department of Neurology, University of Cincinnati, Vontz Center for Molecular Studies, 3125 Eden Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
49
|
Abdulreda MH, Moy VT. Investigation of SNARE-Mediated Membrane Fusion Mechanism Using Atomic Force Microscopy. JAPANESE JOURNAL OF APPLIED PHYSICS (2008) 2009; 48:8JA03-8JA0310. [PMID: 20228892 PMCID: PMC2836841 DOI: 10.1143/jjap.48.08ja03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Membrane fusion is driven by specialized proteins that reduce the free energy penalty for the fusion process. In neurons and secretory cells, soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) mediate vesicle fusion with the plasma membrane during vesicular content release. Although, SNAREs have been widely accepted as the minimal machinery for membrane fusion, the specific mechanism for SNARE-mediated membrane fusion remains an active area of research. Here, we summarize recent findings based on force measurements acquired in a novel experimental system that uses atomic force microscope (AFM) force spectroscopy to investigate the mechanism(s) of membrane fusion and the role of SNAREs in facilitating membrane hemifusion during SNARE-mediated fusion. In this system, protein-free and SNARE-reconstituted lipid bilayers are formed on opposite (trans) substrates and the forces required to induce membrane hemifusion and fusion or to unbind single v-/t-SNARE complexes are measured. The obtained results provide evidence for a mechanism by which the pulling force generated by interacting trans-SNAREs provides critical proximity between the membranes and destabilizes the bilayers at fusion sites by broadening the hemifusion energy barrier and consequently making the membranes more prone to fusion.
Collapse
|
50
|
Ran I, Quastel DMJ, Mathers DA, Puil E. Fluctuation analysis of tetanic rundown (short-term depression) at a corticothalamic synapse. Biophys J 2009; 96:2505-31. [PMID: 19289074 DOI: 10.1016/j.bpj.2008.12.3891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022] Open
Abstract
Hypothetical scenarios for "tetanic rundown" ("short-term depression") of synaptic signals evoked by stimulus trains differ in evolution of quantal amplitude (Q) and covariances between signals. With corticothalamic excitatory postsynaptic currents (EPSCs) evoked by 2.5- to 20-Hz trains, we found Q (estimated using various corrections of variance/mean ratios) to be unchanged during rundown and close to the size of stimulus-evoked "miniatures". Except for covariances, results were compatible with a depletion model, according to which incomplete "refill" after probabilistic quantal release entails release-site "emptying". For five neurons with 20 train repetitions at each frequency, there was little between-neuron variation of rundown; pool-refill rate increased with stimulus frequency and evolved during rundown. Covariances did not fit the depletion model or theoretical alternatives, being excessively negative for adjacent EPSCs early in trains, absent at equilibrium, and anomalously positive for some nonadjacent EPSCs. The anomalous covariances were unaltered during pharmacological blockade of receptor desensitization and saturation. These findings suggest that pool-refill rate and release probability at each release site are continually modulated by antecedent outputs in its neighborhood, possibly via feedback mechanisms. In all data sets, sampling errors for between-train variances were much less than theoretical, warranting reconsideration of the probabilistic nature of quantal transmitter release.
Collapse
Affiliation(s)
- Israeli Ran
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|